X

School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Distributed Algorithms for ML

© Eric Xing @ CMU, 2005-2017

Massive Data

4 32 million
facebook [§% e

1B+ USERS

30+ PETABYTES WI;IPEDI A
The Free Encyclopedia
°
Youl T twitter¥

100+ hours video 645 million users
uploaded every minute 500 million tweets / day

© Eric Xing @ CMU, 2015

LIONS OF DEVICES

Challenge 1 - 3

Massive Data Scale °°

—)
25% CAGR 2012-2017

THEINTERNET OF THINGS i@

AN EXPLOSION OF CONNECTED POSSIBILITY
Cloud Data Center (35% CAGR)

Traditional Data Center (12% CAGR)

.~
o
o
>
]
o
5
£
0]
b
@
N

46%

54%

2012 2013 2014 2015 2016 2017

Source: Cisco Global Cloud
Index

@i vl @ -

T T

YEAR

Source: The Connectivist

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine 5

© Eric Xing @ CMU, 2015

Challenge 2 -
Gigantic Model Size
Convolution Fully connected

Source: University of >
Bonn

LO (Input) L1 L2 L3 L4

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won'’t fit!

g Arm o4
S Erc Ximg @ €, 2615

Growing Need for Big and $4+

Contemporary ML Programs :

| %Multi-task Regression
4. ;¢ for simplest whole-

Google Brain
Deep Learning

for images:

1~10 Billion
model parameters

R

NN

(2
/4:@\ new output layer
2\
N

7/

den layer
_A
cZ77

2
7

7
o4 '

,,,,,,,,,,
7 % \v

- The Newllork Times TOPIC Models _Collaborative filtering
oo orrersmerar veon. wFOF News article for Video recommendation:
=e B LR = analysis: 1~10 Billion
TanE FUp to 1 Trillion model
e model N ET |: |_ | X parameters

parameters 5

© Eric Xing @ CMU, 2015

The Scalability Challenge

Processing

power/speed

2000
1800

: g

2 8 B

Number of “machines”

© Eric Xing @ CMU, 2015

An ML Program oo

B

arg max = £({x:,yi}Y, ; 0) + ()

0

Model Data Parameter

Solved by an iterative convergent algorithm

}

for (t =1toT) ¢

doThings()

i+l = g(6", As0(D))
) -

doOtherThings(

This computation needs to be scaled up !

© Eric Xing @ CMU, 2015

A “Classification” of ML Models s,

and Tools

e An ML program consists of:
e A mathematical “ML model” (from one of many families)...
e ... which is solved by an “ML algorithm” (from one of a few types)

l Machine Learning Model Families
ularize « Sparse Structured

iiothods Input/Output . Sparse Coding

I « Large-Margin Regression

© Eric Xing @ CMU, 2015

A “Classification” of ML Models
and Tools

e \We can view ML programs as either
e Probabilistic programs
e Optimization programs

[Machine Learning Model Families |

+ Sparse Structured K
«+ Large-Margin Regression

\

Machine Learning Algorithm Families

Probabilistic Programs

Seeking Life’s Bare (Genetic) Necessities
CoLD SPRING HARBOR. NEW YORK— “ e I
L“‘L i ‘r‘xm»u .| 3 h o he h
‘ e por b
i . |
I !
) i

Optimization Programs

SRl

N D
Q112 § ' e
E E lll]P)Categomcal Lij | Zig s + E g hlPCategomcal Zij | i) E :”ljz - XZ‘3||2 + A J:‘3j|
=1 7j=1

i=1 j=1 =1 j=1

\,IHn

© Eric Xing @ CMU, 2015

Parallelization Strategies

é’H—l _ 915 i A fe(p> New Model = Old Model +

Update(Data)

nnnnnn

I

ial e

1:students

~ & var

models o

S E{smrycam

Data Parallel

l\

dat LA

G P ‘m.._ >

LllUle bLLI(l(,H)/

AAAAAAAAA

AG(D: AGiD,)
DE{Dl,DQ,.. n}

10

Outline: seee

Optimization & MCMC Algorithms | ¢

e Optimization Algorithms 2. g
e Stochastic gradient descent L"lbL‘

. AO(Dy — R
e Coordinate descent TN .._.;A.—Q(-D’-“
. . NN
e Proximal gradient methods UDa) BODs)

ISTA, FASTA, Smoothing proximal gradient
e ADMM

e Markov Chain Monte Carlo Algorithms
e Auxiliary Variable methods
e Embarrassingly Parallel MCMC

e Parallel Gibbs Sampling
Data parallel
Model parallel

11

© Eric Xing @ CMU, 2015

X

School of Computer Science
Carnegie Mellon

Optimization Programs

Algorithm I: $34

Stochastic Gradient Descent ot

e Consider an optimization problem:

min E{ f(x,d)}

X

1 n
e Classical gradient descent: z'™") + 2" — v > Vaf (@, dy)
1=1

e Stochastic gradient descent:
e Pick a random sample d,
e Update parameters based on noisy approximation of the true gradient

2+ 2O — v, f(20), d;)

13

© Eric Xing @ CMU, 2015

Optimization Example: T

Lasso Regression .

e Data, Model

e D = {feature matrix X, response vector y}
e 0O = {parameter vector)

e Obijective L(0,D) N
A2
e Least-squares difference between y and Xp: Z lyi — XiB3
i=1
e Regularization r(0) D
e L1 penalty on 3 to encourage sparsity:)\Z 135
e Ais atuning parameter j=1
e Algorithms

e Coordinate Descent
e Stochastic Proximal Gradient Descent

© Eric Xing @ CMU, 2015 14

Challenge o

e Optimization programs:

—

“rd d

A huge number of parameters

A huge volume of data (e.g.) M=1B 15
(e.g.)N=1B

© Eric Xing @ CMU, 2015

Distributed KV-Store for ML

Worker
Machines

N\

&

N N -

/

\

L

J

(&

J

Server
Machines

e Model parameters are stored on PS machines and accessed
via key-value interface (distributed shared memory)

e More in the next lecture

© Eric Xing @ CMU, 2015

16

Example KV-Store Program: T
Lasso 4+

e Lasso example: want to optimize
N D
D v — XaBll; + A 184
i=1 j=1

e Put B in KV-store to share among all workers

e Step 1: SGD: each worker draws subset of samples X
e Compute gradient for each term ||y—XB||? with respect to B; update B with gradient

‘B(t) = ,."3(t_1) + 2(y; — X'zi.ﬂ'g(t_l))XiT

e Step 2: Proximal operator: perform soft thresholding on [3

e Can be done at workers, or at the key-value store itself

e Bounded Asynchronous synchronization allows fast read/write
to 3, even over slow or unreliable networks

© Eric Xing @ CMU, 2015 17

Stochastic Gradient Descent ot

e SGD converges almost surely to
a global optimal for convex problems

e Traditional SGD compute gradients based on a single
sample

e Mini-batch version computes gradients based on multiple
samples

e Reduce variance in gradients due to multiple samples

e Multiple samples => represent as multiple vectors => use vector
computation => speedup in computing gradients

18

© Eric Xing @ CMU, 2015

Parallel Stochastic Gradient

Descent

e Parallel SGD: Partition data to different workers; all workers

update full parameter vector

e Parallel SGD [zinkevich et al., 2010]

Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

e PSGD runs SGD on local copy of params in each machine

© Eric Xing @ CMU, 2015

19

Hogwild!: Lock-free approach to | $32:

PSGD [Recht et al., 2011] :.

e (Goal is to minimize a function in the form of
f(z) = Z fe(ze)
ecH

e e denotes a small subset of parameter indices
e X, denotes parameter values indexed by x,

e Key observation:
e Cost functions of many ML problems can be represented by f(x)

e In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but f,is
applied only a small number of parameters in x

© Eric Xing @ CMU, 2015 20

Hogwild!: Lock-free approach to

PS G D [Recht et al., 2011]

e Example:
e Sparse SVM
min Z maX(l — yaxTZOU 0) +)\ ||xH§
acl

zis input vector, and y is a label; (z,y) is an elements of E
Assume that z_ are sparse

Matrix Completion

min (Auo = W HE)? + M W5 + A2 | HI 3
Input A matrix is sparse

Graph cuts

mxin Z Wyy ||Ty — xy]||; subject to x, € Sp,v=1,...

(u,v)EE
W is a sparse similarity matrix, encoding a graph

© Eric Xing @ CMU, 2015

21

o00
The cost of uncontrolled delay — | 232
slower convergence p..:.. oo
e Theorem: Given Iipschitz objective f, and step size n,,
P [R;X \/_ <0L2 + — + 20’L26m> > 7':|
—T72
= exp { 25feo|+ ZoL2(25 + 1)PT}
o where BIX] = Y[fil#) — f(a*)
e Where L is a lipschitz constant, and €., and ¢, are the mean and variance of the

delay

e |[ntuition: distance between current estimate and optimal value
decreases exponentially with more iterations
e But high variance in the delay ¢, incurs exponential penalty!

e Distributed systems exhibit much higher delay variance,
compared to single machine

© Eric Xing @ CMU, 2015 22

The cost of uncontrolled delay — | s22¢

unstable convergence p.i..i.z °

e Theorem: the variance in the parameter estimate is
Var ¢y, = Vary — 2nicov(xy, EA gt]) + O(n&y)
+O(nip}) +10%,

o Where cov(vy,v2) := E[v] va] —E[v]|E[vs]

e and (’):t represents 5th order or higher terms, as a function of the delay ¢,

e Intuition: variance of the parameter estimate decreases near
the optimum
e But delay ¢, increases parameter variance => instability during convergence

e Distributed systems have much higher average delay,
compared to single machine

ACML 15 © Eric Xing @ CMU, 2015 23

Learning Rates Problem in SGD 4+

e Stochastic Gradient Descent
i1 =Tt — MGy
e Learning rate in SGD is difficult to tune.

e Big problem especially when the data is sparse:
e Assume m = 0.1

M1000 = 0.01

e If dimension 10 is sparse and is O for all first 999 minibatches, and only
becomes non-zero in the 1000t minibatch.

o m(lO) receives very small update - slow convergence

© Eric Xing @ CMU, 2015

Adaptive Learning Rates seee

(Adagrad) o

e Instead of standard SGD
Lit1 = Ly — NGy
e Adagrad updates each coordinate

Ui
t
\/Zt’zl gt2’,z'

e Very good for sequential execution

L4130 — Ltg gt.i

e But with delay, very unstable.
e Why?

Duchi et al 2011

© Eric Xing @ CMU, 2015

3
Adaptive Revision 4+
e Instead of Adagrad
LTt+1,4 = Tt — t77 > gt,i
\/th:1 9 i

e AdaRevision uses (approximately)

Gy = gi + 2919,

QECk: Z gt

t’ €delayed
Ui

e =
VI Gt

McMahan et al 2014

© Eric Xing @ CMU, 2015

000
0000
e000
o000
| | | ..
Adaptive Revision o
e Adarevision is robust to delay.
oF BStale, AdaRev, Eta=0.08
— F BStale, AdaRev, Eta=0.1
g BStale, AdaRev, Eta=0.4
~ BStale, MultiDecay, Eta=6e-5
a] BStale, MultiDecay, Eta=1.2e-5
2 h GraphLab, Sync, Eta=1e-5
@) o C
£ Fr N
£ of ™S
5 7 \o\
13 T
ot t
g; N | | | | |
—0 10 20 30 40 50 60
iterations
Setup: matrix factorization on 16 threads single node
Wei et al 2015

© Eric Xing @ CMU, 2015

Coordinate Descent 44
Case study: Lasso

A]
p=min_ |y - Xp[, + 23|
J

e Set a subgradient to zero:

—XJT.(y—XB)Jr}Jj =()

. Standardization
. T .
e Assuming that X X, = 1, we can derive update rule:
J

_ T« P Soft thresholding

© Eric Xing @ CMU, 2015 28

Coordinate Descent :

Update each regression coefficient in a cyclic manner

1st iteration

2st jteration

e Pros and cons

e Unlike SGD, CD does not involve learning rate

e |If CD can be used for a model, it is often comparable to the state-of-the-art
(e.g. lasso, group lasso)

e However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2015 29

Parallel Coordinate Descent

[Bradley et al. 2011]

e Shotgun, a parallel coordinate descent algorithm

e Choose parameters to update at random
e Update the selected parameters in parallel
e |terate until convergence

e \When features are nearly independent, Shotgun scales
almost linearly
e Shotgun scales linearly up to P < 2% workers, where p is spectral radius of ATA
e For uncorrelated features, p=1; for exactly correlated features p=d
e No parallelism if features are exactly correlated!

© Eric Xing @ CMU, 2015 30

Intuitions for Parallel Coordinate
Descent

e Concurrent updates of parameters are useful when features

are uncorrelated

Source:

j

Uncorrelated features Correlated features

[Bradley et al., 2011]

e Updating parameters for correlated features may slow down

convergence, or diverge parallel CD in the worst case

e To avoid updates of parameters for correlated features, block-greedy CD has

been proposed

© Eric Xing @ CMU, 2015

31

Parallel Coordinate Descent with | s,

Dynamic Scheduler et

[Lee et al., 2014]

e STRADS (STRucture-Aware Dynamic Scheduler) allows
scheduling of concurrent CD updates

e STRADS is a general scheduler for ML problems
e Applicable to CD, and other ML algorithms such as Gibbs sampling

e STRADS improves CD performance via

e Dependency checking
Update parameters which are nearly independent => small parallelization error

e Priority-based updates
More frequently update those parameters which decrease objective function faster

© Eric Xing @ CMU, 2015 32

Example Scheduler Program:
Lasso

e Schedule step:

e Prioritization: choose next variables {3; to update, with probability proportional to
their historical rate of change

P(select 5;) ~ (|80 = 822 4 e

e Dependency checking: do not update 3;, B in parallel if feature dimensions |
and k are correlated

|a:§ack| < p for all j #k
e Update step:

e Forall 3; chosen in Schedule step, in parallel, perform coordinate descent update

(t (t—1) H(t—1) T T H(t—1)
B = T — BTV L s(X Ty =Y XX Y M)
=y

e Repeat from Schedule step

© Eric Xing @ CMU, 2015 33

Comparison:
priority vs. random-scheduling

e Priority-based scheduling converges faster than Shotgun
(random) scheduling

100M features

9 machines
R
0.2-
| .
S| 2
2| 80157
o)
@)
v 0.1+
0.05 . .
0 500 1000

Seconds

© Eric Xing @ CMU, 2015 34

X

School of Computer Science
Carnegie Mellon

Probabilistic Programs

Case study: Topic Model (LDA)

© Eric Xing @ CMU, 2015

35

Probabilistic Example: =Rl
Topic Models = e

e Obijective L(0,D)

e Log-likelihood of D = {document words x;} given unknown 6 = {document word
topic indicators z;, doc-topic distributions 9, topic-word distributions B}:

Z Z In]P)Categom'cal(l-'z'j | Zij B) + Z Z In IEIQ?’ategorical(Zz'j | (51)
=1 j=1 i=1 j=1

e Priorr(6)

e Dirichlet prior on 6 = {doc-topic, word-topic distributions}

N K
Z InPpirichiet (51, | O‘) + Z In]PDz'm'chlet(Bk | ,3)

i=1 i=k

e q, [3 are “hyperparameters” that control the Dirichet prior’s strength

e Algorithm
e Collapsed Gibbs Sampling

© Eric Xing @ CMU, 2015 36

Challenge

e Probabilistic programs

,'Bfliz'j,—i_ Bk,ﬂ?z’j

Zij ™ Zi'zkf‘fi',di,B - YL) - N
J])(J IJ]' ")m@k+ak) V,.S‘l‘[Zz‘;/:lBkﬂJ

topic

word (~ 1M)

topic topic
(~ 1M)

doc
(~1B)

© Eric Xing @ CMU, 2015 37

Properties of cece

Collapsed Gibbs Sampling (CGS) |::

,Bxij + Bk,:lt,;j
o vV
V "3 + Z’U:l Bkav

p(;’z’j = /1.'|;l.’7;j, (Sz B) X (dzk —+ Ok) .

e Simple equation: easy for system engineers to scale up
e Good theoretical properties

e Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naive Gibbs sampling

e Empirically robust
e Errorsin §, B do not affect final stationary distribution by much

e Updates are sparse: fewer parameters to send over network

e Model parameters O, B are sparse: less memory used
e Ifit were dense, even 1M word * 10K topic = 40GB already!

© Eric Xing @ CMU, 2015 38

Probabilistic Example: cece

Topic Models oo

Applications: Natural Language Processing, Information Retrieval

Data (Docs) = x;; Model (Topics) = By
. e.e
genetic 6.01
N

1l

Seeking Life’s Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK— At ot fa I

H, L L organise " [l he b
re.” 1 et warchers with radical Un NS

oy v o the bt e 1R v o b o hi o \
plpmidyiople’ l oore R e S
it _ SHLR th J. It may U anim

- Py
N {
l !
Joth

-

Update (Collapsed Gibbs sampling)
For each doc i, each token j:
Set kota = zij
Gibbs sample new value of z;;, according to P(z;; | x;;,0;. B)
Set kpew = zij
Perform updates to B, 0:
Bioyy,wi; = Br —1
Br, e wi; = Bkpewwi; 1 91:"—]_ L Ht _|_ A D
Oikora = Oikora — 1 - S ()
0i k

slVnew

old,Wij

= 5isknew + 1

CGS Example:
Topic Model sampler

p(zi5 = klwij, 0, B) o< (O +) o -

VBHYV, By

topics k words v (~ 1M)

topics k B topics k ?

docs i
(~1B)

© Eric Xing @ CMU, 2015

“Word-topic
summary table”

40

Data Parallelization for eeoe

CGS Topic Model Sampler o

zii = k|x; O(h—l—ak = ==t
p(zij s, @7 ‘/ 3+Z@ B

topics k words v (~ 1M)

doc B model
partition replica
doc B model
partition replica
doc mod_el
partition . B replica

© Eric Xing @ CMU, 2015 41

Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

e Step 1: broadcast central model

Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

e Step 1: broadcast central model

Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

o Step 2: Perform Gibbs sampling in parallel

CLJRCT JRC

© Eric Xing @ CMU, 2015

44

Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

e Step 3: commit changes back to the central model

CLJRCT JRC

© Eric Xing @ CMU, 2015 45

Error in data-parallel LDA o

e Consider the CGS equation:

] zij = k|xij X (|Oik + k) - : =
J | J>) @7) V,B N ZZZI B

e Data-parallelism incurs error in B (the pink box) and the

summation term (the gray box)

e Both quantities are duplicated onto workers; their values become stale as
sampling proceeds

e True even for bulk synchronous parallel execution!

e Asynchrony helps somewhat
e Communicate very frequently to reduce staleness

e |[s there a better solution?

© Eric Xing @ CMU, 2015 46

Model-Parallel Strategy 1: cece

G ra p h La b L DA [Low et al., 2010; Gonzalez et al., 2012] : -

e Think graphically: token = edge

;3 i +Bk‘. i
p(zij = kx5, 0 B)oc(@;kjLa‘k). ,r,.}xj T

— _ Word-topic
summary table
]
— — words Row =
docs — topic k

]
] Column —

_ = topic k
Column

= topic k © Eric Xing @ CMU, 2015 47

Model-Parallel Strategy 1: T
GraphLab LDA . cta. 2010; conzatez etat. 2012 oo

e Model-parallel via graph structure Word-topic

summary table

(copy on worker 1)
word

o C /—3 Y.
==k

Word-topic
summary table
(copy on worker 2)

© Eric Xing @ CMU, 2015 48

Model-Parallel Strategy 1: cece

G ra p h La b L DA [Low et al., 2010; Gonzalez et al., 2012] : -

e Asynchronous communication

e Overlaps computation and communication — iterations are faster

e Model-parallelism means each machine only stores a subset
of statistics

e Less memory usage if implemented well

e Drawback: need to convert problem into a graph

e Vertex-cut duplicates lots of vertices, canceling out savings

e Are there other ways to partition the problem?

© Eric Xing @ CMU, 2015 49

Model-Parallel Strategy 2: 448

LightLDA (Petuum LDA v2) coe

[Yuan et al., 2015]

word (~ 1M)

e Topic model matrix structure:

topic topic

doc
(~1B)

e Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

© Eric Xing @ CMU, 2015 50

Model-Parallel Strategy 2: esse

LightLDA (Petuum LDA v2) coe

[Yuan et al., 2015]

e Non-overlapping partition of the word count matrix
e Fix data at machines, send model to machines as needed

le Zl2 213 le Zl2 Zl3 le Zl2 Z13 .

721| 722|723 721 722|723 721| 722| 723 |=>

Z31 Z32 Z33 Z31 Z‘32 Z33 ZH Z32 Z33 . .
Z1 Zo /3

Source: [Gemulla et al., 2011]

© Eric Xing @ CMU, 2015 51

Model-Parallel Strategy 2: esse

LightLDA (Petuum LDA v2) coe

[Yuan et al., 2015]

e During preprocessing: determine set of words used in each
data block [

e Begin training: load each data block from disk

sequential

© Eric Xing @ CMU, 2015 52

Model-Parallel Strategy 2: ses.
LightLDA (Petuum LDA v2) 43

[Yuan et al., 2015]

e Pull the set of words from Key-Value store

Key-value store

sequential

. T Local model copy

.

Local copy of word-
topic summary table

© Eric Xing @ CMU, 2015 53

Model-Parallel Strategy 2: esse

LightLDA (Petuum LDA v2) coe

[Yuan et al., 2015]

e Sample, write result to disk, send changes back to KV-store

Key-value store

sequential
re
|
disk == L]

RS

sequential write Local copy of word-

topic summary table

© Eric Xing @ CMU, 2015 54

Model-Parallel Strategy 2: 448

LightLDA (Petuum LDA v2) coe

[Yuan et al., 2015]

e Model-parallel advantage: disjoint words/docs on each
machine
e Gibbs sampling almost equivalent to sequential case
e More accurate than data-parallel LDA
e Fast, asynchronous execution possible

e Compared to GraphLab LDA:

e Simple partitioning strategy — less system overheads, easier to implement

e Need to be careful about load imbalance (some docs will touch a particular word
more times than others)

Solution: pre-group documents by word frequency

© Eric Xing @ CMU, 2015 55

Error in model-parallel LDA 4+

e Recall the CGS equation:

By + B .
p(zi5 = k|)O(ik + k) - — =
o B e o) Y

e Model-parallelism only has error in summation term (gray box)

e Summation term is very large for Big Data (billions of docs) => error negligible
e Compared to data-parallelism: error due to B (pink box) eliminated

© Eric Xing @ CMU, 2015 56

Summary

e Most ML programs are either optimization or probabilistic
programs
e Optimization programs: SGD, ProxSGD, Coordinate Descent. Example: Lasso
e Probabilistic programs: Gibbs sampling. Example: Topic model (LDA)

e Key considerations
e Network delay: how to control error arising from delays?
e How to partition the problem?

e [wo ways to divide ML programs:
e Data Parallel. Suitable if model parameters can be shared by all workers.

e Model Parallel: Need to be careful in splitting model (e.g., pick dimensions with
low correlations)

© Eric Xing @ CMU, 2015 57

