School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Gaussian graphical models and
Ising models: modeling networks

Reading: See class website
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Network Research
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Where do networks come from?

e The Jesus network
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Evolving networks

Can | get his vote?

Corporativity,
Antagonism,

Cliques,

over time?

August 2006

March 2005 January 2006
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Evolving networks
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Recall: ML Structural Learning
for completely observed

GMs
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Two “Optimal” approaches

e "Optimal” here means the employed algorithms guarantee to
return a structure that maximizes the objectives (e.g., LogLik)

e Many heuristics used to be popular, but they provide no guarantee on attaining
optimality, interpretability, or even do not have an explicit objective

e E.g.: structured EM, Module network, greedy structural search, etc.

e We will learn two classes of algorithms for guaranteed
structure learning, which are likely to be the only known
methods enjoying such guarantee, but they only apply to
certain families of graphs:

e Trees: The Chow-Liu algorithm (this lecture)
e Pairwise MRFs: covariance selection, neighborhood-selection (later)
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Key ldea: network inference as
parameter estimation
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play, xo, 23, 14) = 7 exp{bx1 + Oyxo + O323 + Oy4 +

102129 + 0132123 + Oo3x0x3 + O347374 }
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Model:
Pairwise Markov Random Fields

1
plxy, T2, T3, 24) = 7 exp{fz, + Oy + 323 + Q414 +

[{JJ|'_J;1:1..T2 -+ f}];jml;ﬁ;ﬂ -+ {}-_;,-_1;172’.133 —|— {}_-341173;134}

e Nodal states can be either discrete (Ising/Potts model), or
continuous (Gaussian graphical model), or heterogeneous

e the parameter matrix encodes the graph structure

[t e,e
e e (1) (4
= 0 0 0

KEGGDEC)::-:) @
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Recall Multivariate Gaussian

e Multivariate Gaussian density:
1

(ZJT)”/Z ‘2‘1/2 exp{— % (X - M)TZ_I (X B 1“)}

p(X|M,Z)=

e WOLG: letp=0 Q="

‘Q‘I/Z
o TR

e \We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:

p(xlaxza"'axp | u=0,0)=
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Gaussian Graphical Model -
Cell type o

X" ~ N(0, =)

Microarray _
samples Encodes dependencies

among genes
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Precision Matrix Encodes Non-Zero §§§3
Edges in Gaussian Graphical Modela | +¢

o) _ (2<n>>‘1

Edge corresponds to non-
zero precision matrix
element
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Markov versus Correlation
Network

Correlation network is based on Covariance Matrix

=0 = X, 1X; or p(X;X;)=7pX)pX;)

A GGM is a Markov Network based on Precision Matrix

» Conditional Independence/Partial Correlation Coefficients
are a more sophisticated dependence measure

Qi,;,=0 = X, LX;|X_;; or p(X;, X;|X_j;)=pXi|X_;;)p(X;|X_i;)

/* * ok %k %k O\ L2 I3
* % x % x 0
Q= * x * 0 0 O T Tq
* * 0 % 00
* x 00 % O x@
\O O 0 0O *) 26 O

s
With small sample size, empirical covariance matrix cannot be inverted

© Eric Xing @ CMU, 2005-2017 13



Sparsity

e One common assumption to make: sparsity

e Makes empirical sense: Genes are only assumed to
interface with small groups of other genes.

e Makes statistical sense: Learning is now feasible in high
dimensions with small sample size

o) _ (2<n>>‘1

sparse
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Network Learning with the
LASSO

e Assume network is a Gaussian Graphical Model

e Perform LASSO regression of all nodes to a target node
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Network Learning with the
LASSO

e LASSO can select the neighborhood of each node

B1 = argming, [[Y — XB1[* + Al|Bax

515‘

®
o

®
612

7 e
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(Y Y
xxXxr
3
L1 Regularization (LASSO) o
e A convex relaxation.
Constrained Form Lagrangian Form
3 = argming||Y — X3||° B = argming||Y — X8| + A 8]
subject to:
p
> Bl <c
j=1

e Enforces sparsity! ﬂ
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Theoretical Guarantees

e Assumptions

e Dependency Condition: Relevant Covariates are not overly dependent

e Incoherence Condition: Large number of irrelevant covariates cannot be too
correlated with relevant covariates

e Strong concentration bounds: Sample quantities converge to expected values
quickly

If these are assumptions are met, LASSO will asymptotically recover
correct subset of covariates that relevant.
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Network Learning with the
LASSO

e Repeat this for every node
e Form the total edge set

& = {(u,v) : max(|Buol, |Bual) > 0}

2@
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Consistent Structure Recovery

[Meinshausen and Buhlmann 2006, Wainwright 2009]

logp
If )\S ()
>0y

Then with high probability,

S(B) — S(B")
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Why this algorithm work?

e What is the intuition behind graphical regression?
e Continuous nodal attributes
e Discrete nodal attributes

e Are there other algorihtms?

e More general scenarios:

non-iid sample and evolving networks

e Case study
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Multivariate Gaussian

e Multivariate Gaussian density:
1

(2,72,’)”/2‘2‘1/2

expl 4 (x- 1) 2 (x- o)}

‘ il [2u 2 )
U ’ 251 2
e How to write down p(x,), p(x4|x5) or p(x,|x4) using the block

elements in uand X7

e Formulas to remember:

p(x|u,2) =

e A joint Gaussian:

p( !

X, 2

X1
w27 (]

p(x,) =7 (x,|m3,V,") p(X1‘X2) =70 (X;|my,,Vy,)
m; = u, my, =t "‘2122\512 (X, — )
V) =2, Vip =2y ‘2122512221
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The matrix inverse lemma

)
e Consider a block-partitioned matrix: M = @

e First we diagonalize M
[1 -FH"' [E F” I 0]=[E-FH1G 0]

o I ||G H||-H'G I 0 H
e Schur complement: M/H = E-FH'G
e Then we inverse, using this formula: Xyz=w = Y'=zZW'Xx

v B T (A 0 [I -FH
|G H CH'G T 0 g0 I
[ () (M/H ) FH _[E"+E"F(ME)'GE"  -E”'F(M/E)”
H'GMH)" H+H'G(M/H)'FH (M/E)'GE" ()

e Matrix inverse lemma

(E-FH'G)' = E" + E"F(H-GE'F)' GE”
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The covariance and the precision | 332
matrices o5

2 — Oll Ol
51 Z 1
I
1 (M/H) (M/H)'FH
H'G(MH)" H'+H'GM/MH)' FH
I
d11 'Q11(71TZ-1_1

O =

q11 671T]

'%12-1_151 2-1_1(1+Q115151TZ-1_1) q9 0,
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Single-node Conditional

P(Xl‘xz) =70 (X, |my,,Vy,)
m, =ty + 2122512 (X, — )

Vlyz = Z11 - 2122512221
|

e The conditional dist. of a single node i given the rest of the
nodes can be written as:

E?(X».-'|X—-s)

— N(Hv + EX,-}{_;E;{I_,-K_;; (X—f — f"'x_;)"

-1
EJ{.;,J{?; — Ex;}{_tz}{_i}{_;zx—a-’ﬂ)

e WOLG: let £ =20

P(Xﬂx—-s)

N(Zxx_ 2% x_ X Bxx — Sxx, 5% x ., Bx X))
N (6] ST X i qi—)

.
N( % X—-:’-.Qﬂ—i)

— (i

_ q. '%151TZ-1_1
Q =

49 @T
)'[ql Q_l]
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Conditional auto-regression

e From

p(Xi| X)) = N( X—n‘i’ﬂ—i)

—{ii

e We can write the following conditional auto-regression
function for each node:

e Neighborhood est. based on auto-regression coefficient

Si={j + Jj#i,0;#0}
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Conditional independence

e From
_.i]"‘

p(Xi X)) = N( 4 X i, qii)

— (i

e Given an estimate of the neighborhood s;, we have:
p(Xi| X)) = p(XilX,)

e Thus the neighborhood s; defines the Markov blanket of node i

© Eric Xing @ CMU, 2005-2017 27



000
0000
0000
00
= . o0
Recent trends in GGM: -
e Covariance selection (classical e L,-regularization based
method) method (hot!)
e Dempster [1972]: e Meinshausen and Buhlmann [Ann.
Sequentially pruning smallest Stat. 06]:
elements in precision matrix Used LASSO regression for

e Drton and Periman [2008]: neighborhood  selection

Improved statistical tests for e Banerjee [JMLR 08]:
pruning Block sub-gradient algorithm for
finding precision matrix

e Friedman et al. [Biostatistics 08]:

Serious limitations in Efficient fixed-point equations

practice: breaks down when based on a sub-gradient
covariance matrix is not algorithm
invertible

Structure learning is possible

even when # variables > # ‘
samples
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The Meinshausen-Biithimann
(MB) algorithm: oo
e Solving separated Lasso for every single variables:
L1, T2, *** Th—1,| Tt Th41, " Tp
Step 1: Pick up one variable
& = T1, T2, 1y Th—1, Th+41r ~" 0 Tp
Step 2: Think of it as “y”, and the rest a3 ,

The resulting

_ coefficient does not
Step 3: Solve Lasso regresfion problem betweeny and z correspond to the Q

value-wise
y=0"z%

Step 4: Connectthe k-th node to those having nonzero weight in w
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L-regularized maximum sece
likelihood learning oo
e Input: Sample covariance matrix S ¢. . — 1 g: (n) (n)
(4 N S~

e Assumes standardized data (mean=0, variance=1)

e S is generally rank-deficient
Thus the inverse does not exist

e QOutput: Sparse precision matrix Q
e Originally, Q is defined as the inverse of S, but not directly invertible
e Need to find a sparse matrix that can be thought as of as an inverse of S

el T e

- o T O o S S M e S e e o - - -

N v
log likelihood In ] N(w(t)lo,Q_l) regularizer
t=1

e Approach: Solve an L;-regularized maximum likelihood
equation
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From matrix opt. to vector opt.:
coupled Lasso for every single Var.

e Focus only on one row (column), keeping the others constant

L 1

Q=1,7

N

e Optimization problem for blue vector is shown to be Lasso (L4-
regularized quadratic programming)

e Difference from MB’s: Resulting Lasso problems are coupled

e The gray part is actually not constant; changes after solving one Lasso problem
(because it is the opt of the entire Q that optimize a single loss function, whereas
in MB each lasso has its own loss function..

e This coupling is essential for stability under noise
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Learning Ising Model
(i.e. pairwise MRF) oo

e Assuming the nodes are discrete (e.g., voting outcome of a
person), and edges are weighted, then for a sample x, we

have
P(x|©) = c:xp(ZHL:ri+ > eijm,,g:j-ﬂ(e))

i€V (i.j)EE

e It can be shown the pseudo-conditional likelihood for node k is

Pyl :;:u:) = logistic (23:& <i’9u:, ;;r:u.>]
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Question: vector-valued nodes
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New Problem:
Evolving Social Networks

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

\/, over time?

March 2005 January 2006 August 2006
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Reverse engineering time-
specific "rewiring" networks
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Inference |

[Song, Kolar and Xing, Bioinformatics 09]

e KELLER: Kernel Weighted L,-regularized Logistic Regression

#. = arg n’é'{n Lo (00) + A 00 || Vi

where 1,(8!) =3, _, w(x";x")log P(z![x";,8!).
Lasso:

0 = argmgnzﬂr(x“”;e) + M| € ||
e Constrained convex optimization =

e Estimate time-specific nets one by one, based on "virtual iid" samples
e Could scale to ~10* genes, but unféﬁonger smoothness assumptions
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Algorithm — nonparametric
neighborhood selection

e Conditional likelihood

Py (I“!T\?) = logistic (ZJ: < {\,—_7 217?:\;,>]

Neighborhood Selection: '
+ Neighborhood Selectior S(i) = {7 | 6, # 0}

e Time-specific graph regression:

e Estimate at t* € [0,1]
. - & ) . . _
,uin {—ZT ) (652 + ||ez||1}

Where  y(0:2") = log Py (a}|z\;)

_ Kn (1)
ZHET" Krh_" (tf - f*)
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- 000
Structural consistency of eecs
KELLER 4
Assumptions
o Define: @ =E[VIgPu[X,|X\J]. VueV 2 o=E XX, veev

s = maxmax |S' |,  Opin = minmax |0
i f ecE '

e A1: Dependency Condition
;,11”““((2?‘;5) 2 (—'fmin- Vi € [{] l]
Amax (X7) € Dy, VEE [0, 1

e A2: Incoherence Condition Ja € (0, 1] such that
[Q5s(Q5s) || €1 —a. V" €[0,1]

e A3: Smoothness Condition
maxsup |o] (t*)] < Ap, maxsup|ol (t7)] < A
. j' .o f'r

(TR e

maxsup |, . (t*)| < By.  maxsup|d,, (t*)| < B
(T i*

) ue
i, p*

e A4: Bounded Kernel
AM,. > 1 max |K(z)| < M, max K(z)? < M,
R o Eric Xing @ CMU, 20052017 38



Theorem

[Kolar and Xing, 09]

Assume that A1, A2, A3, A4 hold. Furthermore, assume
that the following conditions hold:

1. h, = (’J(-n,_%)

2. sphy, = 0(1),

LS
S’

s:f'i, log py _ {](l)

nhy
_ log p
4. A\ = 0O( . )
E * e Sn 1"3.!:—';]3:1
D I911111‘1 - EE( \I.I' nhy )
then

nhy,

PG h ) # G| = 0 (exp (—c 4 C'log p)) =0

It

© Eric Xing @ CMU, 2005-2017 39



000
0000
o000
4
Inference " [Amr and Xing, PNAS 2009, AOAS 2009] °
e TESLA: Temporally Smoothed Ls-regularized logistic
regressior T
o ... 7 = arg min lywa (6}
g > » Vg gﬂ'? m.ﬂ?... — - ﬁl'( 1)

T
2 ) 165
t=1

T
X2 ) | 0 =67 |
t=2

_':\"frf
where 1o, (08) = 5>, log P(zf;|x ;. 08).

q
q'l

e Constrained convex optimization

e Scale to ~5000 nodes, does not need smoothness assumption, can
accommodate abrupt changes.
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Temporally Smoothed Graph
Regression

TESLA:

T T T
min Y U+ A ) Tal+ A ) 1V
t=1 =1 =2
i

al gt
“.!' u;"' v'i ‘-f
t - gt ¢ o
5. 1 — s < <wu s =1, T,Vje Vi
i - i t—1 i . ,
8.1 _"a_.'—ﬁlr._f_ﬁ!) EEH.J"]F_3 ILYjeV
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Modified estimation procedure

e estimate block partition on which the coefficient functions
are constant

n y 4
Z (Y; —=XiB(t:))" + 222 Y |1Bellry (*)
k=1

=1

e estimate the coefficient functions on each block of the
partition

min 3~ (% ~X)* + 2\ [y (**)
ti €5
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Structural Con3|stency of TESLA

[Kolar, and Xing, 2009]

It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference
transformation of (*), the block are estimated
consistently

Then it can be further shown that, by applying Lasso on
(**), the neighborhood of each node on each of the
estimated blocks consistently

Further advantages of the two step procedure

choosing parameters easier
faster optimization procedure
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Senate network — 109t" congress

e \Voting records from 109th congress (2005 - 2006)

e There are 100 senators whose votes were recorded on the
942 bills, each vote is a binary outcome
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Senate network — 109t" congress

January 2006 August 2006

March 2005

45
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Senator Chafee

Lugar Bingaman
whmer\ Lidad ]
== ncoln
, \j __ Mdrray

“E( \Cb?re"".“’rf!\r‘“ W
Col /
/

- {n Nélson jeffofds
K llins
i

cter

Snowe

(b) t = 0.4
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Senator Ben Nelson

T=0.2 T=0.8
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Progression and Reversion of
Breast Cancer cells

S1 (normal) -=-’-:::::I %4‘ i
oA : :

M
T4 (malignant) @e)5ie/s® ===~~~ "] :
6(5- {0)5¢ \ : ____________ :
OD l OD _=.’.:__—-I ‘\‘/' I
. @ :
3% o2, g0 09 -
T4 revert 1 o 0/0 T4 revert 3

T4 revert 2
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Estimate Neighborhoods Jointly
Across All Cell Types T

S1

How to share information
across the cell types?

T4
0,70 T4R3
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Sparsity of Difference

Penalize differences between networks of adjacent cell types

@®
l 67" — 6%,
o ° JONEW
o741 — g7, |0T42 ) 9T4NT4R3 — 0™,
®).. T4R3

;I'4R1 02 D
- el %o - -
e _° ® ® OQ/Q °
® e ® T4R2

© Eric Xing @ CMU, 2005-2017
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Tree-Guided Graphical Lasso
(Treegl)

/ N S,
2
\u. \u‘ — al 0111111 ( Z Z (n s) iz s))

9 n—=1s=

VU

+,\12 0. 1+>\>Z||0("’) 9{;“”))“1)

SRALSIEY cvmu, 20052017 Sparsity of difference,

®
‘
® ®

RSS for all cell types




Network Overview

EGFR-ITGB1
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PI3BK-MAPKK
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Interactions — Biological
Processes

T4 cells: Increased Cell Prolifera

S1 cells :
o P4
& oc?’ o
& g 0O
< Q 1,0
Q > N
N %
% & & (\°
C N <° \,0
% %, S K e
Csy O D @ S
/ N o
?6(- \Y s\
7 X X0
0’7 e° pogse
ystem process WA
— .
iferation s Wbiologj
cell DTO“fera oy ANy * gical réqulation
2 ; i
vio\© O & ST % Css
O £ a5 “%
O o Y © ~
< U @ Pe)
O )
© fo)
@,
XY
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Interactions — Biological sece
Processes T
T4 cells MMP-T4R cells:
Significantly reduced
¢ & interactions & &
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Interactions — Biological
Processes

PIBK-MAPKK-T4R: Reduced Growth,
- T4¢cells— 7 77777777 Locomotion and Signaling

12 &2
& &
s & O
£ ;
I @ A
Q,O K\0
& <
R e .
) W
NS AV
‘@0 o ‘0 S‘.
0™
» 153
Y 'Mune s
t";"‘- biol ystem process
P (0] Ogica ’ r . .
. » €gul iferation
metab Qulation cell pro\lfe\’ —
Olje - 3
Oce . \
Ss \
09
%, oo
%
@
R
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Fancier network est. scenarios

e Dynamic Directed (auto-regressive) Networks
[Song, Kolar and Xing, NIPS 2009]

time (-1 time 1

e Missing Data
[Kolar and Xing, ICML 2012]

e Multi-attribute Data

[Kolar, Liu and Xing, JMLR 2013]
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Summary

« Graphical Gaussian Model

The precision matrix encode structure

Not estimatable when p >>n

« Neighborhood selection:
Conditional dist under GGM/MRF

Graphical lasso
Sparsistency

« Time-varying Markov networks

Kernel reweighting est.
Total variation est.
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