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Recap of Monte Carlo .

e Monte Carlo methods are algorithms that:
e Generate samples from a given probability distribution p(x)
e Estimate expectations of functions E[f(x)] under a distribution p(x)

e Why is this useful?
e Can use samples of p(x) to approximate p(x) itself
Allows us to do graphical model inference when we can’t compute p(x)
e Expectations E[f(x)] reveal interesting properties about p(x)
e.g. means and variances of p(x)
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Limitations of Monte Carlo 5

e Direct sampling
e Hard to get rare events in high-dimensional spaces
e Infeasible for MRFs, unless we know the normalizer Z

e Rejection sampling, Importance sampling
e Do not work well if the proposal Q(x) is very different from P(x)

e Yet constructing a Q(x) similar to P(x) can be difficult

Making a good proposal usually requires knowledge of the analytic form
of P(x) — but if we had that, we wouldn’t even need to sample!

e Intuition: instead of a fixed proposal Q(x), what if we could use
an adaptive proposal?
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Markov Chain Monte Carlo: 345

Recap -

e MCMC algorithms feature adaptive proposals

e Instead of Q(x’), they use Q(X’|x) where X’ is the new state being
sampled, and x is the previous sample

e As x changes, Q(x'|x) can also change (as a function of x’)

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x’|x)
P(x)
Q(x)
o o0
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MCMC: Recap

e Distribution to sample from P(X)

e Proposal distribution Q(X,,c, 1X014)

e Accept X,,., With probability

min{ 1,

P (Xnew) Q (Xold |Xnew)

P(X014) Q XnewlXo1a)
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MCMC: Recap e

e Simple Example

P(X) Q XnewlXo1a)

P (Xnew) Q (Xold |Xnew)
P(Xo14)Q (Xnew!Xo1a)
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MCMC: Recap o

e Simple Example

Might reject a lot of samples

P(X) Q(Xnewlxold)
min{ 1 P(Xnew)Q(Xoldlxnew)
' P(X014)Q Xnew!Xo1a) ;
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MCMC: Recap oo

e Simple Example

Might reject a lot of samples

Can the gradient help??

P(X) Q(Xnewlxold)
min{ 1 P(Xnew)Q(Xoldlxnew)
' P(X014)Q Xnew!Xo1a) ;
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MCMC: Recap oo

e Simple Example

If variance of Q is small then next sample might

be very correlated to the previous one

P(X) Q(Xnewlxold)
min{ 1 P(Xnew)Q(Xoldlxnew)
' P(X014)Q Xnew!Xo1a) ;
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MCMC: Recap oo

e Simple Example

If variance of Q is large then next sample might

be rejected

P(X) Q(Xnewlxold)
min{ 1 P(Xnew)Q(Xoldlxnew)
' P(X014)Q Xnew!Xo1a) o
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Highly correlated samples

last position coordinate

\g’%fﬁ"’ A
|

Random-walk Metropolis

:’; , Ai&

| I | | | |
0 200 400 600 800 1000

iteration
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MCMC: Recap oo

e Random walk can have poor acceptance rate

e The samples can have high correlation between themselves
reducing the effective sample size
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MCMC: Recap 4+

e Random walk can have poor acceptance rate

e The samples can have high correlation between themselves
reducing the effective sample size

e Can we have a better proposal
e Using gradient information
e Using approximation of the given probability distribution
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Hamiltonian Monte Carlo .

e Hamiltonian Dynamics (1959)
e Deterministic System

e Hybrid Monte Carlo (1987)

e United MCMC and molecular Dynamics

e Statistical Application (1993)

e Inference in Neural Networks
e |mproves acceptance rate
e Uncorrelated Samples

14

Optimization in MCMC: GM Lecture



Hamiltonian Dynamics o

e Position vector g, Momentum vector p
e Kinetic Energy K(p)

e Potential Energy U(q)

e Define H(p,q) = K(p) + U(q)
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Hamiltonian Dynamics

e Position vector g, Momentum vector p
e Kinetic Energy K(p)

e Potential Energy U(q)

e Define H(p,q) = K(p) + U(q)

e Hamiltonian Dynamic

dqg; ~ OH
dt  Op;
dp; OH
dt g
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Hamiltonian Dynamics: Frictionless
puck

2
K@) = 2
U(q)
H(p,q) = K(p) + U(q)
dg; ~ OH
dp; _(‘?H
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Hamiltonian Dynamics: Example | ¢

2

e Kinetic Energy K(p) = %
2
e Potential Energy U(q) = q?

o Define H(p,q) = K(p) + U(q)
e Hamiltonian Dynamic

dg; ~ OH
dt  Op;
dp;  OH
i g,
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Hamiltonian Dynamics: Example |:

e Kinetic Energy K(p) = %
2
Potential Energy U(g) = & )
’ , & (]q) 2 dq; OH
So daq ap =
° T] — TI S dt Ip;
at at dp; 0
e And (llL B 0(]2

q(t) = rcos(a+1t), p(t)=—rsin(a-+1)
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Properties of Hamiltonian

e Reversibility
e Conservation of Hamiltonian
e Mapping preserves volume
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dg;
dt

dp;
dt

OH
Ip;
0

Jqi
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How to get solution

e Discretization

Euler's Method
Leapfrog Method
etc

Optimization in MCMC: GM Lecture
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Euler’s Method

pi(t +¢)

¢(t +¢)

© Eric Xing @ CMU, 2005-2017

oU
pi(t) — 5@(1'((1(”)
ﬁ]%'(f)
i(f) + ¢ m;
dg;  OH
dt  Op;
dp;  OH
dt g
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Leapfrog Method oo

e The updates looks like

pit+¢/2) = pi(t) — (£/2) 5—(a(t))
gi
Gi(t+¢) = qlt) + fpi(t;:.gm
Ol/r
pi(t+e) = p(t+¢/2) — (¢/2) aq_((J(f‘l'f))
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Leapfrog Vs Euler

momentum (p)

(a) Euler's Method, stepsize 0.3

| | ! | |
-2 -1 0 1 2

position (q)

q(t) = rcos(a—+1),

(c) Leapfrog Method, stepsize 0.3

momentum (p)
0
|

| | | |
-2 -1 0 1 2

position (q)

—rsin(a + 1)

=

N
~

S
|
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MCMC from Hamiltonian i
Dynamics o
e Let g be variable of interest
e Define:

P(q.p) = % exp(—Ul(q)/T) exp(—K(p)/T)
e And

d
U(q) = —log [n (q) q|D] K(p) Z

2m;

e Key ldea: Use Hamiltonian dynamics to propose next step.
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MCMC from Hamiltonian
Dynamics o
e Let q be variable of interest N
P(q.p) = %e\p (q)/T) exp(=K(p)/T)
U(qg) = —log [n (q) (I|D] K(p) i 217)722

Negative Log
probability
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MCMC from Hamiltonian i
Dynamics 4+

e Given g, (starting state)

e Drawp ~ N(0,1)

e Use L steps of leapfrog to propose next state

e Accept/ reject based on change in Hamiltonian
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MCMC from Hamiltonian

Dynamics

P

rnorm(length(q),0,1)
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MCMC from Hamiltonian i
Dynamics 4+

p = rnorm(length(q),0,1)
p =p - epsilon * grad_U(q) / 2
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MCMC from Hamiltonian i
Dynamics 4+

p = rnorm(length(q),0,1)
p =p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum
for (i in 1:L)

q = q + epsilon * p
if (i!'=L) p = p - epsilon * grad_U(q)

30
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MCMC from Hamiltonian i
Dynamics 4+

p = rnorm(length(q),0,1)
p =p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum
for (i in 1:L)

q=q + epsilon * p

if (i!'=L) p = p - epsilon * grad_U(q)
¥

p =p - epsilon * grad_U(q) / 2 p=-p

31
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MCMC from Hamiltonian i
Dynamics 4+

p = rnorm(length(q),0,1)
p =p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum
for (i in 1:L)

q=q + epsilon * p

if (i!'=L) p = p - epsilon * grad_U(q)
¥
p =p - epsilon * grad_U(q) / 2 p =P
Accept or reject the state at end of trajectory

min [1. exp(—=U(q¢")+ Ul(q) — K(p™) + K(P))]

32

Optimization in MCMC: GM Lecture



MCMC from Hamiltonian
Dynamics 4+

e Detailed balance satisfied
e Ergodic
e canonical distribution invariant

33
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2D Gaussian Example o

Random=-walk Metropolis Hamiltonian Monte Carlo

I I I | | [ I I I I
-2 -1 0 1 2 -2 -1 0 1 2

Twenty iterations of the random-walk Metropolis method (with 20 updates per
iteration) and of the Hamiltonian Monte Carlo method (with 20 leapfrog steps per trajectory)
for a 2D Gaussian distribution with marginal standard deviations of one and correlation 0. 964
Only the two position coordinates are plotted with ellipses drawn one standard deviation

away from the mean. Optimization in MCMC: GM Lecture
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Two hundred iterations, starting with the twenty iterations shown above, with

only the first position coordinate plotted.
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100D Gaussian Example o

Random-walk Metropolis Hamiltonian Monte Carlo
o — o — °
o — . o~ — :.... ..s... .. . . .. :..
L) . ) ..’ L] .. ° .. L ]
g § R Ny ity 38
S T 7 ’ c - 2 S &.“.\ oo < . %o *
= s * 2 ol .o @ '\. edenen
o} . 3 o] 2" ‘~?f9° ‘el o ‘.“o 3
8 . S W COSNS - g d S Y K
c O — $o S O — N*%ee ..; S " "
5 1R K § 7 | e M N A
8 ) 8 \‘ﬂho o W oogs s.‘.o b AN
S - . S« | 55 "“’-’5.-\' % g
® ‘ B | | ®ep O : %.‘. 'y °°3' e
E k‘ * Q ”.... ~. L ™Y :’ ° L4 ..: ,.'.:
S s °* ... ® e @ . Se® % % .,
NI H H N e * o K] o © o0 ¢
o _| o _| . o
| I
[ | [ | | [ | | [ [ | [
0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration
36

Optimization in MCMC: GM Lecture



Acceptance Rate oo

o 2D example HMC : 91% Random Walk: 63%

e 100D example HMC: 87% Random Walk: 25%
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MCMC from Hamiltonian i
Dynamics 4+

p = rnorm(length(q),0,1)
p =p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum
for (i in 1:L)

q=q + epsilon * p

if (i!'=L) p = p - epsilon * grad_U(q)
¥
p =p - epsilon * grad_U(q) / 2 p =P
Accept or reject the state at end of trajectory

min [1. exp(—=U(q¢")+ Ul(q) — K(p™) + K(P))]
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Langevin Dynamics

. 20U

4G = G — 50—(1,((1) + £pi
e oU = oU , |
‘—‘_—.(( )

accept ¢* as the new state with probability

=S () -1)]

min [1. exp (— (U(¢*) —Ulq)) — 5

Leapfrog or
pi(t+e/2) = pit) = (¢/2) 5~ (q(?))
qi
at+e) = () + 2
. oU 39
pi(t+e/2) = (¢/2) 5-(alt + <))

pilt+e) =




Stochastic Langevin Dynamics

e For large datasets hard to compute the whole gradient

4;

i

20U
2 8%‘

(q) + =pi

Ulq)

— log [77

(4)L(q| D)]

40
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Stochastic Gradient Langevin 3
Dynamics oo
e For large datasets hard to compute the whole gradient

. 52(‘)(/,"'*( )

q. = ((; — — — ( =D

1; 1 2 Dq, 1 1

Calculate using subset of data
Ulg) = —log [7*'<(1)L((I|D)]
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Stochastic Gradient Langevin Dynamics$:::

Bayesian Models

e Posterior

e SGLD update:

Al =

N ~ N(0, hy)

p(0|1X) o< p(6

.
H 1p r;|0)
I T
- (v log p(6) +—ZV1oo P(4i]0:) ) T
1=1
] 520(,7( )+
jl i 2 ()(Iz ! b
[T(q) — —1(:)(0 [/l q (I|D:|

42
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Stochastic Gradient Langevin eecs

Dynamics o

e High variance in stochastic gradient

e Take help from the optimization community

43
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Conclusion :

e HMC can improve acceptance rate and give better mixing

e Stochastic variants can be used to improve performance in
large dataset scenarios

e HMC may not be used for discrete variable

44
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Towards better proposal -

o Q(X,ewlXy1q) determines when the chain converges

e Idea: Variational approximation of P(X) be the proposal
distribution
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Variational Inference: Recap o

e Interested in posterior of parameters P(0|x)
e Using Jensen’s Inequality

log(p(xle) = Eq(z)[log(p(xle)] - Eq(z)[log(q(z))]

e Choose q(z|A) where A is the variational parameter

e Replace p(x|0) with p(x|6, &) where ¢ is another set of
variational parameters

e Using this we can easily obtain un-normalized bound for
posterior

P(0|x) = P°5'(0|x, A, &)
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Variational MCMC °°

e Idea: Variational approximation of P(X) be the proposal
distribution

o Q(Hnewlgold) — PeSt(9|x»/1» <)

e Issues:
e Low acceptance in high dimensions
e Works well if P¢5t is close to P
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Variational MCMC °°

e Design the proposal in blocks to take care of correlated
variables

e Use a mixture of random walk and variational approximation
as a proposal distribution

e Now can use stochastic variational methods in estimating
Pest(0|x, A, &)
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Variational MCMC

- \Vanationalm an

r= VarMCMC mean
= « VarMi MCMC mean 7 i N, ‘\

Relative log-likelihood

L

~300 L L

0 10 20

30
Dimension of 8
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Conclusion

e Adapting proposal distribution can be helpful in
e Increasing mixing
e Decreasing time to convergence
e |ncreasing acceptance rate
e Getting uncorrelated information
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