
School of Computer Science

1

Probabilistic Graphical Models

Distributed Algorithms for ML

David (Wei) Dai
Lecture 21, April 5, 2017

© Eric Xing @ CMU, 2005-2017

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

Massive Data

© Eric Xing @ CMU, 2015

2

Challenge 1 –
Massive Data Scale

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

Source: Cisco Global Cloud
Index

Source: The Connectivist

D q(D)

© Eric Xing @ CMU, 2015

3

Challenge 2 –
Gigantic Model Size

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won’t fit!

Source: University of
Bonn

Dq(D)

© Eric Xing @ CMU, 2015 4

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Need for Big and
Contemporary ML Programs

© Eric Xing @ CMU, 2015

5

The Scalability Challenge

Pathetic

Good!

Pr
oc

es
si

ng

po
w

er
/s

pe
ed

Number of “machines”

© Eric Xing @ CMU, 2015

6

for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model ParameterData

This computation needs to be scaled up !

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

© Eric Xing @ CMU, 2015

7

A “Classification” of ML Models
and Tools

l An ML program consists of:
l A mathematical “ML model” (from one of many families)…
l … which is solved by an “ML algorithm” (from one of a few types)

© Eric Xing @ CMU, 2015

• Stochastic Versions of the above Algorithms

• MC and MCMC • Optimization

• Nonparametric
Bayesian Models

• Graphical Models

• Sparse Structured
Input/Output
Regression

• Sparse Coding • Spectral/Matrix
Methods

• Regularized
Bayesian Methods

• Deep Learning• Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

8

A “Classification” of ML Models
and Tools

l We can view ML programs as either
l Probabilistic programs
l Optimization programs

ACML 15
© Eric Xing @ CMU, 2015

Probabilistic Programs Optimization Programs

9

Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model +
Update(Data)

Dq(D)D q(D)

© Eric Xing @ CMU, 2015

10

Outline:
Optimization & MCMC Algorithms

l Optimization Algorithms
l Stochastic gradient descent
l Coordinate descent
l Proximal gradient methods

l ISTA, FASTA, Smoothing proximal gradient
l ADMM

l Markov Chain Monte Carlo Algorithms
l Auxiliary Variable methods
l Embarrassingly Parallel MCMC
l Parallel Gibbs Sampling

l Data parallel
l Model parallel

© Eric Xing @ CMU, 2015

11

School of Computer Science

Optimization Programs

© Eric Xing @ CMU, 2015 12

Algorithm I:
Stochastic Gradient Descent

l Consider an optimization problem:

l Classical gradient descent:

l Stochastic gradient descent:
l Pick a random sample di

l Update parameters based on noisy approximation of the true gradient

min
x

E{f(x, d)}

x

(t+1) x

(t) � �

1

n

nX

i=1

r
x

f(x(t)
, d

i

)

x

(t+1) x

(t) � �r
x

f(x(t)
, d

i

)

© Eric Xing @ CMU, 2015

13

Optimization Example:
Lasso Regression

l Data, Model
l D = {feature matrix X, response vector y}
l θ = {parameter vector β)

l Objective L(θ,D)
l Least-squares difference between y and Xβ:

l Regularization r(θ)
l L1 penalty on β to encourage sparsity:
l λ is a tuning parameter

l Algorithms
l Coordinate Descent
l Stochastic Proximal Gradient Descent

© Eric Xing @ CMU, 2015 14

Challenge
l Optimization programs:

�

A huge number of parameters
(e.g.) M = 1B

XyN

M

M=

�
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B

© Eric Xing @ CMU, 2015

15

Distributed KV-Store for ML

© Eric Xing @ CMU, 2015 16

Server
Machines

Worker
Machines

l Model parameters are stored on PS machines and accessed
via key-value interface (distributed shared memory)

l More in the next lecture

Example KV-Store Program:
Lasso

l Lasso example: want to optimize

l Put β in KV-store to share among all workers
l Step 1: SGD: each worker draws subset of samples Xi

l Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient

l Step 2: Proximal operator: perform soft thresholding on β

l Can be done at workers, or at the key-value store itself

l Bounded Asynchronous synchronization allows fast read/write
to β, even over slow or unreliable networks

© Eric Xing @ CMU, 2015 17

l SGD converges almost surely to
a global optimal for convex problems

l Traditional SGD compute gradients based on a single
sample

l Mini-batch version computes gradients based on multiple
samples
l Reduce variance in gradients due to multiple samples
l Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

Stochastic Gradient Descent

© Eric Xing @ CMU, 2015

18

Parallel Stochastic Gradient
Descent

l Parallel SGD: Partition data to different workers; all workers
update full parameter vector

l Parallel SGD [Zinkevich et al., 2010]

l PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

Input
Data

Input
Data

Input
Data

© Eric Xing @ CMU, 2015

19

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l Goal is to minimize a function in the form of

l e denotes a small subset of parameter indices
l xe denotes parameter values indexed by xe

l Key observation:
l Cost functions of many ML problems can be represented by f(x)
l In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is

applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)

© Eric Xing @ CMU, 2015 20

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l Example:
l Sparse SVM

l z is input vector, and y is a label; (z,y) is an elements of E
l Assume that zα are sparse

l Matrix Completion

l Input A matrix is sparse

l Graph cuts

l W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1� y

↵

x

T

z

↵

, 0) + � kxk22

min
W,H

X

(u,v)2E

(Auv �WuH
T
v)

2 + �1 kWk2F + �2 kHk2F

min

x

X

(u,v)2E

w

uv

kx
u

� x

v

k1 subject to x

v

2 S

D

, v = 1, . . . , n

© Eric Xing @ CMU, 2015 21

The cost of uncontrolled delay –
slower convergence [Dai et al. 2015]

l Theorem: Given lipschitz objective ft and step size ηt,

l where
l Where L is a lipschitz constant, and εm and εv are the mean and variance of the

delay

l Intuition: distance between current estimate and optimal value
decreases exponentially with more iterations
l But high variance in the delay εv incurs exponential penalty!

l Distributed systems exhibit much higher delay variance,
compared to single machine

© Eric Xing @ CMU, 2015 22

The cost of uncontrolled delay –
unstable convergence [Dai et al. 2015]

l Theorem: the variance in the parameter estimate is

l Where
l and represents 5th order or higher terms, as a function of the delay εt

l Intuition: variance of the parameter estimate decreases near
the optimum
l But delay εt increases parameter variance => instability during convergence

l Distributed systems have much higher average delay,
compared to single machine

ACML 15 © Eric Xing @ CMU, 2015 23

Learning Rates Problem in SGD

© Eric Xing @ CMU, 2015

l Stochastic Gradient Descent

l Learning rate in SGD is difficult to tune.
l Big problem especially when the data is sparse:

l Assume

l If dimension 10 is sparse and is 0 for all first 999 minibatches, and only
becomes non-zero in the 1000th minibatch.

l receives very small update à slow convergence

Adaptive Learning Rates
(Adagrad)

© Eric Xing @ CMU, 2015

l Instead of standard SGD

l Adagrad updates each coordinate

l Very good for sequential execution
l But with delay, very unstable.

l Why?

Duchi et al 2011

Adaptive Revision

© Eric Xing @ CMU, 2015

l Instead of Adagrad

l AdaRevision uses (approximately)

McMahan et al 2014

Adaptive Revision

© Eric Xing @ CMU, 2015
Wei et al 2015

l Adarevision is robust to delay.

Setup: matrix factorization on 16 threads single node

Coordinate Descent
Case study: Lasso

l Set a subgradient to zero:

l Assuming that , we can derive update rule:

å+-=
j

jbl2

22
1minˆ Xβyβ

β

0)(=+-- j
T
j tlXβyx

1=j
T
j
xx

þ
ý
ü

î
í
ì

-= å
¹

lbb),(
jl

ll
T
jj xS yx

Soft thresholding

+-=))((),(ll xxsignxS

Standardization

© Eric Xing @ CMU, 2015 28

Coordinate Descent
Update each regression coefficient in a cyclic manner

1st iteration

1b 2b 3b Jb
2st iteration

1b 2b 3b Jb

l Pros and cons
l Unlike SGD, CD does not involve learning rate
l If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2015 29

Parallel Coordinate Descent
[Bradley et al. 2011]

l Shotgun, a parallel coordinate descent algorithm
l Choose parameters to update at random
l Update the selected parameters in parallel
l Iterate until convergence

l When features are nearly independent, Shotgun scales
almost linearly
l Shotgun scales linearly up to workers, where ρ is spectral radius of ATA
l For uncorrelated features, ρ=1; for exactly correlated features ρ=d
l No parallelism if features are exactly correlated!

P  d

2⇢

© Eric Xing @ CMU, 2015 30

Intuitions for Parallel Coordinate
Descent

l Concurrent updates of parameters are useful when features
are uncorrelated

l Updating parameters for correlated features may slow down
convergence, or diverge parallel CD in the worst case
l To avoid updates of parameters for correlated features, block-greedy CD has

been proposed

© Eric Xing @ CMU, 2015 31

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]

Parallel Coordinate Descent with
Dynamic Scheduler
[Lee et al., 2014]

l STRADS (STRucture-Aware Dynamic Scheduler) allows
scheduling of concurrent CD updates
l STRADS is a general scheduler for ML problems
l Applicable to CD, and other ML algorithms such as Gibbs sampling

l STRADS improves CD performance via
l Dependency checking

l Update parameters which are nearly independent => small parallelization error

l Priority-based updates
l More frequently update those parameters which decrease objective function faster

© Eric Xing @ CMU, 2015 32

Example Scheduler Program:
Lasso

l Schedule step:
l Prioritization: choose next variables βj to update, with probability proportional to

their historical rate of change

l Dependency checking: do not update βj, βk in parallel if feature dimensions j
and k are correlated

l Update step:
l For all βj chosen in Schedule step, in parallel, perform coordinate descent update

l Repeat from Schedule step
© Eric Xing @ CMU, 2015 33

l Priority-based scheduling converges faster than Shotgun
(random) scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

Comparison:
priority vs. random-scheduling

© Eric Xing @ CMU, 2015 34

Priority-based scheduling +
dep. checker

be
tte

r Shotgun scheduling [Bradley et al. 2011]

School of Computer Science

Probabilistic Programs
Case study: Topic Model (LDA)

© Eric Xing @ CMU, 2015 35

Probabilistic Example:
Topic Models

l Objective L(θ,D)
l Log-likelihood of D = {document words xij} given unknown θ = {document word

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l Prior r(θ)
l Dirichlet prior on θ = {doc-topic, word-topic distributions}

l α, β are “hyperparameters” that control the Dirichet prior’s strength

l Algorithm
l Collapsed Gibbs Sampling

© Eric Xing @ CMU, 2015 36

Challenge
l Probabilistic programs

topicdoc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

© Eric Xing @ CMU, 2015 37

Properties of
Collapsed Gibbs Sampling (CGS)

l Simple equation: easy for system engineers to scale up
l Good theoretical properties

l Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naïve Gibbs sampling

l Empirically robust
l Errors in δ, B do not affect final stationary distribution by much

l Updates are sparse: fewer parameters to send over network
l Model parameters δ, B are sparse: less memory used

l If it were dense, even 1M word * 10K topic ≈ 40GB already!

© Eric Xing @ CMU, 2015 38

Probabilistic Example:
Topic Models

l Objective L(θ,D)
l Log-likelihood of D = {document words xij} given unknown θ = {document word

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l Prior r(θ)
l Dirichlet prior on θ = {doc-topic, word-topic distributions}

l α, β are “hyperparameters” that control the Dirichet prior’s strength

l Algorithm
l Collapsed Gibbs Sampling

ACML 15 © Eric Xing @ CMU, 2015 39

Probabilistic Example:
Topic Models

ACML 15 © Eric Xing @ CMU, 2015

Model (Topics) = BkData (Docs) = xij

Applications: Natural Language Processing, Information Retrieval

Update (Collapsed Gibbs sampling)

25

CGS Example:
Topic Model sampler

docs i
(~ 1B)

topics k words v (~ 1M)

© Eric Xing @ CMU, 2015 40

“Word-topic
summary table”

B

δ

topics k topics k

Data Parallelization for
CGS Topic Model Sampler

doc
partition

words v (~ 1M)

doc
partition

doc
partition

model
replica

model
replica

model
replica

© Eric Xing @ CMU, 2015 41

δ1

δ2

δ3

B

B

B

topics k

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 1: broadcast central model

© Eric Xing @ CMU, 2015 42

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 1: broadcast central model

© Eric Xing @ CMU, 2015 43

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 2: Perform Gibbs sampling in parallel

© Eric Xing @ CMU, 2015 44

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l Step 3: commit changes back to the central model

© Eric Xing @ CMU, 2015 45

Error in data-parallel LDA
l Consider the CGS equation:

l Data-parallelism incurs error in B (the pink box) and the
summation term (the gray box)
l Both quantities are duplicated onto workers; their values become stale as

sampling proceeds
l True even for bulk synchronous parallel execution!

l Asynchrony helps somewhat
l Communicate very frequently to reduce staleness

l Is there a better solution?

© Eric Xing @ CMU, 2015 46

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Think graphically: token = edge

docs
words

© Eric Xing @ CMU, 2015 47

Column
= topic k

Row =
topic k

Column
= topic k

Word-topic
summary table

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Model-parallel via graph structure

doc word

© Eric Xing @ CMU, 2015 48

Worker 1

Worker 2

Word-topic
summary table

(copy on worker 1)

Word-topic
summary table

(copy on worker 2)

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l Asynchronous communication
l Overlaps computation and communication – iterations are faster

l Model-parallelism means each machine only stores a subset
of statistics
l Less memory usage if implemented well

l Drawback: need to convert problem into a graph
l Vertex-cut duplicates lots of vertices, canceling out savings

l Are there other ways to partition the problem?

© Eric Xing @ CMU, 2015 49

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Topic model matrix structure:

l Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic

© Eric Xing @ CMU, 2015 50

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Non-overlapping partition of the word count matrix
l Fix data at machines, send model to machines as needed

© Eric Xing @ CMU, 2015 51

Source: [Gemulla et al., 2011]

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l During preprocessing: determine set of words used in each
data block

l Begin training: load each data block from disk

© Eric Xing @ CMU, 2015

disk

sequential
read

52

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Pull the set of words from Key-Value store

© Eric Xing @ CMU, 2015

disk

=

sequential
read

53

Local copy of word-
topic summary table

Key-value store

Local model copy

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Sample, write result to disk, send changes back to KV-store

© Eric Xing @ CMU, 2015

disk

sequential
read

sequential write

=

54

Local copy of word-
topic summary table

Key-value store

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l Model-parallel advantage: disjoint words/docs on each
machine
l Gibbs sampling almost equivalent to sequential case
l More accurate than data-parallel LDA
l Fast, asynchronous execution possible

l Compared to GraphLab LDA:
l Simple partitioning strategy – less system overheads, easier to implement
l Need to be careful about load imbalance (some docs will touch a particular word

more times than others)
l Solution: pre-group documents by word frequency

© Eric Xing @ CMU, 2015 55

Error in model-parallel LDA
l Recall the CGS equation:

l Model-parallelism only has error in summation term (gray box)
l Summation term is very large for Big Data (billions of docs) => error negligible
l Compared to data-parallelism: error due to B (pink box) eliminated

© Eric Xing @ CMU, 2015 56

Summary
l Most ML programs are either optimization or probabilistic

programs
l Optimization programs: SGD, ProxSGD, Coordinate Descent. Example: Lasso
l Probabilistic programs: Gibbs sampling. Example: Topic model (LDA)

l Key considerations
l Network delay: how to control error arising from delays?
l How to partition the problem?

l Two ways to divide ML programs:
l Data Parallel. Suitable if model parameters can be shared by all workers.
l Model Parallel: Need to be careful in splitting model (e.g., pick dimensions with

low correlations)

© Eric Xing @ CMU, 2015 57

