School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Exact Inference:
Elimination and Message Passing
The Sum Product Algorithm

Reading: MJ-chap 3,4

© Eric Xing @ CMU, 2005-2017

Probabilistic Inference and 44
Learning 4

e We now have compact representations of probability distributions:
Graphical Models

e A GM M describes a unique probability distribution P
e Typical tasks:

e Task 1: How do we answer queries about P,,, e.g., P\,(X[Y) ?
We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

I. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

© Eric Xing @ CMU, 2005-2017 2

Query 1: Likelihood

e Most of the queries one may ask involve evidence
e Evidence e is an assignment of values to a set E variables in the domain
e Without loss of generality E = { X,.,, ..., X, }

e Simplest query: compute probability of evidence

e this is often referred to as computing the likelihood of e

© Eric Xing @ CMU, 2005-2017

Query 2: Conditional Probability | :°

e Often we are interested in the conditional probability
distribution of a variable given the evidence

P(X,e) P(Xe)
Pe) > P(X=xe)

e thisis the a posteriori belief in X, given evidence e

P(X |e)=

e \We usually query a subset Y of all domain variables
X=1{Y,Z} and "don't care" about the remaining, Z:

P(Y[e)=) P(Y,Z=z]e)
y/
e the process of summing out the "don't care" variables z is called

marginalization, and the resulting P(y|e) is called a marginal prob.

© Eric Xing @ CMU, 2005-2017 4

Applications of a posteriori Belief | :°

e Prediction: what is the probability of an outcome given the starting
condition ?

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
?
CA > B >=»__C >

e the query node an ancestor of the evidence

e Learning under partial observation

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not restricted
by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2005-2017 5

0000
0000
: 1
Example: Deep Belief Network .
Deep Belief Network (DBN) [Hinton et al., 2006]
e Generative model or RBM with multiple hidden layers
e Successful applications
Recognizing handwritten digits
Learning motion capture data
Collaborative filtering
OO| H,
COOQ| H, SEGmcan
v L
OOOOOO | H, B % g Ldar
W
oleleleleleN'A
visible nodes (data) e R e
© Eric Xing @ CMU, 2005-2017 ; 6

Query 3: Most Probable Sees
Assignment :

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables
Z:

MPA(Y |e) =argmax,_, P(y|e)=argmax , Z P(y,z|e)

e this is the maximum a posteriori configuration of y.

© Eric Xing @ CMU, 2005-2017 7

Applications of MPA

e Classification

find most likely label, given the evidence

e EXxplanation

Cautionary note:

what is the most likely scenario, given the evidence

The MPA of a variable depends on its "context"---the set
of variables been jointly queried

Example:

MPA of Y, ?
MPA of (Y, Y,) ?

© Eric Xing @ CMU, 2005-2017

y1 y2 Ply1,y2)

O O 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Complexity of Inference :

Thm:
Computing P(X=x|e) in a GM is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works efficiently
for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

© Eric Xing @ CMU, 2005-2017 9

Approaches to inference

e Exact inference algorithms
e The elimination algorithm

e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques

e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
e Variational algorithms

© Eric Xing @ CMU, 2005-2017

10

Marginalization and Elimination '+

e A signal transduction pathway:

What is the likelihood that protein E is active?

e Query: P(e)

P(e) = ZZZZ P(a,b,c,d,e)
V a nalve summation needs to
enumerate over an

exponential number of terms

e By chain decomposition, we get

=Y > P(a)P(b|a)P(c|b)P(d|c)P(e|d)

© Eric Xing @ CMU, 2005-2017 11

Elimination on Chains ot

o dbodbodPodD

e Rearranging terms ...

Pe)=Y"YY S P(a)P(b|a)P(c|b)P(d |c)P(e|d)
=3NS P(c|b)P(d [c)P(e|d)> P(a)P(b|a)

© Eric Xing @ CMU, 2005-2017 12

Elimination on Chains

CLO>—Ce >—Ce o= o—~CED

e Now we can perform innermost summation
P(e)=> > > P(c|b)P(d|c)P(e|d)) P(a)P(b|a)
=>.2. > P(c|b)P(d|c)P(e|d)p(b)

e This summation "eliminates" one variable from our
summation argument at a "local cost".

© Eric Xing @ CMU, 2005-2017

13

Elimination in Chains ot

CLO>—CE 0= o= o>—CED

e Rearranging and then summing again, we get

Pe)=Y Y Y P(c|b)P(d |c)P(e|d)p(b)
=3 S P(d[c)P(e|d)Y. P(c|b)p(b)
=Y Y P(d |c)P(e|d)p(c)

© Eric Xing @ CMU, 2005-2017 14

Elimination in Chains o

CLO—CE o~ o—Cro—CED
—

e Eliminate nodes one by one all the way to the end, we get

P(e)=) P(e|d)p(d)
e Complexity:

e Each step costs O(|Val(X)|*|Val(Xi,,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")

© Eric Xing @ CMU, 2005-2017

15

Hidden Markov Model ot

p(x,y) =pX...... X Yo wvvee , Y1)
=Py P YD) POYL YD PO [Ys) - PO | Y1i1) PO4T | YT)

Conditional probability:

plyiley, ... xp) = Z...:yj...Sjp(yi,...jygn,:f;h...,:I:T)

Y1 Yi—1 Yi+1 yr
= > D > D pw)p(ly) - plyrlyr-)p(erlyr)
Y1 Yi—1 Yi+1 yr

© Eric Xing @ CMU, 2005-2017 16

Undirected Chains e

A D>—C >—Ce O—C O>—CED

e Rearranging terms ...

P©-Y Y XY %qﬁ(b, 2)¢(c,b)é(d, c)p(e, d)

=YY 3 4e b, e,)Y giba)

© Eric Xing @ CMU, 2005-2017 17

The Sum-Product Operation oe

e In general, we can view the task at hand as that of computing
the value of an expression of the form:

211/

Z P&
where # is a set of factors

e We call this task the sum-product inference task.

© Eric Xing @ CMU, 2005-2017 18

Inference on General GM via 1
Variable Elimination -

General idea:

e Write query in the form

P(Xpe)=2 2 2 TP pa)

X3 X
e this suggests an "elimination order" of latent variables to be
marginalized

e lteratively

e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product

e Wrap-up P(Xle)zf(;(()l(,e)e)

X
© Eric Xing @ &MU, 2005-2017 19

A more complex network -

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

© Eric Xing @ CMU, 2005-2017 20

Example: Variable Elimination

e Query: P(A |h) ©

e Need to eliminate: B,C,D,E.F.G,H

e Initial factors: O Q

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e,) e

e Choose an elimination order: H6,F.E.D,C B e 0

o Step 1:

e Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., h)):

m,(e, f)=ph=hle, f)

e This step is isomorphic to a marginalization step: (TS

m,(e, f)=> p(hle, f)sh=h) B

© Eric Xing @ CMU, 2005-2017

21

0000
-
Example: Variable Elimination 4+
e Query: P(B |h)
e Need to eliminate: B,C,D,E.F,G 0 o
e Initial factors: Q 0
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f|a)P(g|e)P(h]e, f) e e
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f|a)P(g|e)m,(e,)
&
e Step 2: Eliminate &
e compute
m,(e)=> p(gle)=1
g B LW
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)mg(e)mh(e, f) O Qi
=P(a)P(b)P(c|b)P(d |a)P(e] C,d)P(f-| aym, (e,) (E) F

e Keep eliminating F,E,D,C,B in order

© Eric Xing @ CMU, 2005-2017 22

0000
'YXX
| [| [| | ::.
Example: Variable Elimination :
e Query: P(B |h)
e Need to eliminate: B 0 o
e Initial factors: e 0
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f [a)m, (e, T) (6) (H)

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)

= P(a)P(b)P(c|d)m,(a,c)

= P(a)P(b)m,(a,b)

= P(a)m,(a)

e Final Step: Wrap-up p(a, ﬁ) = p(a)ym,(a), p(ﬁ) = Z p(a)ym,(a)

— p@m,()
= Pe =S aom @

© Eric Xing @ CMU, 2005-2017

Complexity of variable 1
elimination -

e Suppose in one elimination step we compute
m (y19 ayk) Zm (X yla ayk)

m (X yla ayk) Hm(X’YC)
This requires

® ke[Val(X)|s[]|Val(Y,) multiplications

e For each value for x, y,, ..., Y., we do k multiplications

o [Val(X)|e]]|Val(¥,)| additions

e Foreach value ofy,, ..., y,, we do |Val(X)| additions

Complexity is exponential in number of variables
in the intermediate factor

© Eric Xing @ CMU, 2005-2017 24

Understanding Variable
Elimination

e A graph elimination algorithm

B W B W B W B W B W B LA ® @ @ @
Gl
e & e & O .

P

© Eric Xing @ CMU, 2005-2017 25

Moralization :

e Convert from a directed acyclic graph (DAG) to equivalent
undirected graph

e Moralization procedure
e Starting from an input DAG
e Connect nodes if they share a common child
e Make directed edges to undirected edges

e W e W
L B GG
e G e G

© Eric Xing @ CMU, 2005-2017 26

Graph elimination -

e Begin with the undirected GM or moralized BN

e Graph G(V, E) and elimination ordering |

e Eliminate next node in the ordering |

e Removing the node from the graph
e Connecting the remaining neighbors of the nodes

e The reconstituted graph G'(V, E')

e Retain the edges that were created during the elimination procedure

e The graph-theoretic property: the factors resulted during variable elimination are
captured by recording the elimination clique

© Eric Xing @ CMU, 2005-2017

27

Understanding Variable
Elimination

e A graph elimination algorithm

B W B W B W B W B W B LA ® @ @ @
Gl
e & e & O .

P

e Intermediate terms correspond to the cliques resulted from

elimination
’ ©

0

© Eric Xing @ CMU, 2005 2017 28

Elimination Cliques

<7} -2
G Bl S
m,, m, m,(e,a) m,(a,c,d)

® @ O = @& @ = @
:> 0,
md (aa C) mc (aa b) mb (a)

© Eric Xing @ CMU, 2005-2017

29

Graph elimination and
marginalization

e Induced dependency during marginalization vs. elimination
clique
e Summation <-> elimination
e Intermediate term <-> elimination clique

P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e,)

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g]|e)m, (e, f)

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, T) (B)—
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m,(a,e) ,
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)

= P(a)P(b)P(c|d)m,(a,c)

= P(a)P(b)m_(a,b)

= P(a)m,(a)

© Eric Xing @ CMU, 2005-2017

30

A clique tree oo

m,(a,c,d)

= Z p(e | C,d)mg (e)mf (aze)

© Eric Xing @ CMU, 2005-2017 31

Complexity

e The overall complexity is determined by the number of the
largest elimination clique

e What is the largest elimination clique? — a pure graph theoretic question

e Tree-width k: one less than the smallest achievable value of the cardinality of the
largest elimination clique, ranging over all possible elimination ordering

e “good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

Find the best elimination ordering of a graph --- NP-hard
= Inference is NP-hard

e But there often exist "obvious" optimal or near-opt elimination ordering

© Eric Xing @ CMU, 2005-2017 32

Examples

e Star

e [ree

© Eric Xing @ CMU, 2005-2017

33

More example: Ising model

Summary o

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:

--- That of taking a sum over product of potential functions

e What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithm that overcome the limitation of
Eliminate.

© Eric Xing @ CMU, 2005-2017 35

Limitation of Procedure Elimination

e Limitation

® @ ® @& ® @& ® & ® & ® _ O O 60 o0
ARG
®© @ ST &

© Eric Xing @ CMU, 2005-2017

36

From Elimination to Message
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

® @ ® @& ® @& ® & ® & ® _ O O 60 o0
ARG
®© @ ST &

m,(a,c,d)

= p(e|c,d)m,(e)m; (a,e)

(&

e Messages can be reused

© Eric Xing @ CMU, 2005-2017 37

From Elimination to Message i
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

e Messages m.and m, are reused, others need to be recomputed

© Eric Xing @ CMU, 2005-2017 38

Tree GMs

NNV

Undirected tree: a Directed tree: all Poly tree: can have
unique path between nodes except the root multiple parents

any pair of nodes have exactly one
parent We will come back to
this later

© Eric Xing @ CMU, 2005-2017 39

Equivalence of directed and cece

undirected trees ot

e Any undirected tree can be converted to a directed tree by choosing a root
node and directing all edges away from it

e A directed tree and the corresponding undirected tree make the same
conditional independence assertions

e Parameterizations are essentially the same.

Undirected tree: p(r) = %(d_lw(xi) l w(l‘z‘aﬂ?g‘))

eV (i,j)EE
e Directed tree: p(x) = p(x,) H p(zj|zi)
(i,9)eE
e Equivalence: Y(wr) =plar); Y(xi, x5) = plxjlz:);

e FEvidence:?

© Eric Xing @ CMU, 2005-2017

40

From elimination to message
passing

e Recall ELIMINATION algorithm:

Choose an ordering £ in which query node f is the final node
Place all potentials on an active list

Eliminate node i by removing all potentials containing i, take sum/product over x;.

Place the resultant factor back on the list

© Eric Xing @ CMU, 2005-2017

41

Elimination on a tree o

Let m;i(x;) denote the factor resulting from
ellmlnatmg variables from bellow up to i,
which is a function of x;:

ﬁ mzf(xz) mji(x;) = Z(v(a'J)U(x.”:r:J) H m;\J(:I:J))

xj keN(j)\i

This is reminiscent of a message sent
from j to i.

mji(x;) = Z V() Y(zi,) H mk] (z;)

x; kEN

plzs) o< p(zy) |] mf’f)

eeN(f

m;;(X;) represents a "belief" of x; from x;!

© Eric Xing @ CMU, 2005-2017 42

Message passing on a tree

e Elimination on trees is equivalent to message passing along
tree branches!

ric Xing @ CMU, 2005-2017 43

From elimination to message cece
passing :

e Recall ELIMINATION algorithm:

e Choose an ordering £ in which query node f is the final node

e Place all potentials on an active list

e Eliminate node i by removing all potentials containing i, take sum/product over x;.
e Place the resultant factor back on the list

e Fora TREE graph:

e Choose query node f as the root of the tree
e View tree as a directed tree with edges pointing towards leaves from f
e Elimination ordering based on depth-first traversal

e Elimination of each node can be considered as message-passing (or Belief
Propagation) directly along tree branches, rather than on some transformed
graphs

- thus, we can use the tree itself as a data-structure to do general inference!!

© Eric Xing @ CMU, 2005-2017 44

The message passing protocol: -

e A node can send a message to its neighbors when (and only when)
it has received messages from all its other neighbors.
e Computing node marginals:

e Naive approach: consider each node as the root and execute the message
passing algorithm

My4(X4) Computing P(X,)

My,(X;)

© Eric Xing @ CMU, 2005-2017 45

The message passing protocol: -

e A node can send a message to its neighbors when (and only when)
it has received messages from all its other neighbors.
e Computing node marginals:

e Naive approach: consider each node as the root and execute the message
passing algorithm

My5(Xy) Computing P(X,)

M3,(Xy) My(Xy)

© Eric Xing @ CMU, 2005-2017 46

The message passing protocol: -

e A node can send a message to its neighbors when (and only when)
it has received messages from all its other neighbors.
e Computing node marginals:

e Naive approach: consider each node as the root and execute the message
passing algorithm

My5(Xy) Computing P(X;)

My3(X;3) My5(X,)

© Eric Xing @ CMU, 2005-2017 47

Computing node marginals

e Nalve approach:

e Complexity: NC
N is the number of nodes
C is the complexity of a complete message passing

e Alternative dynamic programming approach
e 2-Pass algorithm (next slide =)
e Complexity: 2C!

© Eric Xing @ CMU, 2005-2017

48

The message passing protocol:

e A two-pass algorithm:

M1 (X 1)@ @ m12(X2)

mo3(X3)

© Eric Xing @ CMU, 2005-2017 49

Belief Propagation (SP-algorithm): 3
Parallel synchronous implementation | ¢

S

Z N

e For a node of degree d, whenever messages have arrived on any subset of d-1
node, compute the message for the remaining edge and send!

A pair of messages have been computed for each edge, one for each direction

All incoming messages are eventually computed for each node
© Eric Xing @ CMU, 2005-2017 50

Correctness of BP on tree 5

e Collollary: the synchronous implementation is "non-blocking"

e Thm: The Message Passage Guarantees obtaining all
marginals in the tree

mji(xi) = Z(TP W) [mu xﬂ)

T keN (j)\i

e \What about non-tree?

© Eric Xing @ CMU, 2005-2017

51

Another view of SP: Factor Graph

e Example 1

fC

P(X1) P(Xp) P(X31X4,X3) P(XslX1,X3) P(X4|X3,X3)

ﬂﬂ@ 4 4

X1) To(Xa) To(Xa:K1,Xa) 14(Xe: X1, K3) (X4, X2,X5)

© Eric Xing @ CMU, 2005-2017 52

Factor Graphs

W(X4,%0,X3) = T, (X4, %), (X0, X3)fc(X3,%4)

2 A

W(Xq,X2:X3) = Fa(X4,X2,X3)

© Eric Xing @ CMU, 2005-2017

@

53

Factor Tree oo

e A Factor graph is a Factor Tree if the undirected graph
obtained by ignoring the distinction between variable nodes
and factor nodes is an undirected tree

fa

W(X1,X2,X3) = f5(X4,X2,X3)

© Eric Xing @ CMU, 2005-2017 54

Message Passing on a Factor cece
Tree oo

e Two kinds of messages

1. v: from variables to factors
2. W from factors to variables

2l ®-=

% f @ ik
& f3 M
vis(wi) = [i) psi(z) = Y (f.s(ﬂw(s)) 11 Vjs(ff?j))
teN (i)\s za (9)\i JEN(s)\i

© Eric Xing @ CMU, 2005-2017 55

Message Passing on a Factor i
Tree, con'd °

e Message passing protocol:

e A node can send a message to a neighboring node only when it has received
messages from all its other neighbors

e Marginal probability of nodes:

2l ®-=

SN M

P(x;) oc I ¢ N(i) Mgi(X;)

oc Vis(xi)}/tsi(xi)

© Eric Xing @ CMU, 2005-2017

56

BP on a Factor Tree

%ﬁ

Vid He2
— IH:dZ:> <=
W= T = G
ﬁ d1 2d 2e
Hat ﬂ\ﬁa Hp2 ﬁ ﬂva
fa fb

© Eric Xing @ CMU, 2005-2017

57

Why factor graph?

e Tree-like graphs to Factor trees
? |
& = @
N
6 o ® %

®

© Eric Xing @ CMU, 2005-2017 58

Poly-trees to Factor trees

SRS
—_
\®/

SR

Why factor graph? -

e Because FG turns tree-like
graphs to factor trees,

e and trees are a data-structure

\ m— é‘? that guarantees correctness of
G (0 BP |
@ ®
: ()

® ® | -
—)
g "

N

© Eric Xing @ CMU, 2005-2017 60

Max-product algorithm: i
computing MAP probabilities .o

‘ maxp(x) = Hgng(w(fﬁf)mz‘f(ﬂ?f))
ﬁ mif(zs)

(0
ﬁ mi (i) (ib(%)@b(%wj)keg)imkj(l‘g)>
i

© Eric Xing @ CMU, 2005-2017 61

M x]

Max-product algorithm: 4448

computing MAP configurations using a final EE:'
bookkeeping backward pass o

‘ vy = argmax(y(zp)mis(zy))
‘ r, = argrrﬁ,x(w(xi)zp(x}?,xi)mji(xi))

‘ r; = argmax (Y(z;)Y(x], x5)myi(z;)m,(x;))

Lj

i = argmax(tb(wz)tb(wlax;))

Iy

i = argmax (¢ (zx)d(zx, 77))

© Eric Xing @ CMU, 2005-2017 62

Inference on general GM o

e Now, what if the GM is not a tree-like graph?

e Can we still directly run
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run
message-passing on it!

—> Junction tree algorithm

© Eric Xing @ CMU, 2005-2017

63

Summary

e Sum-Product algorithm computes singleton marginal
probabilities on:
e Trees
e Tree-like graphs
e Poly-trees

e Maximum a posteriori configurations can be computed by
replacing sum with max in the sum-product algorithm

e Extra bookkeeping required

e Junction tree data-structure for exact inference on general
graphs

© Eric Xing @ CMU, 2005-2017

64

