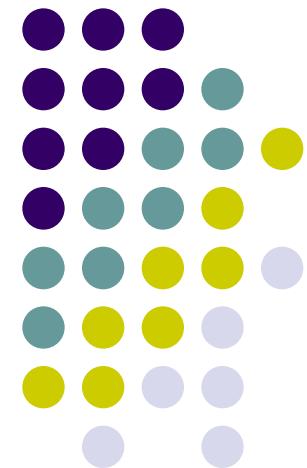


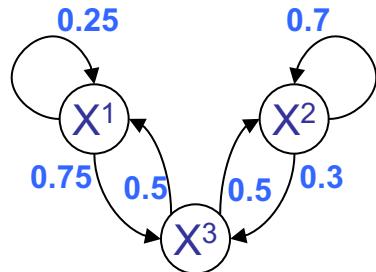
Probabilistic Graphical Models

Optimization in Markov Chain Monte Carlo



Avinava Dubey

Lecture 17, March 22, 2017



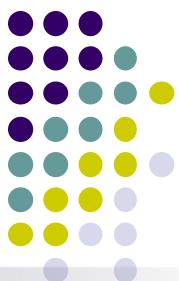
Recap of Monte Carlo

- Monte Carlo methods are algorithms that:
 - Generate samples from a given probability distribution $p(x)$
 - Estimate expectations of functions $E[f(x)]$ under a distribution $p(x)$
- Why is this useful?
 - Can use samples of $p(x)$ to approximate $p(x)$ itself
 - Allows us to do graphical model inference when we can't compute $p(x)$
 - Expectations $E[f(x)]$ reveal interesting properties about $p(x)$
 - e.g. means and variances of $p(x)$

Limitations of Monte Carlo

- Direct sampling
 - Hard to get rare events in high-dimensional spaces
 - Infeasible for MRFs, unless we know the normalizer Z
- Rejection sampling, Importance sampling
 - Do not work well if the proposal $Q(x)$ is very different from $P(x)$
 - Yet constructing a $Q(x)$ similar to $P(x)$ can be difficult
 - Making a good proposal usually requires knowledge of the analytic form of $P(x)$ – but if we had that, we wouldn't even need to sample!
- Intuition: instead of a fixed proposal $Q(x)$, what if we could use an **adaptive** proposal?

Markov Chain Monte Carlo: Recap

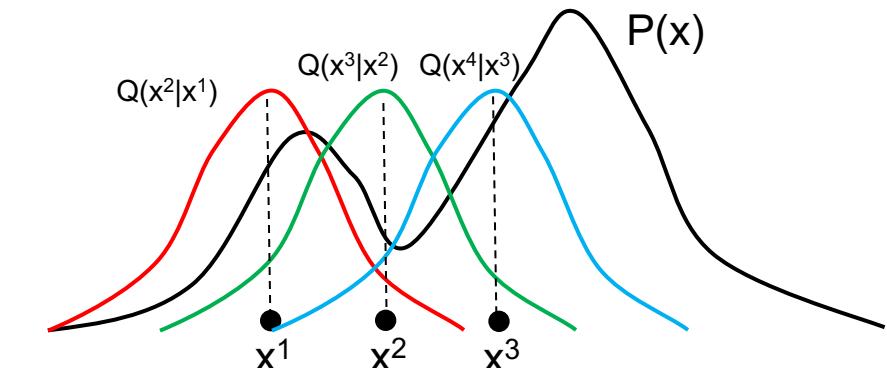


- MCMC algorithms feature adaptive proposals
 - Instead of $Q(x')$, they use $Q(x'|x)$ where x' is the new state being sampled, and x is the previous sample
 - As x changes, $Q(x'|x)$ can also change (as a function of x')

Importance sampling with
a (bad) proposal $Q(x)$



MCMC with adaptive
proposal $Q(x'|x)$



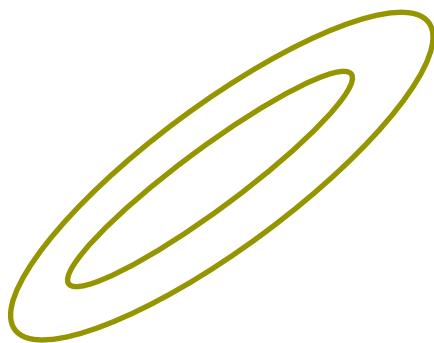
MCMC: Recap

- Distribution to sample from $P(X)$
- Proposal distribution $Q(X_{new}|X_{old})$
- Accept X_{new} with probability

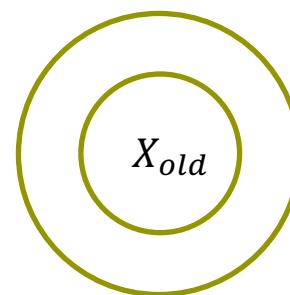
$$\min\{ 1, \frac{P(X_{new})Q(X_{old}|X_{new})}{P(X_{old})Q(X_{new}|X_{old})} \}$$

MCMC: Recap

- Simple Example



$$P(X)$$



$$Q(X_{new}|X_{old})$$

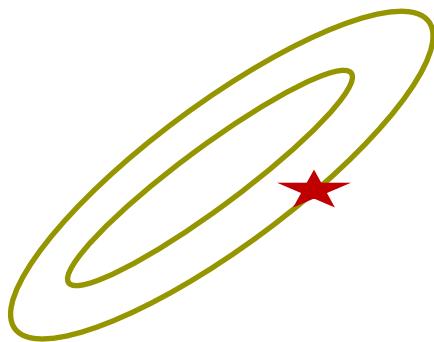
$$\min\{ 1,$$

$$\frac{P(X_{new})Q(X_{old}|X_{new})}{P(X_{old})Q(X_{new}|X_{old})} \}$$

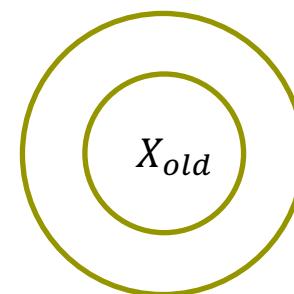
MCMC: Recap

- Simple Example

Might reject a lot of samples



$$P(X)$$



$$Q(X_{new} | X_{old})$$

$$\min\{ 1, \frac{P(X_{new})Q(X_{old} | X_{new})}{P(X_{old})Q(X_{new} | X_{old})} \}$$

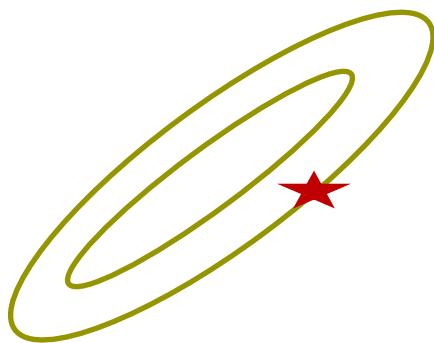
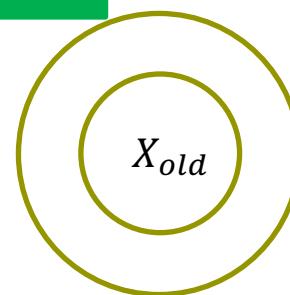


MCMC: Recap

- Simple Example

Might reject a lot of samples

Can the gradient help??



$$P(X)$$

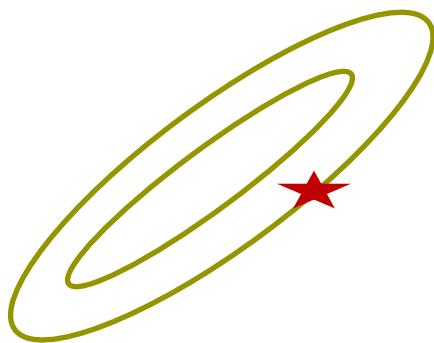
$$Q(X_{new} | X_{old})$$

$$\min\left\{ 1, \frac{P(X_{new})Q(X_{old} | X_{new})}{P(X_{old})Q(X_{new} | X_{old})} \right\}$$

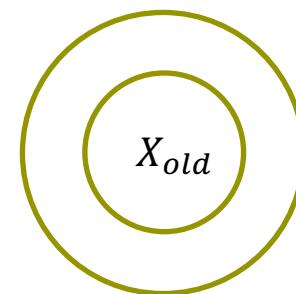
MCMC: Recap

- Simple Example

If variance of Q is small then next sample might be very correlated to the previous one



$$P(X)$$



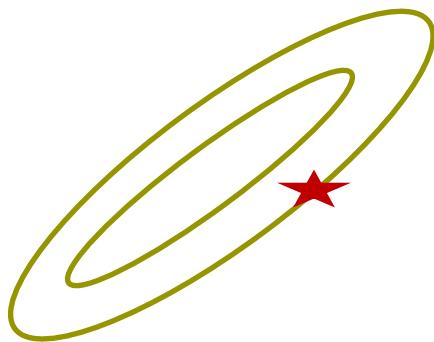
$$Q(X_{new} | X_{old})$$

$$\min\left\{ 1, \frac{P(X_{new})Q(X_{old} | X_{new})}{P(X_{old})Q(X_{new} | X_{old})} \right\}$$

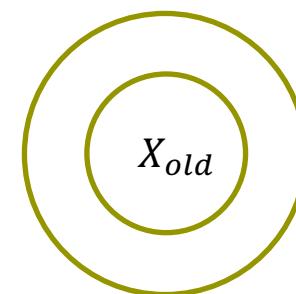
MCMC: Recap

- Simple Example

If variance of Q is large then next sample might be rejected

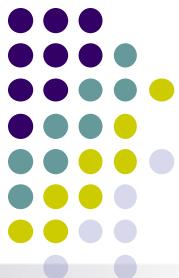


$$P(X)$$



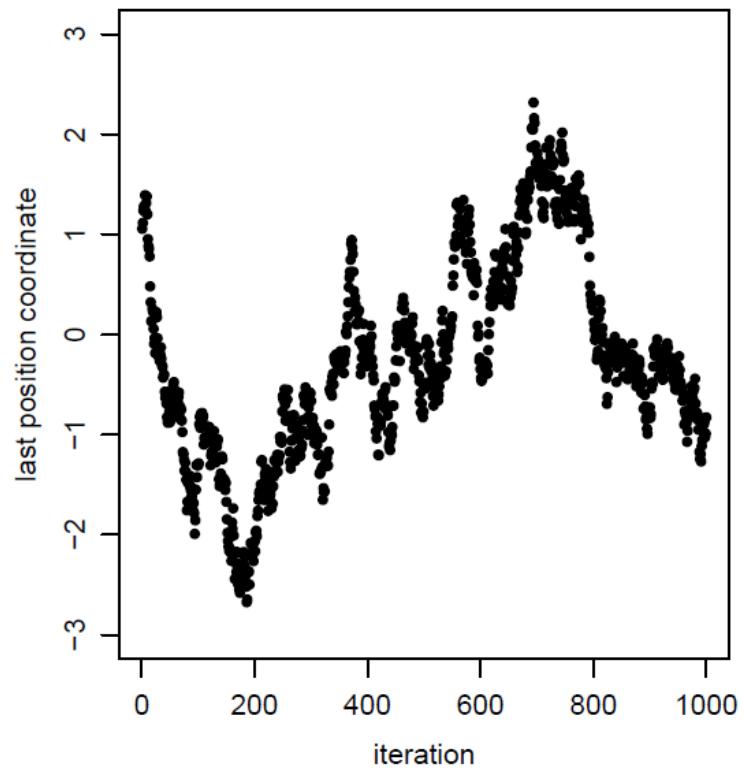
$$Q(X_{new} | X_{old})$$

$$\min\{ 1, \frac{P(X_{new})Q(X_{old} | X_{new})}{P(X_{old})Q(X_{new} | X_{old})} \}$$



Highly correlated samples

Random-walk Metropolis



MCMC: Recap

- Random walk can have poor acceptance rate
- The samples can have high correlation between themselves reducing the effective sample size

MCMC: Recap

- Random walk can have poor acceptance rate
- The samples can have high correlation between themselves reducing the effective sample size
- Can we have a better proposal
 - Using gradient information
 - Using approximation of the given probability distribution

Hamiltonian Monte Carlo

- Hamiltonian Dynamics (1959)
 - Deterministic System
- Hybrid Monte Carlo (1987)
 - United MCMC and molecular Dynamics
- Statistical Application (1993)
 - Inference in Neural Networks
 - Improves acceptance rate
 - Uncorrelated Samples

Hamiltonian Dynamics

- Position vector q , Momentum vector p
- Kinetic Energy $K(p)$
- Potential Energy $U(q)$
- Define $H(p, q) = K(p) + U(q)$

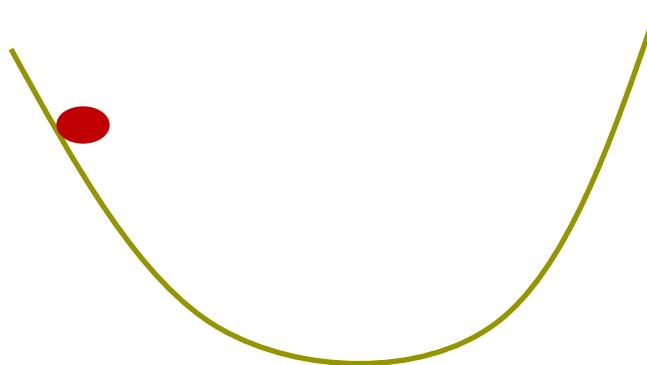
Hamiltonian Dynamics

- Position vector q , Momentum vector p
- Kinetic Energy $K(p)$
- Potential Energy $U(q)$
- Define $H(p, q) = K(p) + U(q)$
- Hamiltonian Dynamic

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

Hamiltonian Dynamics: Frictionless puck



$$K(p) = \frac{|p|^2}{2m}$$
$$U(q)$$

$$H(p, q) = K(p) + U(q)$$

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

Hamiltonian Dynamics: Example

- Kinetic Energy $K(p) = \frac{|p|^2}{2m}$
- Potential Energy $U(q) = \frac{q^2}{2}$
- Define $H(p, q) = K(p) + U(q)$
- Hamiltonian Dynamic

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

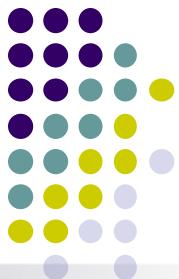
$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

Hamiltonian Dynamics: Example

- Kinetic Energy $K(p) = \frac{|p|^2}{2}$
- Potential Energy $U(q) = \frac{q^2}{2}$
- So $\frac{dq}{dt} = p, \quad \frac{dp}{dt} = -q$
- And

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$
$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

$$q(t) = r \cos(a + t), \quad p(t) = -r \sin(a + t)$$



Properties of Hamiltonian

- Reversibility
- Conservation of Hamiltonian
- Mapping preserves volume

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

How to get solution

- Discretization
 - Euler's Method
 - Leapfrog Method
 - etc

Euler's Method

$$p_i(t + \varepsilon) = p_i(t) + \varepsilon \frac{dp_i}{dt}(t) = p_i(t) - \varepsilon \frac{\partial U}{\partial q_i}(q(t))$$

$$q_i(t + \varepsilon) = q_i(t) + \varepsilon \frac{dq_i}{dt}(t) = q_i(t) + \varepsilon \frac{p_i(t)}{m_i}$$

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$
$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

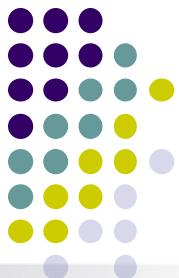
Leapfrog Method

- The updates looks like

$$p_i(t + \varepsilon/2) = p_i(t) - (\varepsilon/2) \frac{\partial U}{\partial q_i}(q(t))$$

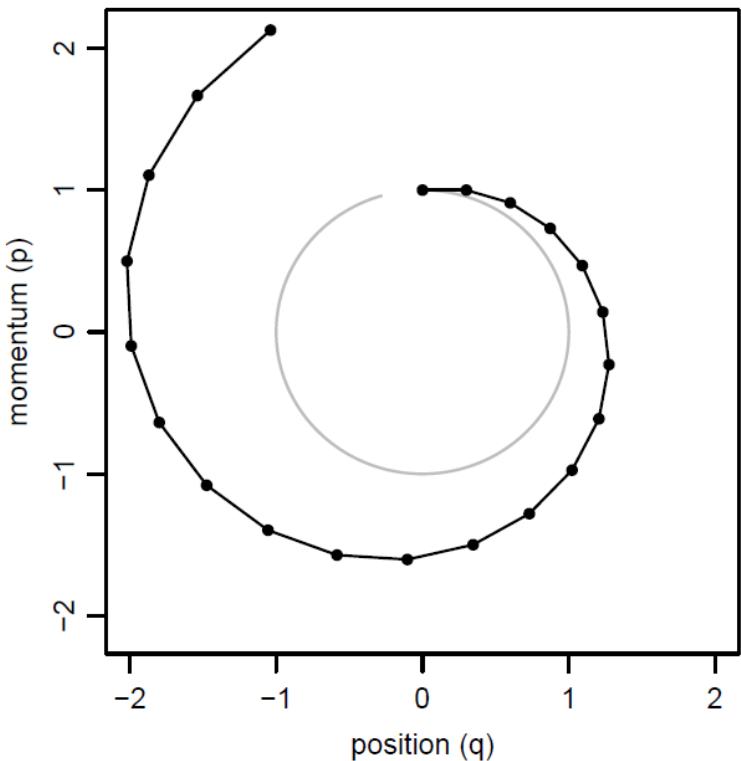
$$q_i(t + \varepsilon) = q_i(t) + \varepsilon \frac{p_i(t + \varepsilon/2)}{m_i}$$

$$p_i(t + \varepsilon) = p_i(t + \varepsilon/2) - (\varepsilon/2) \frac{\partial U}{\partial q_i}(q(t + \varepsilon))$$

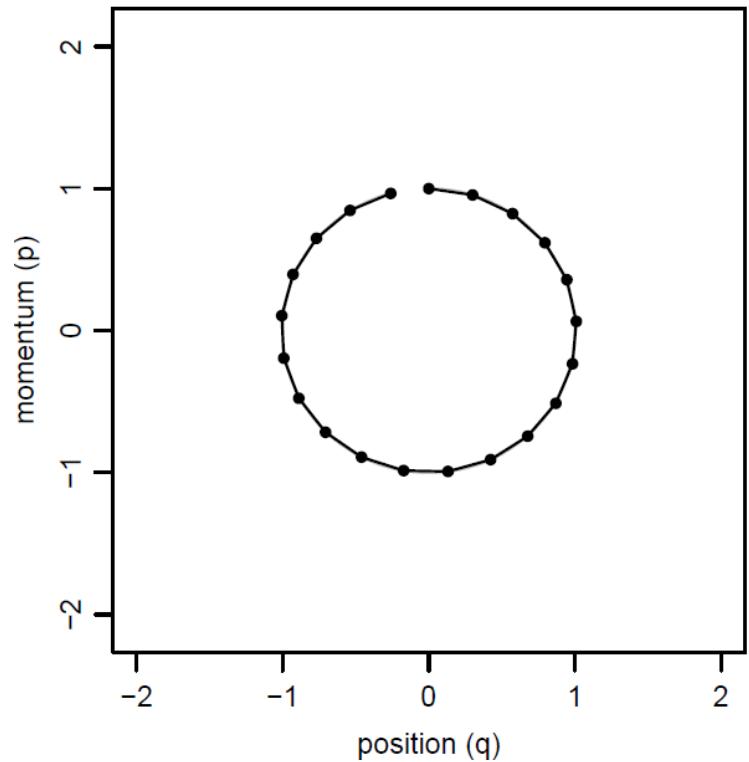


Leapfrog Vs Euler

(a) Euler's Method, stepsize 0.3

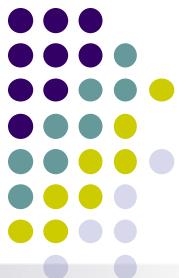


(c) Leapfrog Method, stepsize 0.3



$$q(t) = r \cos(a + t), \quad p(t) = -r \sin(a + t)$$

MCMC from Hamiltonian Dynamics



- Let q be variable of interest
- Define:

$$P(q, p) = \frac{1}{Z} \exp(-U(q)/T) \exp(-K(p)/T)$$

- And

$$U(q) = -\log \left[\pi(q) L(q|D) \right] \quad K(p) = \sum_{i=1}^d \frac{p_i^2}{2m_i}$$

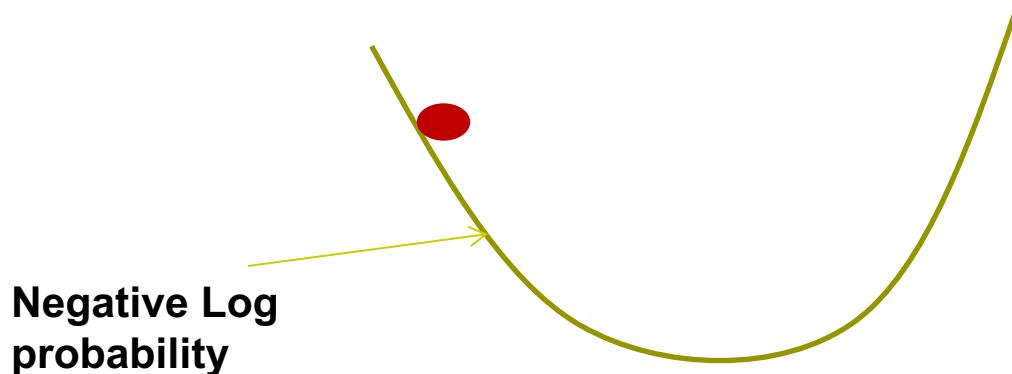
- Key Idea: Use Hamiltonian dynamics to propose next step.

MCMC from Hamiltonian Dynamics

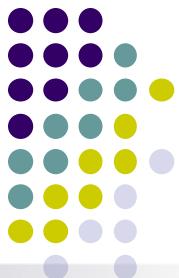
- Let q be variable of interest

$$P(q, p) = \frac{1}{Z} \exp(-U(q)/T) \exp(-K(p)/T)$$

$$U(q) = -\log [\pi(q)L(q|D)] \quad K(p) = \sum_{i=1}^d \frac{p_i^2}{2m_i}$$

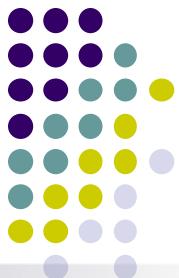


MCMC from Hamiltonian Dynamics



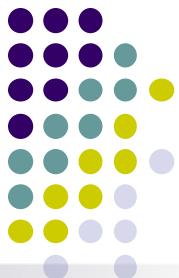
- Given q_0 (starting state)
- Draw $p \sim N(0,1)$
- Use L steps of leapfrog to propose next state
- Accept / reject based on change in Hamiltonian

MCMC from Hamiltonian Dynamics



```
p = rnorm(length(q), 0, 1)
```

MCMC from Hamiltonian Dynamics



```
p = rnorm(length(q), 0, 1)  
p = p - epsilon * grad_U(q) / 2
```

MCMC from Hamiltonian Dynamics


```
p = rnorm(length(q),0,1)
p = p - epsilon * grad_U(q) / 2
# Alternate full steps for position and momentum
for (i in 1:L)
{
  q = q + epsilon * p
  if (i!=L) p = p - epsilon * grad_U(q)
}
```

MCMC from Hamiltonian Dynamics


```
p = rnorm(length(q),0,1)
p = p - epsilon * grad_U(q) / 2
# Alternate full steps for position and momentum
for (i in 1:L)
{
  q = q + epsilon * p
  if (i!=L) p = p - epsilon * grad_U(q)
}
p = p - epsilon * grad_U(q) / 2      p = -p
```

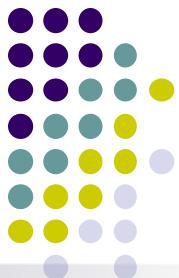
MCMC from Hamiltonian Dynamics


```
p = rnorm(length(q),0,1)
p = p - epsilon * grad_U(q) / 2
# Alternate full steps for position and momentum
for (i in 1:L)
{
  q = q + epsilon * p
  if (i!=L) p = p - epsilon * grad_U(q)
}
p = p - epsilon * grad_U(q) / 2      p = -p
```

Accept or reject the state at end of trajectory

$$\min \left[1, \exp(-U(q^*) + U(q) - K(p^*) + K(p)) \right]$$

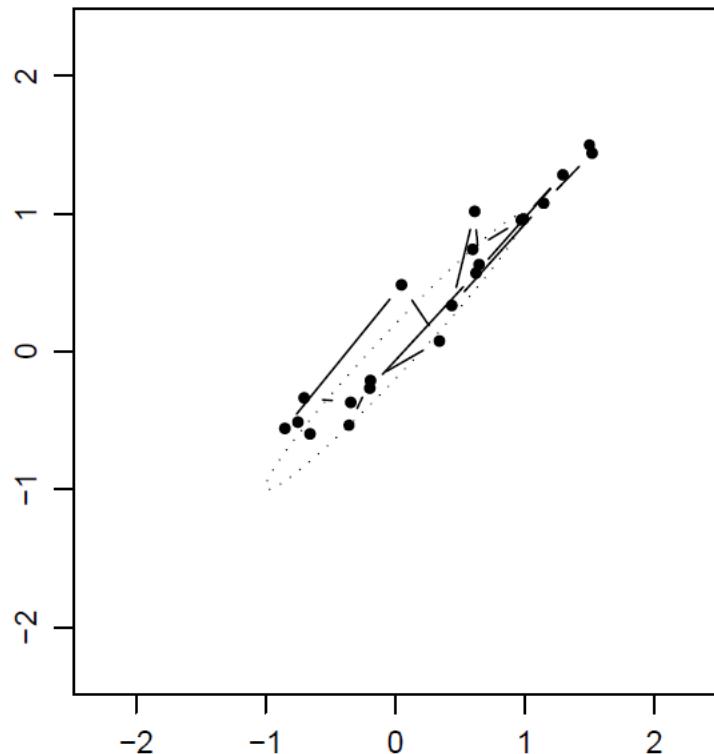
MCMC from Hamiltonian Dynamics



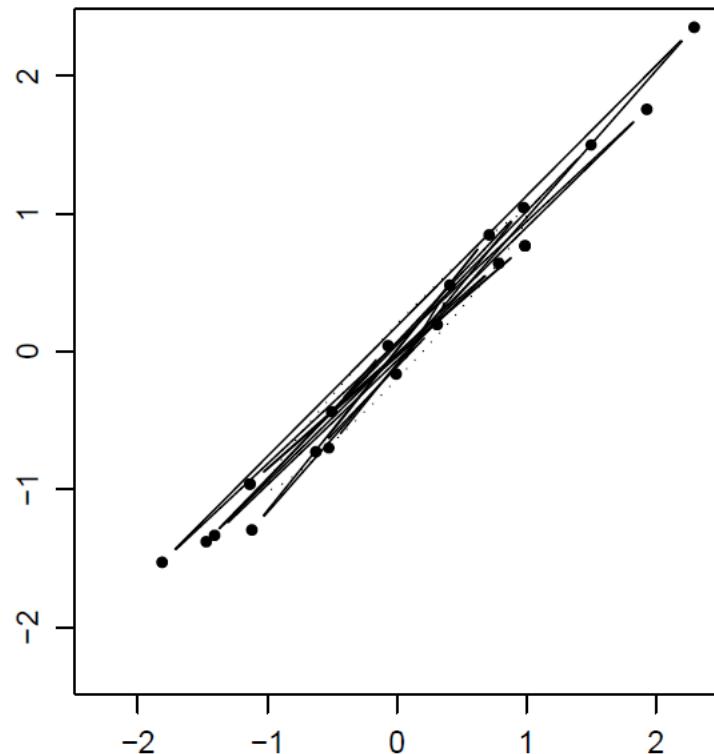
- Detailed balance satisfied
- Ergodic
- canonical distribution invariant

2D Gaussian Example

Random-walk Metropolis

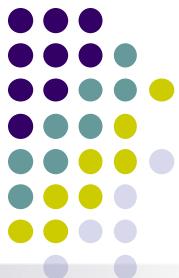


Hamiltonian Monte Carlo

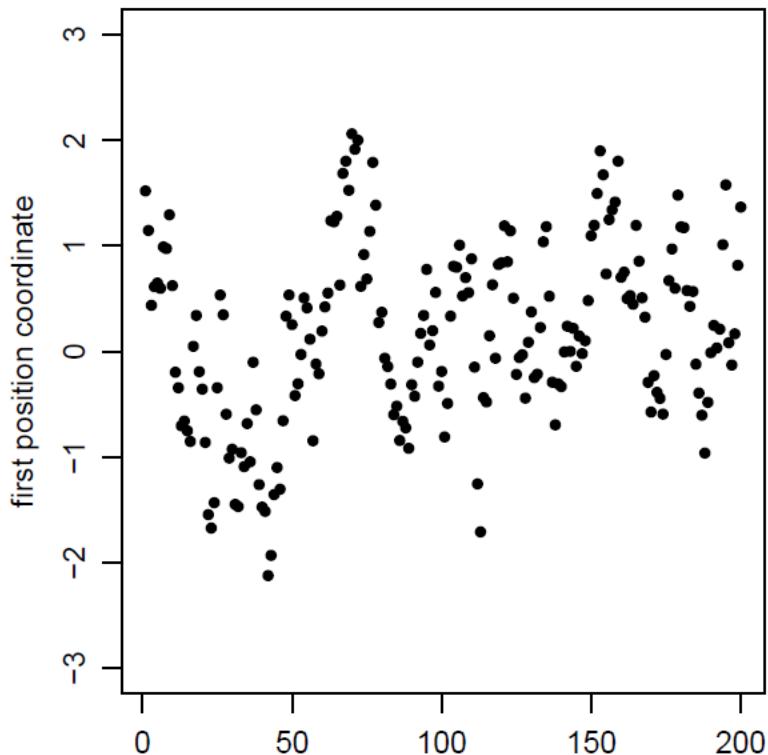


Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian Monte Carlo method (with 20 leapfrog steps per trajectory) for a 2D Gaussian distribution with marginal standard deviations of one and correlation 0.98.³⁴ Only the two position coordinates are plotted, with ellipses drawn one standard deviation away from the mean.

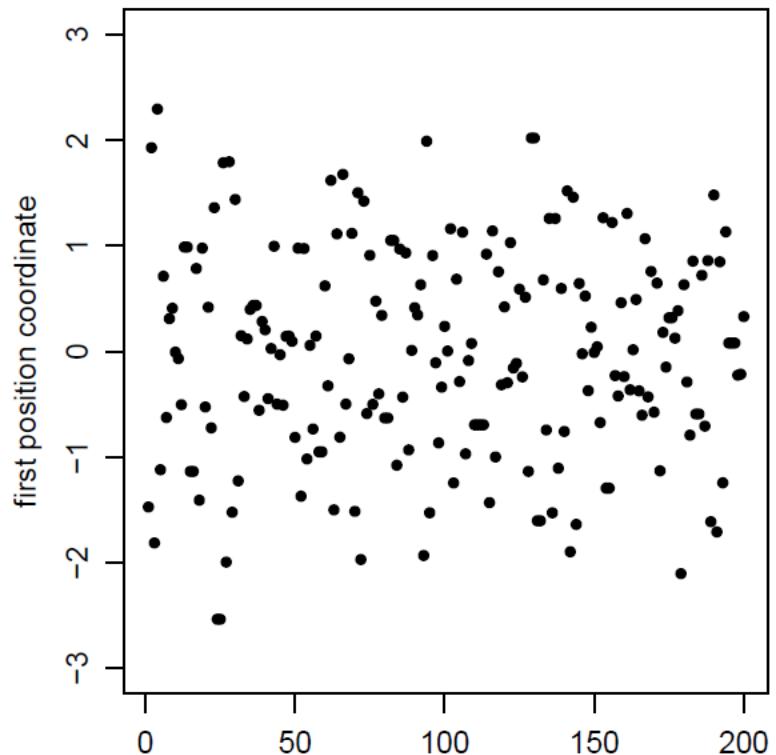
2D Gaussian Example



Random-walk Metropolis

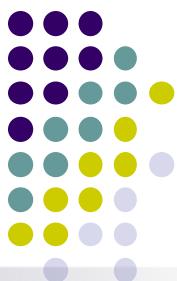


Hamiltonian Monte Carlo

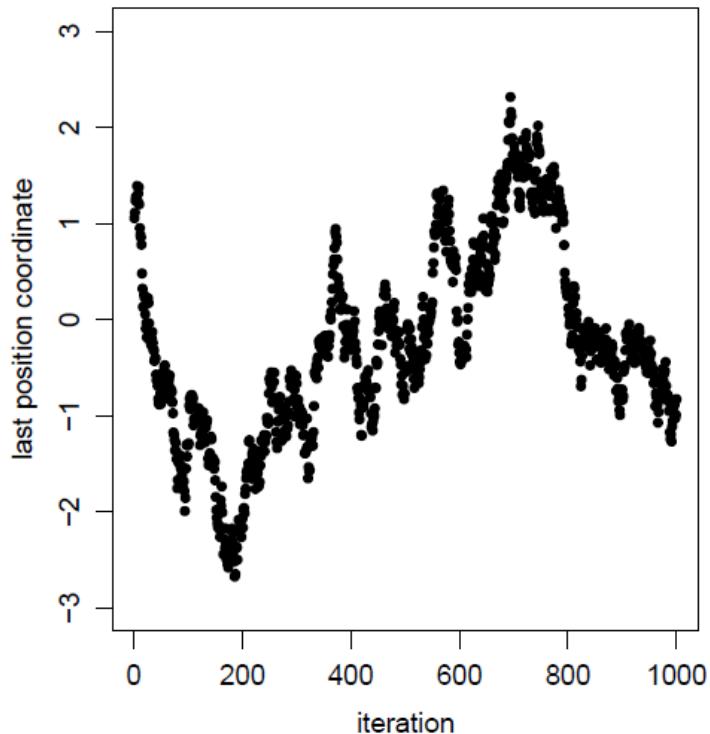


Two hundred iterations, starting with the twenty iterations shown above, with only the first position coordinate plotted.

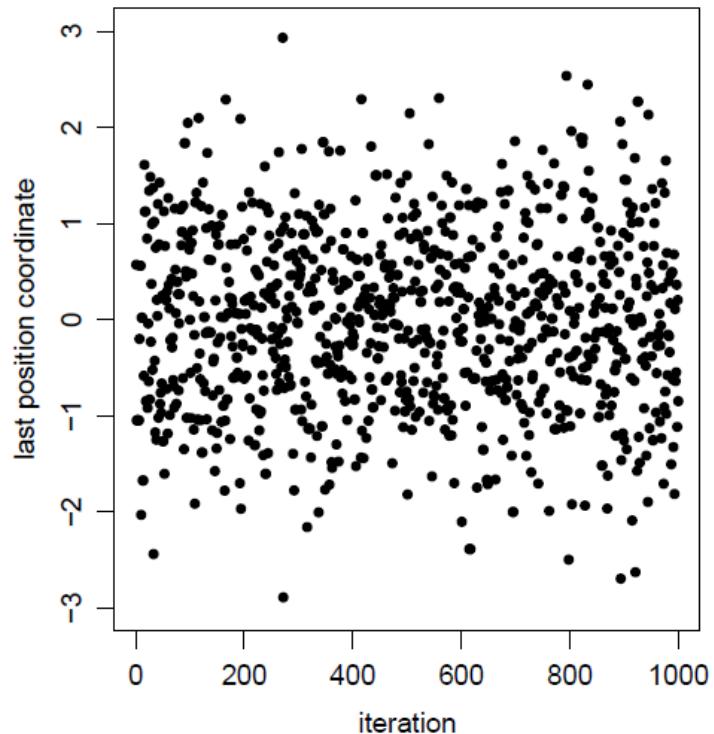
100D Gaussian Example



Random-walk Metropolis



Hamiltonian Monte Carlo



Acceptance Rate

- 2D example HMC : 91% Random Walk: 63%
- 100D example HMC: 87% Random Walk: 25%

MCMC from Hamiltonian Dynamics


```
p = rnorm(length(q),0,1)
p = p - epsilon * grad_U(q) / 2
# Alternate full steps for position and momentum
for (i in 1:L)
{
  q = q + epsilon * p
  if (i!=L) p = p - epsilon * grad_U(q)
}
p = p - epsilon * grad_U(q) / 2      p = -p
```

Accept or reject the state at end of trajectory

$$\min \left[1, \exp(-U(q^*) + U(q) - K(p^*) + K(p)) \right]$$

Langevin Dynamics

$$q_i^* = q_i - \frac{\varepsilon^2}{2} \frac{\partial U}{\partial q_i}(q) + \varepsilon p_i$$

$$p_i^* = p_i - \frac{\varepsilon}{2} \frac{\partial U}{\partial q_i}(q) - \frac{\varepsilon}{2} \frac{\partial U}{\partial q_i}(q^*)$$

accept q^* as the new state with probability

$$\min \left[1, \exp \left(- (U(q^*) - U(q)) - \frac{1}{2} \sum_i ((p_i^*)^2 - p_i^2) \right) \right]$$

Leapfrog

$$p_i(t + \varepsilon/2) = p_i(t) - (\varepsilon/2) \frac{\partial U}{\partial q_i}(q(t))$$

$$q_i(t + \varepsilon) = q_i(t) + \varepsilon \frac{p_i(t + \varepsilon/2)}{m_i}$$

$$p_i(t + \varepsilon) = p_i(t + \varepsilon/2) - (\varepsilon/2) \frac{\partial U}{\partial q_i}(q(t + \varepsilon))$$

Stochastic Langevin Dynamics

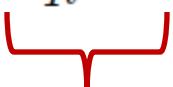
- For large datasets hard to compute the whole gradient

$$q_i^* = q_i - \frac{\varepsilon^2}{2} \frac{\partial U}{\partial q_i}(q) + \varepsilon p_i$$

$$U(q) = -\log [\pi(q)L(q|D)]$$

Stochastic Gradient Langevin Dynamics

- For large datasets hard to compute the whole gradient

$$q_i^* = q_i - \frac{\varepsilon^2}{2} \frac{\partial U}{\partial q_i}(q) + \varepsilon p_i$$


Calculate using subset of data

$$U(q) = -\log [\pi(q)L(q|D)]$$

Stochastic Gradient Langevin Dynamics: Bayesian Models

- Posterior $p(\theta|\mathbf{X}) \propto p(\theta) \prod_{i=1}^N p(x_i|\theta)$
- SGLD update:

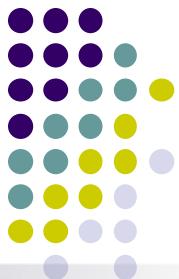
$$\Delta\theta_t = \frac{h_t}{2} \left(\nabla \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla \log p(x_{ti}|\theta_t) \right) + \eta_t$$

$$\eta_t \sim N(0, h_t)$$

$$q_i^* = q_i - \frac{\varepsilon^2}{2} \frac{\partial U}{\partial q_i}(q) + \varepsilon p_i$$

$$U(q) = -\log [\pi(q)L(q|D)]$$

Stochastic Gradient Langevin Dynamics



- High variance in stochastic gradient
- Take help from the optimization community

Conclusion

- HMC can improve acceptance rate and give better mixing
- Stochastic variants can be used to improve performance in large dataset scenarios
- HMC may not be used for discrete variable

Towards better proposal

- $Q(X_{new}|X_{old})$ determines when the chain converges
- Idea: Variational approximation of $P(X)$ be the proposal distribution

Variational Inference: Recap

- Interested in posterior of parameters $P(\theta|x)$
- Using Jensen's Inequality

$$\log(p(x|\theta)) \geq E_{q(z)}[\log(p(x|\theta))] - E_{q(z)}[\log(q(z))]$$

- Choose $q(z|\lambda)$ where λ is the variational parameter
- Replace $p(x|\theta)$ with $p(x|\theta, \xi)$ where ξ is another set of variational parameters
- Using this we can easily obtain un-normalized bound for posterior

$$P(\theta|x) \geq P^{est}(\theta|x, \lambda, \xi)$$

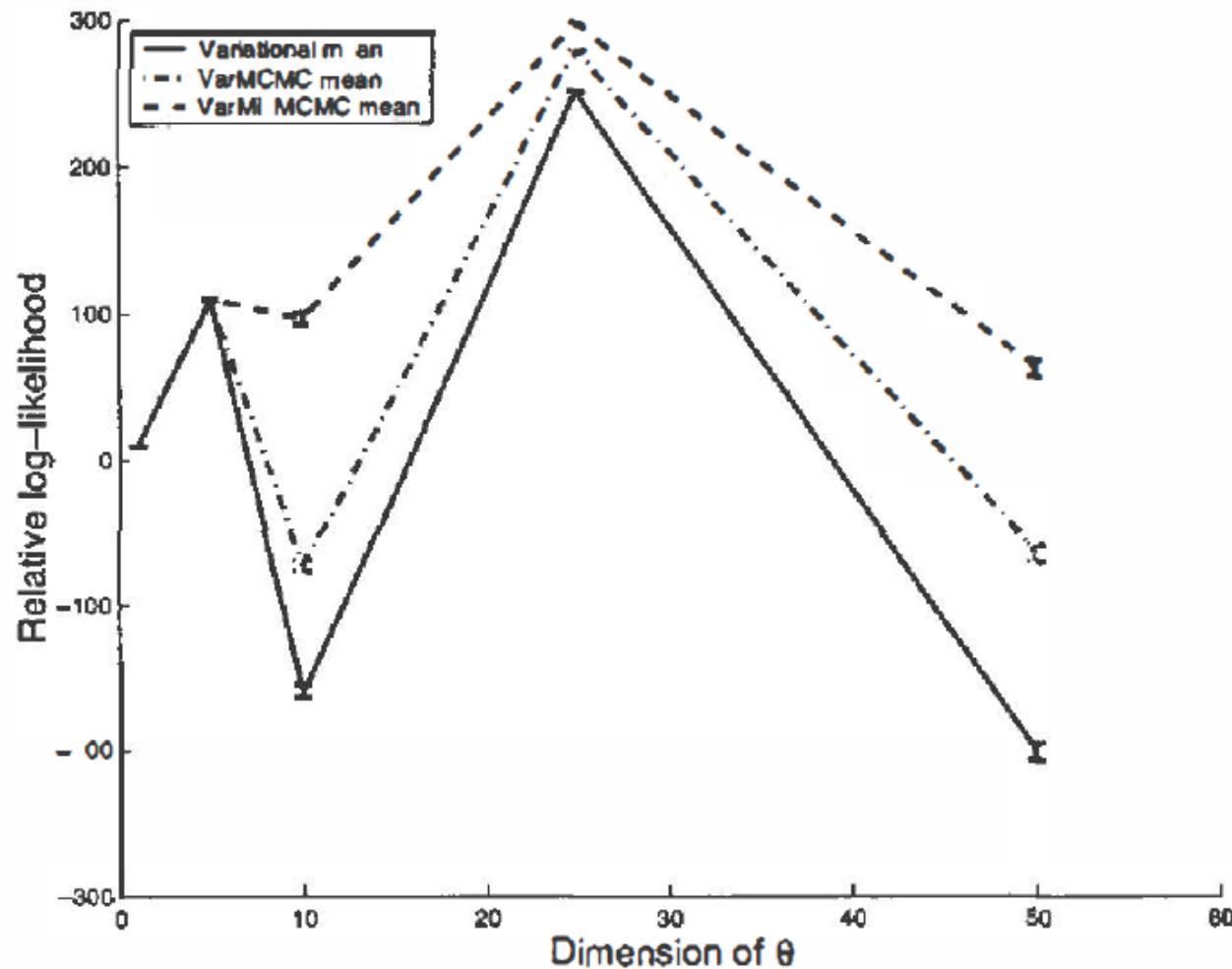
Variational MCMC

- Idea: Variational approximation of $P(X)$ be the proposal distribution
- $Q(\theta_{new} | \theta_{old}) = P^{est}(\theta | x, \lambda, \xi)$
- Issues:
 - Low acceptance in high dimensions
 - Works well if P^{est} is close to P

Variational MCMC

- Design the proposal in blocks to take care of correlated variables
- Use a mixture of random walk and variational approximation as a proposal distribution
- Now can use stochastic variational methods in estimating $P^{est}(\theta|x, \lambda, \xi)$

Variational MCMC



Conclusion

- Adapting proposal distribution can be helpful in
 - Increasing mixing
 - Decreasing time to convergence
 - Increasing acceptance rate
 - Getting uncorrelated information