
School of Computer Science

Probabilistic Graphical Models

Exact Inference:
Elimination and Message Passing

The Sum Product Algorithm

Eric Xing
Lecture 4, January 30, 2017

Reading: MJ-chap 3,4
E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

E F

H

E F

H

E F

H

A

E F

A

E F

A

E F

B A

C

B A

C

B A

C

E

G

E

G

E

G

A

DC

E

A

DC

E

A

DC

E

A

DC

A

DC

B AB A AA

hm
gm

em
fm

bmcm

dm

hm
gm

em
fm

bmcm

dm

© Eric Xing @ CMU, 2005-2017 1

Probabilistic Inference and
Learning
 We now have compact representations of probability distributions:

Graphical Models
 A GM M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about PM, e.g., PM(X|Y) ?

 We use inference as a name for the process of computing answers to such
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

© Eric Xing @ CMU, 2005-2017 2

 
1

1
x x

k
k

,,x,xPP)()(ee 

Query 1: Likelihood
 Most of the queries one may ask involve evidence

 Evidence e is an assignment of values to a set E variables in the domain
 Without loss of generality E = { Xk+1, …, Xn }

 Simplest query: compute probability of evidence

 this is often referred to as computing the likelihood of e

© Eric Xing @ CMU, 2005-2017 3

 


x
x,XP

X,P
P

X,PXP
)(

)(
)(

)()|(
e

e
e
ee

 
z

ezZYY)|()|(,PeP

Query 2: Conditional Probability
 Often we are interested in the conditional probability

distribution of a variable given the evidence

 this is the a posteriori belief in X, given evidence e

 We usually query a subset Y of all domain variables
X={Y,Z} and "don't care" about the remaining, Z:

 the process of summing out the "don't care" variables z is called
marginalization, and the resulting P(y|e) is called a marginal prob.

© Eric Xing @ CMU, 2005-2017 4

A CB

A CB

?

?

Applications of a posteriori Belief
 Prediction: what is the probability of an outcome given the starting

condition

 the query node is a descendent of the evidence

 Diagnosis: what is the probability of disease/fault given symptoms

 the query node an ancestor of the evidence

 Learning under partial observation
 fill in the unobserved values under an "EM" setting (more later)

 The directionality of information flow between variables is not restricted
by the directionality of the edges in a GM
 probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2005-2017 5

2W

3W

1W

visible nodes (data)

V

H1

H2

H3

Example: Deep Belief Network
 Deep Belief Network (DBN) [Hinton et al., 2006]

 Generative model or RBM with multiple hidden layers
 Successful applications

 Recognizing handwritten digits
 Learning motion capture data
 Collaborative filtering

© Eric Xing @ CMU, 2005-2017 6

 In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables
z :

 this is the maximum a posteriori configuration of y.

 
z

yy ezyeyeY)|,(maxarg)|(maxarg)|(MPA PP YY

Query 3: Most Probable
Assignment

© Eric Xing @ CMU, 2005-2017 7

Applications of MPA
 Classification

 find most likely label, given the evidence

 Explanation
 what is the most likely scenario, given the evidence

Cautionary note:

 The MPA of a variable depends on its "context"---the set
of variables been jointly queried

 Example:
 MPA of Y1 ?
 MPA of (Y1, Y2) ?

y 1 y 2 P(y 1 ,y 2)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

© Eric Xing @ CMU, 2005-2017 8

Thm:
Computing P(X = x | e) in a GM is NP-hard

 Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works efficiently
for arbitrary GMs

 For particular families of GMs, we can have provably efficient
procedures

Complexity of Inference

© Eric Xing @ CMU, 2005-2017 9

Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms

 Approximate inference techniques

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
 Variational algorithms

© Eric Xing @ CMU, 2005-2017 10

 A signal transduction pathway:

 Query: P(e)

 By chain decomposition, we get

A B C ED









d c b a

d c b a

dePcdPbcPabPaP

e)P(a,b,c,d,eP

)|()|()|()|()(

)(
a naïve summation needs to
enumerate over an
exponential number of terms

What is the likelihood that protein E is active?

Marginalization and Elimination

© Eric Xing @ CMU, 2005-2017 11

A B C ED

 






d c b a

d c b a

abPaPdePcdPbcP

dePcdPbcPabPaPeP

)|()()|()|()|(

)|()|()|()|()()(

Elimination on Chains

 Rearranging terms ...

© Eric Xing @ CMU, 2005-2017 12

 Now we can perform innermost summation

 This summation "eliminates" one variable from our
summation argument at a "local cost".

A B C EDX



 




d c b

d c b a

bpdePcdPbcP

abPaPdePcdPbcPeP

)()|()|()|(

)|()()|()|()|()(

Elimination on Chains

© Eric Xing @ CMU, 2005-2017 13

A B C ED



 









d c

d c b

d c b

cpdePcdP

bpbcPdePcdP

bpdePcdPbcPeP

)()|()|(

)()|()|()|(

)()|()|()|()(

X X

Elimination in Chains

 Rearranging and then summing again, we get

© Eric Xing @ CMU, 2005-2017 14

 Eliminate nodes one by one all the way to the end, we get

 Complexity:
 Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(nk2)
 Compare to naïve evaluation that sums over joint values of n-1 variables O(kn)

A B C ED


d

dpdePeP)()|()(

X X X X

Elimination in Chains

© Eric Xing @ CMU, 2005-2017 15

Hidden Markov Model

p(x, y) = p(x1……xT, y1, ……, yT)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

© Eric Xing @ CMU, 2005-2017 16

 Rearranging terms ...

A B C ED

Undirected Chains







 



d c b a

d c b a

abdecdbc
Z

decdbcab
Z

eP

),(),(),(),(

),(),(),(),()(





1

1

© Eric Xing @ CMU, 2005-2017 17

The Sum-Product Operation
 In general, we can view the task at hand as that of computing

the value of an expression of the form:

where F is a set of factors

 We call this task the sum-product inference task.


z F



© Eric Xing @ CMU, 2005-2017 18

General idea:
 Write query in the form

 this suggests an "elimination order" of latent variables to be
marginalized

 Iteratively

 Move all irrelevant terms outside of innermost sum
 Perform innermost sum, getting a new term
 Insert the new term into the product

 wrap-up

 
nx

x x i
ii paxPXP

3 2

)|(),(1 e




1

1

1
1

x
X

XXP
),(

),()|(
e

ee




Inference on General GM via
Variable Elimination

© Eric Xing @ CMU, 2005-2017 19

B A

DC

E F

G H

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network

© Eric Xing @ CMU, 2005-2017 20

 Query: P(A |h)
 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

 Choose an elimination order: H,G,F,E,D,C,B

 Step 1:
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,)):

 This step is isomorphic to a marginalization step:

B A

DC

E F

G H

),|()|()|(),|()|()|()()(fehPegPafPdcePadPbcPbPaP

),|~(),(fehhpfemh 
h~

 
h

h hhfehpfem)~(),|(),(

B A

DC

E F

G

Example: Variable Elimination

© Eric Xing @ CMU, 2005-2017 21

 Query: P(B |h)
 Need to eliminate: B,C,D,E,F,G

 Initial factors:

 Step 2: Eliminate G
 compute

 Keep eliminating F,E,D,C,B in order

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

1)|()( 
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg





Example: Variable Elimination

© Eric Xing @ CMU, 2005-2017 22

 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Final Step: Wrap-up

B A

DC

E F

G H

Example: Variable Elimination

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h










,)()()~,(amaphap b




a
b

b

amap
amaphaP

)()(
)()()~|(


a

b amaphp)()()~(

© Eric Xing @ CMU, 2005-2017 23

 Suppose in one elimination step we compute

This requires
 multiplications

 For each value for x, y1, …, yk, we do k multiplications

 additions
 For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables
in the intermediate factor

Complexity of variable
elimination


i

Ci
Xk)Val()Val(Y


i

Ci
X)Val()Val(Y


x

kxkx yyxmyym),,,('),,(11 





k

i
cikx i

xmyyxm
1

1),(),,,(' y

© Eric Xing @ CMU, 2005-2017 24

 A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable
Elimination

© Eric Xing @ CMU, 2005-2017 25

 Convert from a directed acyclic graph (DAG) to equivalent
undirected graph

 Moralization procedure
 Starting from an input DAG
 Connect nodes if they share a common child
 Make directed edges to undirected edges

Moralization

© Eric Xing @ CMU, 2005-2017 26

B A

DC

E F

G H

B A

DC

E F

G H

moralization

Graph elimination
 Begin with the undirected GM or moralized BN

 Graph G(V, E) and elimination ordering I

 Eliminate next node in the ordering I
 Removing the node from the graph
 Connecting the remaining neighbors of the nodes

 The reconstituted graph G'(V, E')
 Retain the edges that were created during the elimination procedure
 The graph-theoretic property: the factors resulted during variable elimination are

captured by recording the elimination clique

© Eric Xing @ CMU, 2005-2017 27

 A graph elimination algorithm

 Intermediate terms correspond to the cliques resulted from
elimination

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable
Elimination

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

© Eric Xing @ CMU, 2005-2017 28

Elimination Cliques

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

E F

G

B A

DC

E F

G H

B A

DC

B A

DC

E F

B A

DC

E

B A

C

B A A

),(femh)(emg),(aem f),,(dcame

),(camd),(bamc)(amb

© Eric Xing @ CMU, 2005-2017 29

Graph elimination and
marginalization
 Induced dependency during marginalization vs. elimination

clique
 Summation <-> elimination
 Intermediate term <-> elimination clique

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h










© Eric Xing @ CMU, 2005-2017 30

A clique tree

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm


e

fg

e

eamemdcep
dcam

),()(),|(
),,(

© Eric Xing @ CMU, 2005-2017 31

Complexity
 The overall complexity is determined by the number of the

largest elimination clique

 What is the largest elimination clique? – a pure graph theoretic question

 Tree-width k: one less than the smallest achievable value of the cardinality of the
largest elimination clique, ranging over all possible elimination ordering

 “good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

 Find the best elimination ordering of a graph --- NP-hard
 Inference is NP-hard

 But there often exist "obvious" optimal or near-opt elimination ordering

© Eric Xing @ CMU, 2005-2017 32

Examples
 Star

 Tree

© Eric Xing @ CMU, 2005-2017 33

More example: Ising model

© Eric Xing @ CMU, 2005-2017 34

Summary
 The simple Eliminate algorithm captures the key algorithmic

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

 The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

 This graph interpretation will also provide hints about how to design
improved inference algorithm that overcome the limitation of
Eliminate.

© Eric Xing @ CMU, 2005-2017 35

Limitation of Procedure Elimination

 Limitation

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

© Eric Xing @ CMU, 2005-2017 36

 Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

 Elimination  message passing on a clique tree

 Messages can be reused

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A



From Elimination to Message
Passing


e

fg

e

eamemdcep
dcam

),()(),|(
),,(

© Eric Xing @ CMU, 2005-2017 37

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

From Elimination to Message
Passing
 Our algorithm so far answers only one query (e.g., on one node), do we

need to do a complete elimination for every such query?

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
© Eric Xing @ CMU, 2005-2017 38

Undirected tree: a
unique path between
any pair of nodes

Directed tree: all
nodes except the root
have exactly one
parent

Poly tree: can have
multiple parents

We will come back to
this later

Tree GMs

39© Eric Xing @ CMU, 2005-2017

 Any undirected tree can be converted to a directed tree by choosing a root
node and directing all edges away from it

 A directed tree and the corresponding undirected tree make the same
conditional independence assertions

 Parameterizations are essentially the same.

 Undirected tree:

 Directed tree:

 Equivalence:

 Evidence:?

Equivalence of directed and
undirected trees

40© Eric Xing @ CMU, 2005-2017

From elimination to message
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

41© Eric Xing @ CMU, 2005-2017

f

i

j

k l

Elimination on a tree

Let mji(xi) denote the factor resulting from
eliminating variables from bellow up to i,
which is a function of xi:

This is reminiscent of a message sent
from j to i.

mij(xi) represents a "belief" of xi from xj!

42© Eric Xing @ CMU, 2005-2017

Message passing on a tree
 Elimination on trees is equivalent to message passing along

tree branches!
f

i

j

k l
43© Eric Xing @ CMU, 2005-2017

From elimination to message
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards leaves from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as message-passing (or Belief

Propagation) directly along tree branches, rather than on some transformed
graphs

 thus, we can use the tree itself as a data-structure to do general inference!!

44© Eric Xing @ CMU, 2005-2017

X1

X4X3

X2

Computing P(X1)

m32(x2) m42(x2)

m21(x1)

The message passing protocol:
 A node can send a message to its neighbors when (and only when)

it has received messages from all its other neighbors.
 Computing node marginals:

 Naïve approach: consider each node as the root and execute the message
passing algorithm

45© Eric Xing @ CMU, 2005-2017

X1

X4X3

X2

Computing P(X2)

m32(x2) m42(x2)

m12(x2)

The message passing protocol:
 A node can send a message to its neighbors when (and only when)

it has received messages from all its other neighbors.
 Computing node marginals:

 Naïve approach: consider each node as the root and execute the message
passing algorithm

46© Eric Xing @ CMU, 2005-2017

X1

X4X3

X2

Computing P(X3)

m23(x3) m42(x2)

m12(x2)

The message passing protocol:
 A node can send a message to its neighbors when (and only when)

it has received messages from all its other neighbors.
 Computing node marginals:

 Naïve approach: consider each node as the root and execute the message
passing algorithm

47© Eric Xing @ CMU, 2005-2017

Computing node marginals
 Naïve approach:

 Complexity: NC
 N is the number of nodes
 C is the complexity of a complete message passing

 Alternative dynamic programming approach
 2-Pass algorithm (next slide )
 Complexity: 2C!

48© Eric Xing @ CMU, 2005-2017

m24(X 4)

X1

X2

X3
X4

The message passing protocol:
 A two-pass algorithm:

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

m23(X 3)
49© Eric Xing @ CMU, 2005-2017

Belief Propagation (SP-algorithm):
Parallel synchronous implementation

 For a node of degree d, whenever messages have arrived on any subset of d-1
node, compute the message for the remaining edge and send!
 A pair of messages have been computed for each edge, one for each direction
 All incoming messages are eventually computed for each node

50© Eric Xing @ CMU, 2005-2017

Correctness of BP on tree

 Collollary: the synchronous implementation is "non-blocking"

 Thm: The Message Passage Guarantees obtaining all
marginals in the tree

 What about non-tree?

51© Eric Xing @ CMU, 2005-2017

 Example 1

X1

X2

X3

X5

X4

X1

X2

X3

X5

X4

P(X1) P(X2) P(X3|X1,X2) P(X5|X1,X3) P(X4|X2,X3)

fa(X1) fb(X2) fc(X3,X1,X2) fd(X5,X1,X3) fe(X4,X2,X3)

fa

fb

fc

fd

fe

Another view of SP: Factor Graph

52© Eric Xing @ CMU, 2005-2017

 Example 2

 Example 3

X1

X2

x1,x2,x3) = fa(x1,x2)fb(x2,x3)fc(x3,x1)

x1,x2,x3) = fa(x1,x2,x3)

X3

fa fc

fb

X1

X2 X3

X1

X2 X3

fa

X1

X2 X3

Factor Graphs

53© Eric Xing @ CMU, 2005-2017

Factor Tree
 A Factor graph is a Factor Tree if the undirected graph

obtained by ignoring the distinction between variable nodes
and factor nodes is an undirected tree

x1,x2,x3) = fa(x1,x2,x3)

X1

X2 X3

fa

X1

X2 X3

54© Eric Xing @ CMU, 2005-2017

xi

f1

fs

f3

xj

xi

xk

fs

Message Passing on a Factor
Tree
 Two kinds of messages

1. : from variables to factors
2. : from factors to variables

55© Eric Xing @ CMU, 2005-2017

Message Passing on a Factor
Tree, con'd
 Message passing protocol:

 A node can send a message to a neighboring node only when it has received
messages from all its other neighbors

 Marginal probability of nodes:

xi

f1

fs

f3

xj

xi

xk

fs

P(xi)  s  N(i) si(xi)

 is(xi)si(xi)

56© Eric Xing @ CMU, 2005-2017

X1 X2
X3

X1 X2 X3fd fe

fa fcfb

a1 b2

c3

1d 3ed2
e2

2d 2e

2b

d1 e3

1a
3c

BP on a Factor Tree

57© Eric Xing @ CMU, 2005-2017

 Tree-like graphs to Factor trees

X1

X2

X3
X4

X5 X6

X1

X2

X3 X4

X5
X6

Why factor graph?

58© Eric Xing @ CMU, 2005-2017

X1 X2

X3

X5

X4

X1 X2

X3

X5

X4

Poly-trees to Factor trees

59© Eric Xing @ CMU, 2005-2017

Why factor graph?
 Because FG turns tree-like

graphs to factor trees,
 and trees are a data-structure

that guarantees correctness of
BP !

X1

X2

X3
X4

X5 X6

X1

X2

X3 X4

X5
X6

X1 X2

X3

X5

X4

X1 X2

X3

X5

X4

60© Eric Xing @ CMU, 2005-2017

Max-product algorithm:
computing MAP probabilities

f

i

j

k l

61© Eric Xing @ CMU, 2005-2017

Max-product algorithm:
computing MAP configurations using a final
bookkeeping backward pass

f

i

j

k l

62© Eric Xing @ CMU, 2005-2017

Inference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run
message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing
will be consistent!

 Then what?
 Construct a graph data-structure from P that has a tree structure, and run

message-passing on it!

 Junction tree algorithm

63© Eric Xing @ CMU, 2005-2017

 Sum-Product algorithm computes singleton marginal
probabilities on:
 Trees
 Tree-like graphs
 Poly-trees

 Maximum a posteriori configurations can be computed by
replacing sum with max in the sum-product algorithm
 Extra bookkeeping required

 Junction tree data-structure for exact inference on general
graphs

Summary

64© Eric Xing @ CMU, 2005-2017

