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Recap of Monte Carlo
l Monte Carlo methods are algorithms that:

l Generate samples from a given probability distribution 
l Estimate expectations of functions            under a distribution

l Why is this useful?
l Can use samples of        to approximate        itself

l Allows us to do graphical model inference when we can’t compute
l Expectations             reveal interesting properties about

l e.g. means and variances of
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Limitations of Monte Carlo
l Direct sampling

l Hard to get rare events in high-dimensional spaces
l Infeasible for MRFs, unless we know the normalizer Z

l Rejection sampling, Importance sampling
l Do not work well if the proposal Q(x) is very different from P(x)
l Yet constructing a Q(x) similar to P(x) can be difficult

l Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample!

l Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal?
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Markov Chain Monte Carlo: 
Recap

l MCMC algorithms feature adaptive proposals
l Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 

sampled, and x is the previous sample
l As x changes, Q(x’|x) can also change (as a function of x’)
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MCMC: Recap
l Distribution to sample from 𝑃(𝑋)

l Proposal distribution 𝑄 𝑋&'( 𝑋)*+)

l Accept 𝑋&'( with probability
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min{		1,
𝑃(𝑋&'()𝑄 𝑋)*+ 𝑋&'()
𝑃 𝑋)*+ 𝑄 𝑋&'( 𝑋)*+)

	}



MCMC: Recap
l Simple Example
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Can the gradient help??
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If variance of Q is small then next sample might 
be very correlated to the previous one
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If variance of Q is large then next sample might 
be rejected



Highly correlated samples
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MCMC: Recap
l Random walk can have poor acceptance rate
l The samples can have high correlation between themselves 

reducing the effective sample size
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MCMC: Recap
l Random walk can have poor acceptance rate
l The samples can have high correlation between themselves 

reducing the effective sample size
l Can we have a better proposal

l Using gradient information
l Using approximation of the given probability distribution
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Hamiltonian Monte Carlo 
l Hamiltonian Dynamics (1959)

l Deterministic System

l Hybrid Monte Carlo (1987)
l United MCMC and molecular Dynamics

l Statistical Application (1993)
l Inference in Neural Networks
l Improves acceptance rate
l Uncorrelated Samples
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Hamiltonian Dynamics
l Position vector 𝑞, Momentum vector 𝑝
l Kinetic Energy 𝐾 𝑝
l Potential Energy 𝑈 𝑞
l Define 𝐻 𝑝, 𝑞 = 𝐾 𝑝 + 𝑈 𝑞
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Hamiltonian Dynamics
l Position vector 𝑞, Momentum vector 𝑝
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Hamiltonian Dynamics: Frictionless 
puck
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𝐾 𝑝 = 	
|𝑝|<

2𝑚
𝑈 𝑞

𝐻 𝑝, 𝑞 = 𝐾 𝑝 + 𝑈 𝑞



Hamiltonian Dynamics: Example

l Kinetic Energy 𝐾 𝑝 = 	 |?|
@

<A

l Potential Energy 𝑈 𝑞 = B@

<

l Define 𝐻 𝑝, 𝑞 = 𝐾 𝑝 + 𝑈 𝑞
l Hamiltonian Dynamic
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Hamiltonian Dynamics: Example

l Kinetic Energy 𝐾 𝑝 = 	 |?|
@

<

l Potential Energy 𝑈 𝑞 = B@

<

l So

l And 
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Properties of Hamiltonian
l Reversibility
l Conservation of Hamiltonian
l Mapping preserves volume
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How to get solution
l Discretization

l Euler’s Method
l Leapfrog Method
l etc
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Euler’s Method
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Leapfrog Method
l The updates looks like
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Leapfrog Vs Euler
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MCMC from Hamiltonian 
Dynamics

l Let q be variable of interest
l Define: 

l And

l Key Idea: Use Hamiltonian dynamics to propose next step.
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MCMC from Hamiltonian 
Dynamics

l Let q be variable of interest
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Negative Log 
probability



MCMC from Hamiltonian 
Dynamics

l Given 𝑞D (starting state)
l Draw 𝑝 ∼ 𝑁 0,1
l Use 𝐿 steps of leapfrog to propose next state
l Accept / reject based on change in Hamiltonian
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MCMC from Hamiltonian 
Dynamics
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MCMC from Hamiltonian 
Dynamics
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MCMC from Hamiltonian 
Dynamics
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MCMC from Hamiltonian 
Dynamics
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MCMC from Hamiltonian 
Dynamics
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MCMC from Hamiltonian 
Dynamics

l Detailed balance satisfied
l Ergodic
l canonical distribution invariant
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2D Gaussian Example
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2D Gaussian Example
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100D Gaussian Example
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Acceptance Rate
l 2D example HMC : 91% Random Walk: 63%

l 100D example HMC: 87% Random Walk: 25%
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MCMC from Hamiltonian 
Dynamics
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Langevin Dynamics
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Leapfrog



Stochastic Langevin Dynamics
l For large datasets hard to compute the whole gradient
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Stochastic Gradient Langevin
Dynamics

l For large datasets hard to compute the whole gradient

Calculate using subset of data
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Stochastic Gradient Langevin Dynamics: 
Bayesian Models
l Posterior

l SGLD update:
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Stochastic Gradient Langevin
Dynamics

l High variance in stochastic gradient

l Take help from the optimization community  
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Conclusion
l HMC can improve acceptance rate and give better mixing
l Stochastic variants can be used to improve performance in 

large dataset scenarios
l HMC may not be used for discrete variable

Optimization in MCMC: GM Lecture
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Towards better proposal
l 𝑄 𝑋&'( 𝑋)*+) determines when the chain converges

l Idea: Variational approximation of P(X) be the proposal 
distribution
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Variational Inference: Recap
l Interested in posterior of parameters 𝑃 𝜃 𝑥
l Using Jensen’s Inequality

l Choose 𝑞 𝑧 𝜆 where 𝜆 is the variational parameter
l Replace 𝑝 𝑥 𝜃 with 𝑝(𝑥|𝜃, 𝜉) where 𝜉 is another set of 

variational parameters
l Using this we can easily obtain un-normalized bound for 

posterior

© Eric Xing @ CMU, 2005-2017 46

𝒍𝒐𝒈(𝒑 𝒙 𝜽 	≥ 	𝑬𝒒 𝒛 𝒍𝒐𝒈 𝒑 𝒙 𝜽 	−	𝑬𝒒 𝒛 [𝒍𝒐𝒈 𝒒 𝒛 ]

𝑷 𝜽 𝒙	) 	≥ 𝑷𝒆𝒔𝒕(𝜽|𝒙, 𝝀, 𝝃)



Variational MCMC
l Idea: Variational approximation of P(X) be the proposal 

distribution

l 𝑄 𝜃&'( 𝜃)*+) = 𝑷𝒆𝒔𝒕(𝜽|𝒙, 𝝀, 𝝃)

l Issues:
l Low acceptance in high dimensions
l Works well if 𝑷𝒆𝒔𝒕 is close to P

© Eric Xing @ CMU, 2005-2017 47



Variational MCMC
l Design the proposal in blocks to take care of correlated 

variables

l Use a mixture of random walk and variational approximation 
as a proposal distribution

l Now can use stochastic variational methods in estimating 
𝑷𝒆𝒔𝒕(𝜽|𝒙, 𝝀, 𝝃)
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Variational MCMC

© Eric Xing @ CMU, 2005-2017 49



Conclusion
l Adapting proposal distribution can be helpful in

l Increasing mixing
l Decreasing time to convergence
l Increasing acceptance rate
l Getting uncorrelated information
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