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Learning Graphical Models o
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
O r RO
CR CAD Structural
® @ learning
O >,
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Learning Graphical Models s

e Scenarios:

e completely observed GMs
directed
undirected

e partially or unobserved GMs
directed
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin"
e Maximum entropy

e We use learning as a name for the process of estimating the parameters,
and in some cases, the topology of the network, from data.
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ML Structural Learning for

completely observed
GMs
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Two “Optimal” approaches o

e “Optimal” here means the employed algorithms guarantee to
return a structure that maximizes the objectives (e.g., LogLik)

e Many heuristics used to be popular, but they provide no guarantee on attaining
optimality, interpretability, or even do not have an explicit objective

e E.g.: structured EM, Module network, greedy structural search, etc.

e We will learn two classes of algorithms for guaranteed
structure learning, which are likely to be the only known
methods enjoying such guarantee, but they only apply to
certain families of graphs:

e Trees: The Chow-Liu algorithm (this lecture)
e Pairwise MRFs: covariance selection, neighborhood-selection (later)
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Structural Search +-
e How many graphs over n nodes? 0(2”2) 2" !
2" .|y
e How many trees over n nodes? O(n!) |

O(n()

e But it turns out that we can find exact solution of an optimal
tree (under MLE)!

e Trick: MLE score decomposable to edge-related elements
e Trick: in a tree each node has only one parent!
e Chow-liu algorithm
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Information Theoretic $+4+-
Interpretation of ML -

£(05.G:D)=1og p(D [65,.0)
logH(H p(Xm N,z (G)> I”(Cﬂj

= (Z}ng(xnl _nﬁ\(G)ﬂlﬁ(G))j

—

N\
count(x,,X_ )
- M Z Z{ B 1 ))og P(X; Xﬂ(ep‘gm(e))J
i \ Xi»Xz(G) ﬁ—’M’—

=M Z Z ﬁ(xiaxﬁi(G))log&(xi X”(G)’g'”(G))}

XXz (6)

From sum over data points to sum over count of variable states
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Information Theoretic
Interpretation of ML (con'd)

£(6,.G:D) = log p(D[65.G>

Z 6()(. X, (G))log p(X ‘X;z (G)> I|7r (G))

7i(G)

i\ XX

f

Z p(X, X, (G)) log

Z P(X;, eri(G)) log

Xi Xz (6)

E——
p(xu X;z (G)> m (G))

p(X, X ,.(G)> m (G))

p(Xﬁ (G))p(x)

=MZHM%@%MZHM>

Decomposable score and a function of the graph structure
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Chow-Liu tree learning algorithm | ::

e Obijection function:

/(6,,G;D)=1log p(D16..G) &i

= |C(G)=M Z IA(Xiax;zi(c;))/

—

=M 1(X, X, 6)
. /V y
e Chow-Liu:
e For each pair of variable x; and x; Cj
N - A ount xi,xj)
Compute empirical distribution:  p(X;, X ;) :<
r A rj(xia X')
Compute mutual information: (X, X)) = D p(X;,X;)log— —
g | Z TG (X))

e Define a graph with node xi,..., x
Edge (l,j) gets weight f(Xi, X))
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Chow-Liu algorithm (con'd) oS

e Obijection function:

[(HGaGa D) - log f)(D | QGJG)

C(G)=M> I(x,x,
:sz(xi>xm<e>)_MZ|:|(Xi) = ['® Z 0 X))

e Chow-Liu:
Optimal tree BN
e Compute maximum weight spanning tree
e Direction in BN: pick any node as root, do breadth-first-search to define directions
e |-equivalence:

(A
ACRT ® ©

D ©

C(G)=I(A.B)+1(A,C)+1(C,D)+I(C,E)
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Tree and mixture-of-tree models 34
for DNA sequence classification -
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Structure Learning for general cece
graphs oo

e [heorem:

e The problem of learning a BN structure with at most d parents is

NP-hard for any (fixed) d=2 C&

e Most structure learning approaches use heuristics

e EXxploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures

© Eric Xing @ CMU, 2005-2017 12



ML Parameter Est. for
completely observed GMs of
given structure

e [he data:

1 (20X, (25:X)), (23,X3), - (ZnXN) S
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Parameter Learning 4

e Assume G is known and fixed,
e from expert design
e from an intermediate outcome of iterative structure learning

e Goal: estimate from a dataset of N independent, identically
distributed (iid) training cases D = {X;, ..., Xy}

e In general, each training case x,=(X, 4, . - ., Xy )
is a vector of M values, one per node,

e the model can be completely observable, i.e., every element in x, is known (no
missing values, no hidden variables),

e or, partially observable, i.e., 3i, s.t. x,; is not observed.

¢ In this lecture we consider learning parameters for a BN
with given structure and is completely observable

£(0:0) 1oz (D1 0) = ox ] TT POt 15,000 | = X[ T 1oz, 15,00
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Review of density estimation g
e (Can be viewed as single-node graphical models | GM:
) () &) -+ G
e Instances of exponential family dist.
e Building blocks of general GM @N

e MLE and Bayesian estimate
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e Multinomial distribution: Mult(1,6)

e Multinomial (indicator) variable:

X,
X, XJ- =[0,1], and ZXJ. =1
X3 Jj4l,...6]
- X = where
- X
l?( W) ¢ X. =1 wp. 6., 20 =
~ ) Xs ! ! J el 6]J
e X,

p(x(j)) =P({XJ- =1, where j index the dice—face})
:(9J, :HAXA x@cxc XQGXG ><6er7 :H (9ka =0~
k

© Eric Xing @ CMU, 2005-2017
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Discrete Distributions °

“ATts" “Budgets” “Children™

e Multinomial distribution: Mult(n, & mome omme

SHOW PROGHAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
REST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
. - YORK PLAN WELFARE: NAMPHY
[ ) O u n Va rl a e OPERA  MONEY MEN STATE
- THEATER PROCRAMS PERCENT FRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
‘The Wiliam Randolph Heamst Foowdation will give S

L2 millim to Lineoln  Center,
Metropalitan Opera Co, New York Phillarmonic ad Juilliard School.  #Owe board
felt that we had a real opportunity to make amark on the fumre of the performing
arts with these graucs an act every hit as important as onr raditional areas of

B ] in health, medical ch, edneation and the s rvi Hearst  Fonelation
n President Randolph A. Hearst said Monday e 7 the grants. Lincoln Center’s
1 ahare will be S200L000 for its new building, which will honse yonung artists and provice

The Metropolitan Cpera Co. and New York Philharmonic will
eard. The Juilliard School, where music and the perfonoing arts aee

— . ‘N 7 E f— canght, will get 5200000, The Hearst F mtion, & leading supporter of the Lincoln
n - . here nJ - N Center Consolidated Corporate Food, will make s wswal soooel 5100000 donation,

o,

N! 0Mp . o M _ N!
1 >2 K o
n!n!---n,! n!n,!---n,!

p(n) = 0"
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Example: multinomial model

e Data: GM:
e We observed Niid die rolls (K-sided): D={5, 1, K, ..., 3} @ @ @ . @
e Representation: (y
. : X K
Unit basis vectors: x = ”2 , wherex,, =1{0,1}, andz Xy =1 @
: k=1
Xn,K

e Model:
X =1 wp. 6,,and > 6 =1

kefl,..K}

e How to write the likelihood of a single observation x,?
P(x) = P({X,, =1, where k index the die - side of the nth roll})

K
_ _ Xnﬁl Xn,2 Ve Xn,K — Xn,k
=6, =60,""x6," x--x0," = ||(9k
k=1

e The likelihood of datasetD={x;, ... X}:

N N X ZN:Xn.k n
P(X, X, Xy |0) =[] P(x, [0) =] | (H O ) =11a =[14"
k k

n=l" © Eric Xing @ CMUN2065-2017
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MLE: constrained optimization
with Lagrange multipliers .o

e Objective function:
£(0;D) = 10gP(D|6’)—10gH6’"k _an log 8,

e \We need to maximize this subject to the constrain Zé’k =1
k=1

e Constrained cost function with a Lagrange multiplier

K
(=Y n, log6’k+/1[1—29kj
k k=1

e Take derivatives wrt 6,

o  n, 120
00 b :Hk,MLE:— kMLE: ank
ne =26, =Y n=N=21) 6, = —

k k

Frequency as
sample mean

e Sufficient statistics
e Thecounts, 0 =(N,---,N, ), N, = Zn Xy » are sufficient statistics of data D
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Bayesian estimation:

e Dirichlet distribution:

F(Zak) =
S L)

e Posterior distribution of & @
p(Xla"'va |0) p(e) n a, -1 o +n, —1
P@|X,...,Xy) = |6, |6 02
e N LA | AL O '
e Notice the isomorphism of the posterior to the prior, 3 lo
2 ~
e such a prior is called a conjugate prior 2 ¥ 1v§
mL & « Y % Dirichlet pigmeters
. . . 9 v (W can be understood
e Posterior mean estimation:

o ltij as pseudo-counts

%) R R
(ﬁ(/z_[ﬁkp(MD)dé?:CJekl:[@k 1d9_ﬁ+\ak\
© Eric Xing @ CMU, 2005-2017 20
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More on Dirichlet Prior: .
e Where is the normalize constant {(a) come from?
I
L:J‘---Jefl‘l--ﬂz“d@---dé?K - Hk (@)
C(a) . «)
e Integration by parts
o I'(a)is the gamma function: T'(a)= J'Oota—le—tdt
e Forinregers, F(n + 1) _n! 0
e Marginal likelihood:
B - . - C(a
DXy} |@) = P(T| ) = [ PRI 6)P(F | @30 =~ 2
o (N+a)
e Posterior in closed-form:
PG| 1X, sy Xy}, @) = p(ﬁLf;T’(_e)m) —c(+a)[]oe™" =Dir(fi+a)
a k
e Posterior predictive rate:
C(h+a) N+

P0Gy =] X Xy 1, @) = [CA+ @) [ 67" x 677 dD =

© Eric &ing @ CMU, 2005-2017
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Sequential Bayesian updating oS

e Start with Dirichlet prior P (8 |a)=Dir(0: a)

e Observe N'samples with sufficient statisticsn'. Posterior
becomes:

P@|a,n")=Dir(@:a+n")

e Observe another N " samples with sufficient statisticsn" .
Posterior becomes:

P@|a,n',A")=Dir(@:a+A'+A")

e S0 sequentially absorbing data in any order is equivalent to
batch update.

© Eric Xing @ CMU, 2005-2017 22



Hierarchical Bayesian Models o

e (¢ are the parameters for the likelihood p(_)ié’) fC)GL g ,OL) 0(/1/

e « are the parameters for the prior p(6| ) . "’—‘FClﬂv\‘?

e \We can have hyper-hyper-parameters, etc.

e \We stop when the choice of hyper-parameters mak%;?no
difference to the marginal likelihood; typically make t‘/yper—

parameters constants.
e \Where do we get the prior? @
e Intelligent guesses
e Empirical Bayes (Type-Il maximum likelihood)
- computing point estimates of « :

Oy e =argmax = p(A | @)
a

© Eric Xing @ CMU, 2005-2017 23



Limitation of Dirichlet Prior: ot

Alpha =[2.00 2 00 2.00] Alpha =[10.00 10.00 10.00] I

20

Alpha =[2.00 10.00 2.00] Alpha =[0.90 0.90 0.90]
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The Logistic Normal Prior -
T e
g~ LNK(ﬂaZ) /‘\V L
)&
Yo NK—I(IU?Z) 7k =0 { l/ ‘Q\Q((\
0. = exp] y; —log 1+§fe7i Y
K-1 « - Log Pm Function
Cly)= 1og[1+Ze”] / - Normalization Constant

Y By et )ac) )

e Pro: co-variance structure
e Con: non-conjugate (we will discuss how to solve this later)

© Eric Xing @ CMU, 2005-2017 25



Laplace Approximation ... -

pOgH % o) ot PLoLl) PO )

| =

PHR-X) v

P Mli(¥ 9) Nornd t‘f@é

\}/‘FW T\U&Q Mtvftb b~
= N (v )
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Logistic Normal Densities

0.25
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Continuous Distributions ot

e Uniform Probability Density Function

p(x)=1/(b-a) fora<x<b

=0 elsewhere

e Normal (Gaussian) Probability Density Function

1 —(x— 2 0'2
PO Tomge

e The distribution is symmetric, and is often illustrated as a bell-shaped curve.

e Two parameters, x (mean) and o (standard deviation), determine the location and shape of
the distribution.

e The highest point on the normal curve is at the mean, which is also

Xz

e
|
|

e

-_Ki

e The mean can be any numerical value: negative, zero, or positive.

e Multivariate Gaussian

h )= 1 1o ey -
p(X,H,E)—(@)n/Z‘Z‘l/Z exp{ 2(X i) (X ,u)}

© Eric Xing @ CMU, 2005-2017 28



MLE for a multivariate-Gaussian ot

e It can be shown that the MLE for y and % is X

ot P

HmiLe :ﬁ (X ) y
! 1

Zwie :WZn(Xn IUML)(Xn _IUML)T =—3 X T

where the scatter matrix is T

S= Zn(xn — g NXo = ) = (Zn angn)_ Nty b

e The sufficient statistics are X x, and  x.x.T.

e Note that X™X=X x x,T may not be full rank (eg. if N <D), in which case %,, is not
invertible

© Eric Xing @ CMU, 2005-2017
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Bayesian parameter estimation i
for a Gaussian oc

e There are various reasons to pursue a Bayesian approach

e We would like to update our estimates sequentially over time.
e \We may have prior knowledge about the expected magnitude of the parameters.
e The MLE for 2 may not be full rank if we don’t have enough data.

e \We will restrict our attention to conjugate priors.

e We will consider various cases, in order of increasing
complexity:
e Known o, unknown u
e Known y, unknown o
e Unknown uyando

© Eric Xing @ CMU, 2005-2017 30



Bayesian estimation: unknown py, knowno | ¢

e Normal Prior: GM: ®
P(ﬁlf(27?72)_1/267413{—(/1—/10)2/272} HEO® - &

e Joint probability:

N
P(x,u)=rc?)" " exr){— LY (x, —u)z} i
20_ n=1
x(27z72 )_1/2 exp{— (14— ) /272} N
e Posterior:
P(u|x)=2r5% )" expl-(u-[1)? 1267}
2 2 -1
where 1= N /o X L and 52:(ﬁz+izj
(o2 T

X + ,
N/o?+1/7° v\g;02+1/72 Ho
© ing@ BVdl eoteeAan 31



Bayesian estimation: unknown py, knowno | ¢

/’lN Z’UO’ G——2‘|‘

= X +
N/oc*+1/0; N/o®+1/o} o of

1
N/oc® _ 1/0¢ Nz_[N lj

e The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

e The precision of the posterior 1/0? is the precision of the prior 1/02, plus one
contribution of data precision 1/02 for each observed data point.

e Sequentially updating the mean 5
e u*=0.8 (unknown), (0%)*= 0.1 (known)

e Effect of single data point

2 2

O o}
/’llzﬂo+(x_ﬂ0) 2 : 2:X_(X_1u0) 2 - 2
o +0; o +0;

e Uninformative (vague/ flat) prior, 2, —«

Hy = Ho 0
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Other scenarios oo

e Known u, unknown A = 1/0,
e The conjugate prior for Ais a Gamma with shape a, and rate (inverse scale) b,

p(Na,b) = @b”)\” Lexp(—=bA)

e The conjugate prior for g2 is Inverse-Gamma

ﬁba(oﬂ)—(a—l—l (\]) b/

o?a,b) =
e Unknown p and unknown o,
e The conjugate prior is

. 9 . D) .9
Normal-Inverse-Gamma  P(#,0%) = Pulo")P(o")
= N(pm.o?V) IG(0?|a.b)

e Semi conjugate prior

e Multivariate case:

e The conjugate prior is P(p,Y) = P(u|X)P
l
Normal-Inverse-Wishart = N(p|po. _v) TW(E ‘ I/m
Ko
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Estimation of conditional density

e (Can be viewed as two-node graphical models

e Instances of GLIM Q

e Building blocks of general GM X

e MLE and Bayesian estimate

e See supplementary slides

© Eric Xing @ CMU, 2005-2017



MLE for general BNs -

e If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

[(99 D) - log p(D ‘ 6) - lOgH H p(Xn,i ‘ Xn,;zi 7Hi)j - Z[Z lOg p(Xn,i | Xn,;zi 7Hi)j

) i
0 1

X1 X 0
0 1 A4 | \
X" N o
X2
| ® --
e 0
e Y6 W X,=1,X5=0
0 ‘] D XZ=O,X5=1
0 )
X1 H X2
I
( : X3 /
X1

0o 1

.0
X3 I
1
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Plates

e A plate is a “macro” that allows subgraphs to be replicated

e Foriid (exchangeable) data, the likelihood is

pOI1O)=]]px,10

e We can represent this as a Bayes net with N nodes.

The rules of plates are simple: repeat every structure in a box a number of

times given by the integer in the corner of the box (e.g. N), updating the plate
index variable (e.g. n) as you go.

Duplicate every arrow going into the plate and every arrow leaving the plate by
connecting the arrows to each copy of the structure.

© Eric Xing @ CMU, 2005-2017 36




Decomposable likelihood of a BN | :¢

e Consider the distribution defined by the directed acyclic GM:

p(x ‘ ‘9) = p(xl |<91)p(X2 ‘ X1392)p(x3 ‘ X1,93)p(x4 ‘ X29X3a‘94)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

X »n ¥ &

%) %
—
% % ® @
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MLE for BNs with tabular CPDs ot

e Assume each CPD is represented as a table (multinomial)

where def _ S
Gy = P(X; = ][ X, =k) 0’
1
Note that in case of multiple parents, X will have a composite Y
state, and the CPD will be a high-dimensional table ~*‘6?
The sufficient statistics are counts of family configurations "

def ) y
Nije = Zn Xr{,ixn,ﬂi
e The log-likelihood is
/(60;D) =log HQ,;’}f = Znijk log &y
ij ok

i,j.k

e Using a Lagrange multiplier
to enforce ZJ_ O, =1, We get:

© Eric Xing @ CMU, 2005-2017 38



How to define parameter prior? o

M
Factorization: p(X=x)=]] p(x1x,)
Local Distributions
defined by, e.g., multinomial parameters:

AssumptiOnS (Geiger & Heckerman 97,99):
e Complete Model Equivalence
e Global Parameter Independence
e Local Parameter Independence
e Likelihood and Prior Modularityericxing @ cmu, 2005-2017
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Global & Local Parameter ggg:
Independence oo

m Global Parameter Independence
For every DAG model:

P, 1G)=]] P 16G)

For every node: P(Oc. |Alarm=YES )

p(6,16) =[] PO, |G)

P (HCaII |Alarm=NO )

© Eric Xing @ CMU, 2005-2017 40
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Parameter Independence,
Graphical View o

Global Parameter
Independence

Local Parameter
Independence

~( X5 sample 1

— sample 2

Provided all variables are observed in all cases, we can perform
Bayesian update each parameter independently 1!

© Eric Xing @ CMU, 2005-2017 41



Which PDFs Satisfy Our coce

o000
ASS um ptlonS? (Geiger & Heckerman 97,99) :.
e Discrete DAG Models: x|z ~Multi(9)
N . F(Zak) | :
Dirichlet prior: P(9)= Tre ]:[ek = C(a)l:[ 0,

k

e Gaussian DAG Models: x;|7] ~Normal(y,X)

1
@7)"* | VY|

1
Normal prior: p(ulv,¥)= E GXP{—E(ﬂ —v)¥ 7 (u —V)}

Normal-Wishart prior:

p(ulv,a,, W)= Normal(v, (a#W)_ll

p(W|a,,T)=c(n,a,)|T|™ W[ """ exp{% tr{Tw}},

where W =371,

© Eric Xing @ CMU, 2005-2017 42



Parameter sharing -

e Consider a time-invariant (stationary) 1st-order Markov model
def

e Initial state probability vector: T, = p(X =1

def

e State transition probability matrix: A = p(X, F=1|X!, =1

e Thejoint:  p(Xy 10)=px D[] PX, Xy

t=2 t=2

e The log-likelihood:  ¢(9;D)= Zlog p(xn1|7z)+zzlog P(Xog [ Xn 15 A)

n t=2

e Again, we optimize each parameter separately
ris a multinomial frequency vector, and we've seen it before
What about A?

© Eric Xing @ CMU, 2005-2017 43



Learning a Markov chain i
transition matrix o

e Ais astochastic matrix: Y A =1
J
e Each row of A is multinomial distribution.
e So MLE of A; is the fraction of transitions from i to j

. . T i .
AML _ #(1—>]) _ ant:z Xn 11X ¢

,J\_ #(i—>e) Zn Zthz X:\,t—l

e Application:

e if the states X, represent words, this is called a bigram language model

e Sparse data problem:

e If i j did not occur in data, we will have A,-J- =0, then any future sequence with
word pair i = j will have zero probability.

e A standard hack: backoff smoothing or deleted interpolation

A=, + (1= DA™

i —e
© Eric Xing @ CMU, 2005-2017



Bayesian language model o°

e Global and local parameter independence

e The posterior of A, 5. and A, . is factorized despite v-structure on X,, because X,._
; acts like a multiplexer

e Assign a Dirichlet prior g; to each row of the transition matrix:

#— )+ By
#(i—e)+|B

A
B |[+#({ > )

def
-?ayes =p(j|1,D,B)= :ﬁ,iﬂiv’k +(1—/1i)Ai'jV'L, where 4, =

We could consider more realistic priors, e.g., mixtures of Dirichlets to account for
types of words (adjectives, verbs, etc.)
© Eric Xing @ CMU, 2005-2017 45



Example: HMM: two scenarios

e Supervised learning: estimation when the “right answer” is known
e Examples:

GIVEN: a genomic region X = X;...Xq gop 000 Where we have good
(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize P(x|6) -
-- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2005-2017 46



Recall definition of HMM

e Transition probabilities between
any two states m @ @
() ()

p(y! =11y, =D =a,
o p(Y, | Y =D~ Multinomial(ai,l,aijz,...,ai’,\,I ),Vi el.

e Start probabilities

p(y,) ~ Multinomial(ﬂl,ﬂz,...,ﬂM )

e Emission probabilities associated with each state

p(X, | yi =1) ~ Multinomial(b, ,b,,....,b,  JViel.

or in general: p(x |y =) ~f(-]6,)Viel

© Eric Xing @ CMU, 2005-2017
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Supervised ML estimation 4

e Given x = x;...xy for which the true state path y = y,...y, is known,

o Define:
Ajj = # times state transition i—j occurs iny
Bix = # times state i in y emits kin x

e We can show that the maximum likelihood parameters @ are:

gML _ #(| —> J) _ Zn Zthz yriw,t—l yr:t _ Aij
oo SNy 20A
pML _ #(1—> k) _ an; yri1,txrlit ) B
K H(io e an; Vi Zk, B..

e What if x is continuous? We can treat {(xm, yn,t):t =1:T,n=1: N} as NxT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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Supervised ML estimation, ctd. +-

e Intuition:

e When we know the underlying states, the best estimate of #is the average
frequency of transitions & emissions that occur in the training data

e Drawback:

e Given little data, there may be overfitting:

P(x|0) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

e Example:

e Given 10 casino rolls, we observe
x=2,1, 5, 6,

TN
e
o
TN
T w

e Then: are=1;, ag =0
bpy = be3 = .2;
be, = .3; bey = 0; beg = bgg = .1
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Pseudocounts .

e Solution for small training sets:
e Add pseudocounts

Ajj = # times state transition i—j occurs iny + R,-J
B, = # times state i in y emits kin x+ S,
° R,-J-, S,-J- are pseudocounts representing our prior belief

e Total pseudocounts: R; = ZJ-R S; =25,

ij
--- "strength" of prior belief,
--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities --- smoothing

e This is equivalent to Bayesian est. under a uniform prior with
"parameter strength" equals to the pseudocounts

© Eric Xing @ CMU, 2005-2017
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Summary: Learning GM -

e For fully observed BN, the log-likelihood function decomposes
into a sum of local terms, one per node; thus learning is also
factored

° /Structural learning
Chow liu

Neighborhood selection
e | Learning single-node GM — density estimation: exponential family dist.
Typical discrete distribution
Typical continuous distribution
Conjugate priors

Learning two—nod@N/:GLll\/l
Conditional Density Est.

Classificgtion
rning\BN with more nodes

Local operations
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Supplemental review:

© Eric Xing @ CMU, 2005-2017
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Two node fully observed BNs

Generative and discriminative approaches X X
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000
0000
0000
00
| u || - ..
Classification: -
e Goal: Wishtolearnf: X —>Y
e Generative:
e Modeling the joint distribution
of all data
e Discriminative:
e Modeling only points -
at the boundary \\\\\ \ xf
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000

0000

e0o?
Conditional Gaussian °°
e The data: GM: VS
{4 Y1), (Xa5 Y2 )y (X35 Y3 ) (> Yoo )} =m

M

e Both nodes are observed:
e Yis a class indicator vector

p(y,)=multi(y, :7)=[ [ 7
k

e Xis a conditional Gaussian variable with a class-specific mean

1
(2ro

p(X 1Y, u,0) =H[H N (X, iﬂk,ff)y”’k]

© Eric Xing @ CMU, 2005-2017
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MLE of conditional Gaussian ot

e Data log-likelihood GM: TS
C X DO
£(8;D) =log]| | p(x,,y,) =log] | (Y, [7)P(X, | Yys £,0) M
e MLE

_ R Z yn,k N
T wme =argmax#(0;D), Tme = " N = %

Z yn,k Xn Z yn,k Xn
n _n the average of

Z Yok - n, samples of class m
n

the fraction of
samples of class m

ﬁk,MLE =argmax £(0; D), /[lk,MLE =
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Bsyesian estimation of
conditional Gaussian

e Prior:
P(7|a)=Dir(z:a)

P(u, |v)=Normal(y, :v,7)

e Posterior mean (Bayesian est.)

o __N 7o ‘0{‘ o _ N T o
CBaes N +‘a‘ “MEUN +‘a‘ ‘a‘ N +‘a‘
n/o® 1/7°
/uk,Bayes -

_|_
n /o’ +1/7° Hmt n /o +1/7°

© Eric Xing @ CMU, 2005-2017
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Classification ot

e Gaussian Discriminative Analysis: VS
e The joint probability of a datum and it label is:

p(xn9 yn,k :1|/u96) - p(yn,k ZI)X p(xn | yn,k :19/’190)

p— |
=TT Wexp = (Xo - 44)

e Given a datum x,, we predict its label using the conditional probability of the label
given the datum:

1
Ty (271_0_2)1/2 exp{- 2;2 (Xn '/uk)z}
p(yn,k :1|Xn3/u90): 1 ,
;ﬂ-k' (27[02)1/2 exp{ 2;2 (X, - £4) }

e This is basic inference
e introduce evidence, and then normalize
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Transductive classification -

e Given X, what is its corresponding Y, GM:
when we know the answer for

a set of training data?

e Frequentist prediction:
e we fit z, xand o from data first, and then ... M

p(yn,k:17Xn|/uaaa7[): ﬂ-kN(Xna|/uk:U)
p(xn|/u9077z.) Zﬂk'N(Xn7|ﬂk'aa)
k'

p(yn,k :1|Xn9/u9697z.):

e Bayesian:

e we compute the posterior dist. of the parameters first ...

© Eric Xing @ CMU, 2005-2017 59



Linear Regression -
—

e The data:

M

e Both nodes are observed:
e Xis an input vector

e Y is aresponse vector A

(we first consider y as a generic y
continuous response vector, then

we consider the special case of
classification where y is a discrete
indicator)

e A regression scheme can be

used to model p(y|x) directly,

rather than p(x,y)

X
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A discriminative probabilistic T
model .o

e Let us assume that the target variable and the inputs are
related by the equation:

.
Y, =0 X, +¢
where € is an error term of unmodeled effects or random noise

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

01 11:) = p( S j

e By independence assumption:

n n n i—HT i2
L<9):Hp<yi|xi;9>=( : jexp(zu(y x)]

J2ro 2o°

© Eric Xing @ CMU, 2005-2017
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Linear regression -

e Hence the log-likelinood is:

11

1 N
|((9) - nlog \/ZG - 02 EZizl(yi _QTXi)2

e Do you recognize the last term?

Yes itis: J(0) =%Z(XiT6’— yi)°
i=1

e |t is same as the MSE!
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A recap:

e LMS update rule
6" =6'+a(y, -x, 0")x,
e Pros: on-line, low per-step cost

e Cons: coordinate, maybe slow-converging

e Steepest descent
6" =0"+ az (y, —x, 0Y)x,
i=1

e Pros: fast-converging, easy to implement
e Cons: a batch,

e Normal equations . OV
0" =(XTX) Xy
e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (X'X)!, expensive, numerical issues
(e.g., matrix is singular ..)

© Eric Xing @ CMU, 2005-2017
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Bayesian linear regression

T2 o
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Simple GMs are the building
blocks of complex BNs

u,o
O
Parametric and nonparametric methods X
X
X Y
Linear, conditional mixture, nonparametric O O
Q Q
Generative and discriminative approach X X

© Eric Xing @ CMU, 2005-2017 65



