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e Class webpage:
e http://www.cs.cmu.edu/~epxing/Class/10708-17/
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& ».  Probabilistic Graphical Models

d 2 10-708, Spring 2017
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& ¥ Eric Xing

School of Computer Science, Carnegie Mellon University

« Time: Monday, Wednesday 12:00-1:20 pm
« Location: GHC 4307
« Recitations: TBA

Lecture videos of PGM (Spring 2014) can be found here.

Announcements

* Class begins on Wednesday, 01/18/17. See you in class!
* To scribe the lectures, please sign up here.
* Class discussions will be run through Piazza.
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Previous

® The class mailing list is 10708-students@cs.cmu.edu. The instructor mailing list is 10708-instructor@cs.cmu.edu.
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Text books:

e Daphne Koller and Nir Friedman, Probabilistic Graphical Models

e M. I. Jordan, An Introduction to Probabilistic Graphical Models

Mailing Lists:

e To contact the instructors: 10708-instructor@cs.cmu.edu

e  Class announcements list: 10708-students@cs.cmu.edu.

TA:

e  Maruan Al-Shedivat, GHC 8223, Office Hour: Wednesday, 4:30 - 5:30pm

° Haohan Wang, GHC 5507, Office Hour: Friday, 6:00pm - 7:00pm

° David Dai, GHC 8116, Office hours: TBA

Lecturers: Eric Xing

Assistant Instructor: Sarah Schultz

Class Assistant:

° Amy Protos, GHC 8221

Instruction aids: Piazza

© Eric Xing @ CMU, 2005-2017 3



Logistics °

e 4 homework assignments: 40% of grade
e Theory exercises, Implementation exercises

e Scribe duties: 10% (~once to twice for the whole semester)
e Short reading summary: 10% (due at the beginning of every lecture)

e Final project: 40% of grade
° Applylng PGM to the development of a real, substantial ML system

Design and Implement a (record-breaking) distributed Logistic Regression, Gradient Boosted Tree,
Deep Network, or Topic model on Petuum and apply to ImageNet, Wikipedia, and/or other data

Build a web-scale topic or story line tracking system for news media, or a paper recommendation
system for conference review matching

An online car or people or event detector for web-images and webcam
An automatic “what’s up here?” or “photo album” service on iPhone

e Theoretical and/or algorithmic work

a more efficient approximate inference or optimization algorithm, e.g., based on stochastic
approximation, proximal average, or other new techniques

a distributed sampling scheme with convergence guarantee

e 3-member team to be formed in the first three weeks, proposal, mid-way report,
oral presentation & demo, final report, peer review —> possibly conference

submission !
© Eric Xing @ CMU, 2005-2017 4



Past projects:

——— ==mm o Award Winning Projects:

1€ @ winucsemuedu/-cpming s/t it B e |[Q s "E 94 A

f - J. Yang, Y. Liu, E. P. Xing and A. Hauptmann,

' ’ B : Harmonium-Based Models for Semantic Video

E GRS\  Probabilistic Graphical Models Representation and Classification , Proceedings of
‘ ENRRp The Seventh SIAM International Conference on Data
O FR— Mining (SDM 2007 best paper)

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,

Your class project s an opportunity for you to explore an interesting problem In the context of a real-world data sets. Projects should

| be done in teams of three students. Each project will be assigned a TA as a project consultant/mentor; Instructors and TAs will 1 i H e
| consult with you on your ideas, but of course the final responsibility to define and execute an interesting piece of work is yours. Your Ch rIS Dyer! Eduard Hovy; Noah A' Smlth ’ RetrOflttl n
| project will be worth 40% of your final class grade, and will have 4 deliverables: . .
B Word Vectors to Semantic Lexicons, NAACL 2015
2. Midway Report : 5 pages excluding references (20%)
3. Final Report : 8 pages excluding references (40%) beSt paper
4. Presentation : 10 minute talk (30%)

[ All write-ups should use the ICML style.
L Team Formation Others P SUCh aS KDD 201 4 beSt paper

You are responsible for forming project teams of 3 people. In some cases, we will also accept teams of 2, but a 3-person group Is
preferred. Once you have formed your group, please send one email per team to the class instructor list with the names of all team
| members. If you have trouble forming a group, please send us an emall and we will help you find project partners,

[ Project Proposal

.
You must tum in a brief project proposal that provides an overview of your Idea and also cantaing a brisf survey of related work on the | e Oth er p ro J ects .
. . .

Andreas Krause, Jure Leskovec and Carlos Guestrin,
Data Association for Topic Intensity Tracking, 23rd
International Conference on Machine Learning (ICML
2006).

. . M. Sachan, A. Dubey, S. Srivastava, E. P. Xing and
e We will have a prize for the Eduard Hovy, Spatial Compactness meets Topical
: Consistency: Jointly modeling Links and Content
beSt prOJeCt(S) et for Community Detection , Proceedings of The 7th
ACM International Conference on Web Search and Data
Mining (WSDM 2014).
© Eric Xing @ CMU, 2005-2017 5




What Are Graphical Models?
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The Fundamental Questions .

e Representation
e How to capture/model uncertainties in possible worlds?
e How to encode our domain knowledge/assumptions/constraints?

e Inference
e How do | answers questions/queries

according to my model and/or based
given data?

e.g.. P(X,|D)
e Learning
e What model is "right"

for my data?

e.g.: M= arg max F(D; M)

© Eric Xing @ CMU, 2005-2017 8



Recap of Basic Prob. Concepts o

e Representation: what is the joint probability dist. on multiple

j 2 -
variables” X 6’0‘“0
P(X,, X,, X, X, Xg, X, X, Xy)

e How many state configurations in total? --- 28
e Are they all needed to be represented?

e Do we get any scientific/medical insight?
L6 ] CH)
e Learning: where do we get all this probabilities? W oo Xyt
e Maximal-likelihood estimation? but how many data do we need? "'v\v 5 "
e Are there other est. principles? t\ v v - - ;—[',

e Where do we put domain knowledge in terms of plausible relationshipé petween variables, and L \
plausible values of the probabilities? ‘

( C \ | n(
e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

o Confplikng ‘p&l—llh) wotitd req)Jire summing over all 26 configurations of the

unobserved variables o
© Eric Xing @ CMU, 2005-2017 9
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What is a Graphical Model? 13
--- Multivariate Distribution in High-D Space °
e A possible world for cellular signal transduction:
[ReceptorA ] X, [ReceptorB ] X,
[ Kinase C ] X3 [ Kinase D ] Xy [ Kinase E ] Xe
[ TF F } X,
[ Gene G ] X7 [ Gene H ] Xg

© Eric Xing @ CMU, 2005-2017 10



000
GM: Structure Simplifies 3
Representation oo
e Dependencies among variables
[ Receptor A ] X, [ Receptor B ] X,
S l _____________________________________________________________________ M e_lzlP_r?zl_e_i
[ Kinase C ] X3 [ Kinase D ] Xy [ Kinase E )K5

© Eric Xing @ CMU, 2005-2017 11



Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, Xy, X3, Xy Xg, Xg, X7, Xg)

- P XQPUAX,| Xy) P X,)
@Xd X3 X 71 Xg) P(Xgl X5, Xo)

Stay tune for what are these independencies!

a Why we may favor a PGM?

0 Inéiorporation of domain knowledge and causal (logical) structures
1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !

© Eric Xing @ CMU, 2005-2017 12



GM: Data Integration

Receptor B

W\ X3 Kinase D Kinase E

© Eric Xing @ CMU, 2005-2017 13



More Data Integration -

e Text + Image + Network =>» Holistic Social Media

e (Genome + Proteome + Transcritome + Phenome + ... =
PanOmic Biology

© Eric Xing @ CMU, 2005-2017 14



Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

Receptor A b 4 Receptor B A,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)

Kinase E A = P(XZ) P(X4| X2) P(X5| XZ)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

© Eric Xing @ CMU, 2005-2017 15



Rational Statistical Inference ot

The Bayes Theorem:

leehhood Prior

Posteri o
osterior probability

probability

/
pih|d) - G*d L) 15

2 p(d [h)p(h’)

h'eH

e

Sum over space
of hypotheses

e This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?

e Typically the number of genes need to be modeled are in the order of thousands!
© Eric Xing @ CMU, 2005-2017 16




GM: MLE and Bayesian Learning

e Probabilistic statements of ® is conditioned on the values of the

observed variables A, . and prior p( |y)

¢l [Db [ E]

e [ H]

(ABCDE,..)=(T,EETE,...) ll.llll."’ '<

A= (ABCDE,...)=(T.ET/TFE...

(A,BCDE,..)=(ETT,TE...)

Braes = [0 PO A, 1) O

© Eric Xing @ CMU, 2005-2017

-

\

P(EA; 7)o p(A|O)p(&; 1)
- $ =

posterior

likelihood

prior
17



Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)

= P(Xp) P(Xp) POX3 Xp) POX,[ X)) POXg| X,)
P(Xgl X3, Xg) P(X7| Xg) P(Xg| X5, Xg)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

0 Bayesian Philosophy =

e Knowledge meets data
© Eric Xing @ CMU, 2005-2017 18



So What Is a PGM After All? ot

In a nutshell:

f‘GM = Multivariate Statistics + Structure

GM = Multivariate Obj. Func. + Structure
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So What Is a PGM After All? o
e The informal blurb: i felt l (’\
e Itis a smart way to write/specify/compose/design exponentially-large probability

distributions without paying an exponential cost, and at the same time endow the
distributions with structured semantics

3 —_—
- (D) (E ) %\ F 1
= o
P(X X5, X5,X4,X5,X¢,X5,Xg) w) P(X, )M(x | X, X,)P(X, | X,)P(X //2)
e A more formal description: Pl XIPOXy X0 )P(Xs X, e

1z
e It refers to a family of distributions on a set of random variables that are r

compatible-with all the probabilistic independence propositions encoded by a

graph that connects these variables

© Eric Xing @ CMU, 2005-2017 20



Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

= P(Xp) P(Xy) P(X5| Xp) PCX,| Xp) P(Xs| X,)
P(Xel X3 X,) POX7| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(Xy, X0 Xay Xy Xes X, Xy Xo)
G x|
= 1/Z exp{E(X)+E(CX,)+E(X;, X)+E(X,, X)+E(X;, X)) ar
+ E(Xg: X3, X)TE(X7, X)+E(Xg, X5, Xe)} N e

© Eric Xing @ CMU, 2005-2017 21
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Bayesian Networks %1V \Q set

Structure: DAG

 Meaning: a node is - -
conditionally independent
of every other node in the ota M

Ancestor

network outside its Markov
blanket

 Local conditional distributions Xyﬂ‘
(CPD) and the DAG <@ N
completely determine the \\‘ -

joint dist. m \‘

- Children's co-parent ]

« Give causality relationships,
and facilitate a generative
process

Descendent

© Eric Xing @ CMU, 2005-2017 22



Markov Random Fields

Structure: undirected graph

 Meaning: a node is conditionally
independent of every other node
in the network given its Directed
neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

* Give correlations between
variables, but no explicit way to
generate samples

© Eric Xing @ CMU, 2005-2017
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Towards structural specification of 3
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.

© Eric Xing @ CMU, 2005-2017 24
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GMs are your old friends S
Density estimation m,s ®
Parametric and nonparametric methods X X
Regression
J X Y
Linear, conditional mixture, nonparametric O @)
Classification Q Q
Generative and discriminative approach X X

Clustering

© Eric Xing @ CMU, 2005-2017
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Fancier GMs:
reinforcement learning

e Partially observed Markov decision processes (POMDP)

AI—Z A:—l Ar A +1 Ar+2

o S SN
&

ﬂ o 1%

<D
& & G &
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Fancier GMs:
machine translation
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The HM-BIiTAM model
(B. Zhao and E.P Xing,
. ACL 2006)
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Fancier GMs: coee
genetic pedigree -
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Fancier GMs:
solid state physics

Ising/Potts model

© Eric Xing @ CMU, 2005-2017 30
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What makes it work? Why?

Good work —- but 1 think

we might need a little
rriore detail right here.

o 3 by
—qp_rh her = T
miirgasle
D cur<s h
(=
&
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An MLer’s View of the World

Loss functions

e AR -

Structures

i b

Constraints

e AR RARNE * ™
il I

Algorithms

Stopping criteria
Change in objective, change in
update ...

Empirical
Performances?

© Eric Xing @ CMU, 2005-2017 33



Empirical goal:

Structure;

Objective:

Vocabulary:

Algorithm:

Evaluation:
Implementation:

Experiments:

<
S

e.g., classification, feature learning,
generating samples ...

Graphical

Something aggregated from
local functions

Neuron, activation/gate function

A single, unchallenged,
inference algorithm — BP

On a black-box score -- end
performance

Many untold-tricks

Massive, real data (GT

unknown)
© Eric Xing @ CMU, 2005-2017

e.g., supervised/unsupervised
learning, transfer learning, latent
variable inference

Graphical

Something aggregated from local
functions

Variables, potential function

A major focus of open research,
many algorithms, and more to
come

On almost every intermediate
quantity

More or less standardized

Modest, often simulated data
(GT known)

34



Application of GMs

Machine Learning
Computational statistics

Computer vision and graphics

Natural language processing
Informational retrieval

Robotic control

Decision making under uncertainty
Error-control codes

Computational biology

Genetics and medical diagnosis/prognosis
Finance and economics

Etc.

© Eric Xing @ CMU, 2005-2017
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Why graphical models -

e A language for communication
e A language for computation
e A language for development

e Origins:
e Wright 1920’s

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s

© Eric Xing @ CMU, 2005-2017 36



Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan

© Eric Xing @ CMU, 2005-2017 37



Plan for the Class

e Fundamentals of Graphical Models:
e Bayesian Network and Markov Random Fields
e Discrete, Continuous and Hybrid models, exponential family, GLIM
e Basic representation, inference, and learning

e Advanced topics and latest developments

e Approximate inference
Monte Carlo algorithms
Vatiational methods and theories

e “Infinite” GMs: nonparametric Bayesian models
e Optimization-theoretic formulations for GMs, e.g., Structured sparsity
e Nonparametric and spectral graphical models, where GM meets kernels and matrix algebra

e Alternative GM learning paradigms,
e.g., Margin-based learning of GMs (where GM meets SVM)
e.g., Regularized Bayes: where GM meets SVM, and meets Bayesian, and meets NB ...

e Case studies: popular GMs and applications

Multivariate Gaussian Models
Conditional random fields
Mixed-membership, aka, Topic models

© Eric Xing @ CMU, 2005-2017
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Questions ?
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