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1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video 
uploaded every minute

32 million 
pages

Massive Data
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Challenge 1 –
Massive Data Scale

Familiar problem: data from 50B devices, data 
centers won’t fit into memory of single machine

Source: Cisco Global Cloud 
Index

Source: The Connectivist

D q(D)
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Challenge 2 –
Gigantic Model Size

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won’t fit!

Source: University of 
Bonn

Dq(D)
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Google Brain 
Deep Learning 

for images:
1~10 Billion

model parameters

Topic Models 
for news article 

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering 
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression 
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model 
parameters

Growing Need for Big and 
Contemporary ML Programs
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The Scalability Challenge

Pathetic

Good!
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Number of “machines”
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for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model ParameterData

This computation needs to be scaled up ! 

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm
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A “Classification” of ML Models 
and Tools

l An ML program consists of:
l A mathematical “ML model” (from one of many families)…
l … which is solved by an “ML algorithm” (from one of a few types)

© Eric Xing @ CMU, 2015

• Stochastic Versions of the above Algorithms

• MC and MCMC • Optimization

• Nonparametric
Bayesian Models

• Graphical Models

• Sparse Structured
Input/Output
Regression

• Sparse Coding • Spectral/Matrix
Methods

• Regularized
Bayesian Methods

• Deep Learning• Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

8



A “Classification” of ML Models 
and Tools

l We can view ML programs as either
l Probabilistic programs
l Optimization programs

ACML 15
© Eric Xing @ CMU, 2015

Probabilistic Programs Optimization Programs
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Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model + 
Update(Data)

Dq(D)D q(D)
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Outline: 
Optimization & MCMC Algorithms

l Optimization Algorithms
l Stochastic gradient descent
l Coordinate descent
l Proximal gradient methods

l ISTA, FASTA, Smoothing proximal gradient
l ADMM

l Markov Chain Monte Carlo Algorithms
l Auxiliary Variable methods
l Embarrassingly Parallel MCMC
l Parallel Gibbs Sampling

l Data parallel
l Model parallel

© Eric Xing @ CMU, 2015
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School of Computer Science

Optimization Programs
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Algorithm I:
Stochastic Gradient Descent

l Consider an optimization problem:

l Classical gradient descent:

l Stochastic gradient descent:
l Pick a random sample di

l Update parameters based on noisy approximation of the true gradient 

min
x

E{f(x, d)}

x

(t+1)  x

(t) � �
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n

nX

i=1

r
x
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Optimization Example:
Lasso Regression

l Data, Model
l D = {feature matrix X, response vector y}
l θ = {parameter vector β)

l Objective L(θ,D)
l Least-squares difference between y and Xβ:

l Regularization r(θ)
l L1 penalty on β to encourage sparsity:
l λ is a tuning parameter

l Algorithms
l Coordinate Descent
l Stochastic Proximal Gradient Descent
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Challenge
l Optimization programs:

�

A huge number of parameters 
(e.g.) M = 1B

XyN

M

M=

� 
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B
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Distributed KV-Store for ML

© Eric Xing @ CMU, 2015 16

Server 
Machines

Worker 
Machines

l Model parameters are stored on PS machines and accessed 
via key-value interface (distributed shared memory)

l More in the next lecture



Example KV-Store Program:
Lasso

l Lasso example: want to optimize

l Put β in KV-store to share among all workers
l Step 1: SGD: each worker draws subset of samples Xi

l Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient

l Step 2: Proximal operator: perform soft thresholding on β

l Can be done at workers, or at the key-value store itself

l Bounded Asynchronous synchronization allows fast read/write 
to β, even over slow or unreliable networks
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l SGD converges almost surely to 
a global optimal for convex problems

l Traditional SGD compute gradients based on a single 
sample

l Mini-batch version computes gradients based on multiple 
samples
l Reduce variance in gradients due to multiple samples
l Multiple samples => represent as multiple vectors => use vector 

computation => speedup in computing gradients

Stochastic Gradient Descent

© Eric Xing @ CMU, 2015
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Parallel Stochastic Gradient 
Descent

l Parallel SGD: Partition data to different workers; all workers 
update full parameter vector

l Parallel SGD [Zinkevich et al., 2010]

l PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy 
of ALL params

Update local copy 
of ALL params

aggregate

Update ALL 
params

Input
Data

Input
Data

Input 
Data

© Eric Xing @ CMU, 2015
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Hogwild!: Lock-free approach to 
PSGD [Recht et al., 2011]

l Goal is to minimize a function in the form of

l e denotes a small subset of parameter indices
l xe denotes parameter values indexed by xe

l Key observation:
l Cost functions of many ML problems can be represented by f(x)
l In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is 

applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)
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Hogwild!: Lock-free approach to 
PSGD [Recht et al., 2011]

l Example: 
l Sparse SVM

l z is input vector, and y is a label; (z,y) is an elements of E 
l Assume that zα are sparse

l Matrix Completion

l Input A matrix is sparse

l Graph cuts

l W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1� y
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The cost of uncontrolled delay –
slower convergence [Dai et al. 2015]

l Theorem: Given lipschitz objective ft and step size ηt,

l where
l Where L is a lipschitz constant, and εm and εv are the mean and variance of the 

delay

l Intuition: distance between current estimate and optimal value
decreases exponentially with more iterations
l But high variance in the delay εv incurs exponential penalty!

l Distributed systems exhibit much higher delay variance, 
compared to single machine

© Eric Xing @ CMU, 2015 22



The cost of uncontrolled delay –
unstable convergence [Dai et al. 2015]

l Theorem: the variance in the parameter estimate is

l Where
l and       represents 5th order or higher terms, as a function of the delay εt

l Intuition: variance of the parameter estimate decreases near 
the optimum
l But delay εt increases parameter variance => instability during convergence

l Distributed systems have much higher average delay, 
compared to single machine

ACML 15 © Eric Xing @ CMU, 2015 23



Learning Rates Problem in SGD

© Eric Xing @ CMU, 2015

l Stochastic Gradient Descent

l Learning rate in SGD is difficult to tune.
l Big problem especially when the data is sparse:

l Assume 

l If dimension 10 is sparse and is 0 for all first 999 minibatches, and only 
becomes non-zero in the 1000th minibatch.

l receives very small update à slow convergence



Adaptive Learning Rates 
(Adagrad)

© Eric Xing @ CMU, 2015

l Instead of standard SGD

l Adagrad updates each coordinate

l Very good for sequential execution
l But with delay, very unstable.

l Why?

Duchi et al 2011



Adaptive Revision

© Eric Xing @ CMU, 2015

l Instead of Adagrad

l AdaRevision uses (approximately)

McMahan et al 2014



Adaptive Revision

© Eric Xing @ CMU, 2015
Wei et al 2015

l Adarevision is robust to delay.

Setup: matrix factorization on 16 threads single node



Coordinate Descent 
Case study: Lasso 

l Set a subgradient to zero:

l Assuming that                , we can derive update rule:
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Soft thresholding

+-= ))((),( ll xxsignxS

Standardization
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Coordinate Descent
Update each regression coefficient in a cyclic manner

1st iteration

1b 2b 3b Jb
2st iteration

1b 2b 3b Jb

l Pros and cons
l Unlike SGD, CD does not involve learning rate
l If CD can be used for a model,  it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2015 29



Parallel Coordinate Descent
[Bradley et al. 2011]

l Shotgun, a parallel coordinate descent algorithm
l Choose parameters to update at random
l Update the selected parameters in parallel
l Iterate until convergence

l When features are nearly independent, Shotgun scales 
almost linearly 
l Shotgun scales linearly up to             workers, where ρ is spectral radius of ATA
l For uncorrelated features, ρ=1; for exactly correlated features ρ=d
l No parallelism if features are exactly correlated!

P  d

2⇢

© Eric Xing @ CMU, 2015 30



Intuitions for Parallel Coordinate 
Descent

l Concurrent updates of parameters are useful when features 
are uncorrelated

l Updating parameters for correlated features may slow down 
convergence, or diverge parallel CD in the worst case
l To avoid updates of parameters for correlated features, block-greedy CD has 

been proposed

© Eric Xing @ CMU, 2015 31

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]



Parallel Coordinate Descent with 
Dynamic Scheduler
[Lee et al., 2014]

l STRADS (STRucture-Aware Dynamic Scheduler) allows 
scheduling of concurrent CD updates
l STRADS is a general scheduler for ML problems
l Applicable to CD, and other ML algorithms such as Gibbs sampling

l STRADS improves CD performance via
l Dependency checking  

l Update parameters which are nearly independent => small parallelization error

l Priority-based updates  
l More frequently update those parameters which decrease objective function faster

© Eric Xing @ CMU, 2015 32



Example Scheduler Program:
Lasso

l Schedule step:
l Prioritization: choose next variables βj to update, with probability proportional to 

their historical rate of change

l Dependency checking: do not update βj, βk in parallel if feature dimensions j 
and k are correlated

l Update step:
l For all βj chosen in Schedule step, in parallel, perform coordinate descent update

l Repeat from Schedule step
© Eric Xing @ CMU, 2015 33



l Priority-based scheduling converges faster than Shotgun 
(random) scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

 

 

STRADS
Lasso−RR

Comparison: 
priority vs. random-scheduling 
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Priority-based scheduling + 
dep. checker

be
tte

r Shotgun scheduling [Bradley et al. 2011]
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Probabilistic Programs
Case study: Topic Model (LDA)

© Eric Xing @ CMU, 2015 35



Probabilistic Example:
Topic Models

l Objective L(θ,D)
l Log-likelihood of D = {document words xij} given unknown θ = {document word 

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l Prior r(θ)
l Dirichlet prior on θ = {doc-topic, word-topic distributions}

l α, β are “hyperparameters” that control the Dirichet prior’s strength

l Algorithm
l Collapsed Gibbs Sampling

© Eric Xing @ CMU, 2015 36



Challenge
l Probabilistic programs  

topicdoc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

© Eric Xing @ CMU, 2015 37



Properties of
Collapsed Gibbs Sampling (CGS)

l Simple equation: easy for system engineers to scale up
l Good theoretical properties

l Rao-Blackwell theorem guarantees CGS sampler has lower variance (better 
stability) than naïve Gibbs sampling

l Empirically robust
l Errors in δ, B do not affect final stationary distribution by much

l Updates are sparse: fewer parameters to send over network
l Model parameters δ, B are sparse: less memory used

l If it were dense, even 1M word * 10K topic ≈ 40GB already!

© Eric Xing @ CMU, 2015 38



Probabilistic Example:
Topic Models

l Objective L(θ,D)
l Log-likelihood of D = {document words xij} given unknown θ = {document word 

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l Prior r(θ)
l Dirichlet prior on θ = {doc-topic, word-topic distributions}

l α, β are “hyperparameters” that control the Dirichet prior’s strength

l Algorithm
l Collapsed Gibbs Sampling

ACML 15 © Eric Xing @ CMU, 2015 39

Probabilistic Example:
Topic Models

ACML 15 © Eric Xing @ CMU, 2015

Model (Topics) = BkData (Docs) = xij

Applications: Natural Language Processing, Information Retrieval

Update (Collapsed Gibbs sampling)

25



CGS Example:
Topic Model sampler

docs i
(~ 1B)

topics k words v (~ 1M)

© Eric Xing @ CMU, 2015 40

“Word-topic 
summary table”

B

δ

topics k topics k



Data Parallelization for
CGS Topic Model Sampler

doc 
partition

words v (~ 1M)

doc 
partition

doc 
partition

model 
replica

model 
replica

model 
replica

© Eric Xing @ CMU, 2015 41
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Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 1: broadcast central model

© Eric Xing @ CMU, 2015 42



Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 1: broadcast central model

© Eric Xing @ CMU, 2015 43



Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 2: Perform Gibbs sampling in parallel

© Eric Xing @ CMU, 2015 44



Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 3: commit changes back to the central model

© Eric Xing @ CMU, 2015 45



Error in data-parallel LDA
l Consider the CGS equation:

l Data-parallelism incurs error in B (the pink box) and the 
summation term (the gray box)
l Both quantities are duplicated onto workers; their values become stale as 

sampling proceeds
l True even for bulk synchronous parallel execution!

l Asynchrony helps somewhat
l Communicate very frequently to reduce staleness

l Is there a better solution?

© Eric Xing @ CMU, 2015 46



Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Think graphically: token = edge

docs
words

© Eric Xing @ CMU, 2015 47

Column 
= topic k

Row = 
topic k

Column 
= topic k

Word-topic 
summary table



Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Model-parallel via graph structure

doc word

© Eric Xing @ CMU, 2015 48

Worker 1

Worker 2

Word-topic 
summary table 

(copy on worker 1)

Word-topic 
summary table 

(copy on worker 2)



Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Asynchronous communication
l Overlaps computation and communication – iterations are faster

l Model-parallelism means each machine only stores a subset 
of statistics
l Less memory usage if implemented well

l Drawback: need to convert problem into a graph
l Vertex-cut duplicates lots of vertices, canceling out savings

l Are there other ways to partition the problem?

© Eric Xing @ CMU, 2015 49



Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Topic model matrix structure:

l Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic
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Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Non-overlapping partition of the word count matrix
l Fix data at machines, send model to machines as needed

© Eric Xing @ CMU, 2015 51
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Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l During preprocessing: determine set of words used in each 
data block

l Begin training: load each data block from disk

© Eric Xing @ CMU, 2015

disk

sequential 
read
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Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Pull the set of words from Key-Value store

© Eric Xing @ CMU, 2015

disk

=

sequential 
read

53

Local copy of word-
topic summary table

Key-value store

Local model copy



Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Sample, write result to disk, send changes back to KV-store

© Eric Xing @ CMU, 2015

disk

sequential 
read

sequential write

=

54

Local copy of word-
topic summary table

Key-value store



Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Model-parallel advantage: disjoint words/docs on each 
machine
l Gibbs sampling almost equivalent to sequential case
l More accurate than data-parallel LDA
l Fast, asynchronous execution possible

l Compared to GraphLab LDA:
l Simple partitioning strategy – less system overheads, easier to implement
l Need to be careful about load imbalance (some docs will touch a particular word 

more times than others)
l Solution: pre-group documents by word frequency

© Eric Xing @ CMU, 2015 55



Error in model-parallel LDA
l Recall the CGS equation:

l Model-parallelism only has error in summation term (gray box)
l Summation term is very large for Big Data (billions of docs) => error negligible
l Compared to data-parallelism: error due to B (pink box) eliminated

© Eric Xing @ CMU, 2015 56



Summary
l Most ML programs are either optimization or probabilistic 

programs
l Optimization programs: SGD, ProxSGD, Coordinate Descent. Example: Lasso
l Probabilistic programs: Gibbs sampling. Example: Topic model (LDA)

l Key considerations
l Network delay: how to control error arising from delays?
l How to partition the problem?

l Two ways to divide ML programs:
l Data Parallel. Suitable if model parameters can be shared by all workers. 
l Model Parallel: Need to be careful in splitting model (e.g., pick dimensions with 

low correlations)
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