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1. Introduction
Electronic health records (EHRs) is an inter organizational,
comprehensive, patient-centered longitudinal collection of
health records. It aims to foster the quality of health care
and support healthcare providers by providing comprehen-
sive medical and healthcare information of patients along
the whole life cycle. In particular, EHRs can be utilized for
diagnosis of current status of a patient such as existence of
specific diseases or prediction of future status of a patient
such as survival probability after three years of a surgery.

Previous researches (Schulam & Saria, 2016; Wang et al.,
2012; Rizopoulos & Ghosh, 2011) have worked on ex-
tracting meaningful patterns from the EHRs while most
of them failed to capture irregular patterns of sampling
or long range dependencies from the multivariate, varying
length time-series record of observations. A somewhat suc-
cessful research (Lipton et al., 2015) use Long Short-Term
Memory (LSTM) to construct a diagnosis model that ef-
fectively captures time-series observations with variation
of the length and long range dependencies, while it could
not capture irregularity of sampling interval. Note that
the irregularity of sampling interval means that intervals
between two consecutive visits have varying lengths (See
Figure 3-(a)). In order to deal with the irregular pattern
of sampling, Neil et al. (2016) suggested Phased-LSTM to
improve current recurrent neural network (RNN) models
that are ill-suited by adding a new time gate to deal with
irregularly sampled time-series data generated in continu-
ous time while it was not designed as a biologically plausi-
ble model. However, it is not straightforward to apply the
Phased-LSTM to EHRs because each clinical features in
EHRs are asynchronously sampled. The two missing pat-
terns induced from irregularly sampled subjects and asyn-
chronously sampled features complicate the missing mech-
anism of EHRs (See Figure 3). In the past decades, sev-
eral researches have been developed to address the prob-
lem of asynchronously sampled features. Most approaches
suggested two-step processes applying missing imputation
techniques to fill asynchronously sampled features first
and then learning prediction models on the completed data

Figure 1. (a) Irregularly sampled intervals: each of the three sam-
ples is irregularly sampled in continuous time while five fea-
tures (a, b, c, d, e) are simultaneously collected at each time point.
(b) Asynchronously sampled features: the features are asyn-
chronously sampled within each time while each time point is
regularly spaced. (c) Missing pattern of EHR is composed of both
the two missing patterns (a) and (b).

(Kreindler & Lumsden; Rehfeld et al., 2011; White et al.,
2011; Garcı́a-Laencina et al., 2010; Lipton et al., 2016).
However, the asynchronism of clinical features is resulted
from experimental design rather than the assumption of
complete/incomplete randomness made from most of the
missing imputation techniques. Recently, Che et al. (2016)
suggested a deep learning model, GRU-D, based on Gated
Recurrent Unit (GRU, Cho et al. (2014)) to capture the
long-term temporal dependencies in time series as well as
model the missing patterns. In particular, GRU-D models
decay mechanism of inputs and the hidden states using two
representations of the missing patterns: masking vector and
time interval. However, it considers the two different miss-
ing patterns, induced from irregular sampling among sub-
jects and asynchronous sampling among features within a
subject, as an unified missing mechanism. It results in dis-
carding useful information about when each observation is
recorded since GRU-D imputes values of the features at all
time points even when the patient did not visit.

We suggest approaches to learn predictive deep learn-
ing models using Phased-LSTM from longitudinal EHRs
which can be used for disease diagnosis and prediction.
First four approaches use the existing model, Phased-
LSTM, which is suggested to address the problem of ir-
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regular sampling, while it have not been applied to EHR
data. In order to deal with the problem of missing values
resulted from the asynchronous feature sampling, we im-
pute the missing features first using various missing impu-
tation approaches described in Sec 3.2.1 in detail. This ap-
proach includes Phased-LSTM-Forward, Phased-LSTM-
Linear, Phased-LSTM-Masking and Phased-LSTM-ALL,
which are named based on the imputation method used
to replace the missing values. Second, we suggest a
new model Phased-LSTM-D that embeds the decay rate
γt suggested by Che et al. (2016) into Phased-LSTM.
Phased-LSTM-D takes advantages of both Phased-LSTM
and GRU-D. The cell state ct allows information to pass
the LSTM cell so it can capture long range dependencies.
The new time gate kt makes to efficiently learn from the ir-
regularly sampled time-series data generated in continuous
time as it does in Phased-LSTM. In order to deal with asyn-
chronously sampled features, it also introduces the decay
rate γt to impute inputs and update hidden states as it does
in GRU-D. We applied the proposed models to the Phys-
ionet Challenge 2012 dataset (Silva et al., 2012) for making
predictions of in-hospital death of the patients based on the
EHR data, in comparison with four methods based on the
Phased-LSTM model and in-advance feature imputation or
reformulation strategies. The model is evaluated by pre-
dicted mortality status with the true status using different
evaluation metrics.

2. Background and Related Work
Recurrent Neural Network (RNN) is a class of artificial
neural network with a chain-like structure of repeating
modules of neural network connecting the hidden unit to
form a sequence. The repeating module of standard RNN
has a simple single hidden layer such as tanh layer. The
hidden units capture the information of what happened in
previous time steps. Hence, it has become a state-of-the-art
choice for extracting patterns from longitudinal sequences.
However, in training of the standard RNN, it is not capable
of handling long-term dependencies in which the temporal
contingencies present in and input/output sequences span
long intervals, while in theory it is (Bengio et al., 1994).
Long Short-Term Memory (LSTM, Hochreiter & Schmid-
huber (1997)) is a specific kind of RNN, which contains
LSTM units as the hidden unit. It has been used to catch the
long-term dependencies by remembering information for
long periods of time. The main difference to standard RNN
is that LSTM has a cell state ct at time t itself updated with
a fraction of previous cell state to convey the long range
dependencies (See Figure 2-(a)). It has three gates to pro-
tect and control the cell state ct: input gate it, forget gate
ft, and output gate ot. Lipton et al. (2015) used LSTMs to
recognize patterns from an EHR dataset in which each ob-
servation consists of 13 frequently but irregularly sampled

(a) Standard LSTM (b) Phased LSTM

Figure 2. Model architecture. (a) Standard LSTM model: LSTM
has a cell state ct allows long range information to persist along
with the hidden states. We borrows the visualization style of the
architecture from Olah (2015). (b) Phased-LSTM model: Phased-
LSTM has additional time gate kt to turn on and off the update of
the cell state ct and hidden output state ht, which can model the
irregular sampling intervals and correctly sample at any continu-
ous time.

time series of clinical measurements including body tem-
perature, heart rate, diastolic and systolic blood pressure,
blood glucose, etc. It associates each patient with a sub-
set of the 128 most common diagnosis codes, classifying
each episode with one or more diagnoses. They showed
that LSTM can effectively model long range dependencies
and nonlinear dynamics of the EHR data. However, under
the irregular sampling such that intervals between two con-
secutive inputs are not evenly spaced and are instead sam-
pled at irregular times, LSTM cannot be effectively learned
from the data.

In order to deal with the problem, Neil et al. (2016) sug-
gested Phased-LSTM, which extends the LSTM unit by
adding a new time gate kt (See Figure 2-(b)). It showed
that Phased-LSTM has no difficulty with the irregularly
sampled data, achieving higher accuracy compared to tradi-
tional LSTM. At each time step t, a parameterized oscilla-
tion turns the gate kt on and off to update the cell state and
the hidden output state. The updates can only happen dur-
ing an open phase, otherwise the previous parameters will
be kept. The time gate models the irregular updates and
can be correctly sampled at any continuous time. Phased-
LSTM also out-performs traditional LSTM in terms of con-
vergence and running time. The authors applied Phased-
LSTM to several tasks like frequency discrimination, vi-
sual recognition and lip-reading. Even with the sparse up-
dates of the memory cell controlled by the oscillation of the
time gate, the Phased-LSTM converges more quickly and
requires only 5% of the computes at runtime, while often
improving in accuracy compared to standard LSTM. Since
the nature of EHR data is event-based, there is potential for
Phased-LSTM to model such data.

However, in practice, samples are not only irregularly mea-
sured in continuous time but also not all clinical features
are measured at the same time (See Figure 3). Combi-
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nation of the two missing patterns makes EHR data hard
to be learned. Most approaches to deal with the problem
of asynchronously measured time-series features are com-
posed of two-steps, explicitly applying missing imputation
techniques to fill the asynchronously sampled features and
then fitting a prediction model on it (Kreindler & Lumsden;
Rehfeld et al., 2011; White et al., 2011; Garcı́a-Laencina
et al., 2010; Lipton et al., 2016). For example, Kreindler &
Lumsden imputed missing data segments by means of seg-
ment concatenation using segment filling with average data
values or local interpolation in phase space. White et al.
(2011) suggested MICE utilizing multiple imputation ap-
proach using chained equations. The posterior distribution
of a variable to be imputed is approximated by regression
dependent on all the other remaining variables. Garcı́a-
Laencina et al. (2010) assumed that missing patterns are
extracted from a probability distribution and made used
of EM algorithm to impute missing values. Lipton et al.
(2016) imputed missing values using forward- and back-
filling imputation strategies and then learn LSTM for multi-
label classification tasks from clinical time series data.

However, the missing imputation approaches discard use-
ful information about when each observation is recorded.
Moreover, the asynchronism of feature sampling is typi-
cally natural outcomes of the experimental design which is
far from the assumption of complete/incomplete random-
ness made from most of the missing imputation techniques.

Recently, Che et al. (2016) suggested GRU-D that mod-
els decay mechanism of inputs and hidden output states by
adding decay rates γt to standard Gated Recurrent Units
(GRU, Cho et al. (2014)). GRU-D assumes two principles
behind the decay mechanism of EHR data: (1) the miss-
ing values of features approach to some default value if its
last observation happens a long time ago and (2) influence
of previous inputs will fade away as time goes. The decay
rate γt is simultaneously trained with the model and used
to impute missing values and update hidden states. While
it mentioned that the decay term also can be embedded into
LSTM straightforwardly, it has not been implemented to
LSTM. Moreover, it counts the two missing mechanisms,
the irregularity of sampling intervals and the asynchronism
of sampling features, without discrimination, while the first
mechanism is resulted from visiting cycle of patients and
the second mechanism is resulted from asynchronism of
clinical measurements.

3. Methods
We learn predictive models from EHR data using two dif-
ferent approaches. First, we employ the existing model,
Phased-LSTM, which is suggested to address the problem
of irregular sampling, while it has not been applied to the
EHR data. Before training Phased-LSTM on EHR data,

we imputed the missing features first using various missing
imputation approaches described in Sec 3.2.1 in detail. The
imputation aims to deal with the problem of missing values
resulted from the asynchronous feature sampling. This ap-
proach includes Phased-LSTM-Forward, Phased-LSTM-
Linear, Phased-LSTM-Masking and Phased-LSTM-ALL,
which are named based on the imputation method used to
replace the missing values.

Figure 3. Model architecture of Phased-LSTM-D

Second, we suggest a new predictive deep learning model,
Phased-LSTM-D, that can simultaneously but separately
deal with the two missing patterns: (1) irregularity of
sampling intervals and (2) asynchronism of sampling fea-
tures. It utilizes the decay rate γt suggested by Che
et al. (2016) to deal with the asynchronous feature sam-
pling problem. Phased-LSTM-D takes advantages of both
Phased-LSTM and GRU-D by embedding the decay rate
γt into Phased-LSTM. Figure 3 illustrates the model archi-
tecture of Phased-LSTM-D. Like Phased-LSTM, the cell
state ct conveys information along with the sequence of
hidden units, which allows to model long range dependen-
cies. The input gate it and forget gate ft control the update
of the cell state ct. The time gate kt controls the cell state
ct and hidden output state ht to be updated only at event-
driven time points, while allows some levels of informa-
tion leaked. Meanwhile, Phased-LSTM-D models decay
mechanism of inputs and hidden states using decay rate γx
and γh respectively at each event-driven time point tj for
j = 1, · · · , Tn. When the inputs are missing at time tj , the
missing features xj induced from the asynchronously sam-
pled features are replaced with a weighted sum of the last
measurement xp(tj) and average measurement x̃ controlled
by a decay rate γj . The previous hidden state hj−1 is also
updated with a fraction of previous hidden state controlled
by the decay rate γj .

3.1. Data Processing

EHR data has two different missing patterns: the irregu-
larity of sampling intervals and the asynchrony of features.
In order to deal with the missing patterns, we pre-processed
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the data before learning predictive model from longitudinal
EHR.

Suppose there areN patients, D time-series features and T
time points in total. For simplicity we first only consider
the record of the n-th patient. Each n-th patient has five
types variables such as:

Xn = (x1, · · · , xTn
)> ∈ RTn×D

Sn = (s1, · · · , sTn
) ∈ RTn

Mn = (m1, · · · ,mTn
)> ∈ RTn×D

∆n = (δ1, · · · , δTn
)> ∈ RTn×D

Xprev
n = (x1, xp(2), · · · , xp(Tn))

> ∈ RTn×D

and one global vector Xmean
n = (x̃

(1)
n , · · · , x̃(D)

n ) ∈ RD.

The time times feature vector is X = (x1, · · · , xTn)> ∈
RTn×D, where Tn is the number of time points when the n-
th patient is sampled, and xtj for j = 1, · · · , Tn represents
values of theD features at time step tj . In case of the vector
xtj has missing features. We mark the missing features
with a binary masking vector m(d)

tj to indicate whether a
feature d is measured or not at time step tj such that:

m
(d)
tj =

{
1, if x(d)tj is observed
0, otherwise

(1)

We use s = (s1, · · · , sTn
) to represent all the time points

when n-th patient is sampled. We define δtj as a D-
dimensional time interval vector, of which δ(d)tj represents
the time interval between the current time step tj and the
time step when the last observation of x(d)tj is available as
follow:

δ
(d)
tj =


sj − sj−1 + δ

(d)
j−1, if j > 1, m(d)

j−1 = 0

sj − sj−1, if j > 1, m(d)
j−1 = 1

0, if j=1,

(2)

We also define the empirical mean x̃(d)n of the d-th variable
x
(d)
n for the nth patient over all the time points as follow:

x̃(d)n =

∑Tn

j=1m
(d)
n,tjx

(d)
n,tj∑Tn

j=1m
(d)
n,tj

(3)

The last available observation for each x
(d)
tj is also de-

noted as x
(d)
pd(tj)

where pd(tj) = max{t′ | t′ <

tj , the feature d is observed at t′}.

3.2. Predictive Model using Phased-LSTM

3.2.1. MISSING VALUE IMPUTATION

Before we learn Phased-LSTM which is able to resolve the
problem of the irregularly sampled intervals, we employ

several feature imputation or reformulation approaches to
address the problem of asynchronously sampled features
which results in missing values of the features at each time
point.

• The first approach is to simply use the last available
observation x

(d)
pd(t)

to impute the missing value, i.e.,
passing valid observations forward along the time to
replace missing feature values.

• The second approach is the perform linear interpola-
tion to estimate the missing value. Suppose the d-th
variable x(d)tj is missing at time step tj . We estimate

x
(d)
tj using the last available observation x(d)p(tj) and the

next available observation x(d)q(tj) as follow:

x
(d)
tj ← γx

(d)
p(tj)

+ (1− γ)x
(d)
q(tj)

,

where γ = (sq(tj) − stj )/(sq(tj) − sp(tj)), stj is the
time point at step tj .

• The third approach (Che et al., 2016) does not impute
the missing values directly. It instead concatenates
the original feature vector xtj with the masking vec-
tor mtj and the time interval vector δtj to formulate a
new feature vector at each time step, such that

x̂tj ← [xtj ; mtj ; δtj ], (4)

where x̂tj ∈ R3×D. In this way we incorporate the in-
formation of which features are missing and how long
they have been missing into reformulation of a new
feature vector.

• The fourth approach is to only use the masking vec-
tor mt in combination with xtj to formulate the new
feature vector without using δtj .

Each of the four approaches can be used in combina-
tion with the Phased-LSTM. We name the four combined
methods as Phased-LSTM-Forward (using the last obser-
vation for data imputation), Phased-LSTM-Linear, Phased-
LSTM-ALL and Phased-LSTM-Masking, respectively.

3.2.2. LEARN PHASED-LSTM FROM IMPUTED EHR

We investigate the use of Phased-LSTM for diagnosis and
prediction of disease status from EHR with the irregularity
of sampling intervals. Note that the missing values induced
from the asynchronously sampled feature are already im-
puted, and we learn Phase-LSTM from the imputed EHR.
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First, we start with the standard LSTM:

it = σi(xtWxi + ht−1Whi + bi) (5)
ft = σf (xtWxf + ht−1Whf + bf ) (6)
ct = ft � ct−1 + it � σc(xtWxc + ht−1Whc + bc) (7)
ot = σo(xtWxo + ht−1Who + bo) (8)
ht = ot � σh(ct) (9)

The main improvement of LSTM compared to the standard
RNN is to use separated state, called cell state ct passing in-
formations through time sequence, from the hidden output
state ht (See Figure 2-(a)). The use of the cell state allows
to keep long range dependencies between inputs and out-
puts. The cell state ct is updated with a fraction of previous
cell state ct−1 controlled by the forget gate ft and a fraction
of a non-linear function of the input xt and previous hidden
output state ht−1 controlled by the input gate it. The hid-
den output state ht is a fraction of a non-linear function of
current cell state ct controlled by output gate ot. The input,
forget, and output gate, it, ft, and ot, use typical sigmoid
functions σi, σf , and σo. The tanh nonlinearities σc and σh
with weight parameters Whi, Whf , Who, Wxi, Wxf , and
Wxo are used to connect different inputs and gates with the
memory cells and outputs.

Note that in a typical LSTM model ct and ht are regularly
updated at every time points, while EHR is collected with
irregularly spaced time interval. In order to model the ir-
regularity of sampling intervals, Phased-LSTM (Neil et al.,
2016) adds a new time gate kt (See Figure 2-(b)) to achieve
more efficient training over the irregularly sampled data.
The cell state ct and ht can be updated only when kt is
open. In this way Phased-LSTM can address the problem
of a typical LSTM that the memory decays exponentially
with the time steps. The time gate kt are controlled by a
rhythmic oscillation modeled by three parameters, τ , ron
and s: τ represents the real-time period of the oscillation,
ron controls the ratio of of the open phase duration kt to be
opened over the whole period, and s represents the shifting
phase of oscillation to each cell. The typical definition of
the time gate kt suggested by (Neil et al., 2016) is:

kt =


2φt

ron
, if φt < 1

2ron

2− 2φt

ron
, if 1

2ron < φt < ron

αφt, otherwise

where φt represents the phase inside the rhymic cycle de-
fined as:

φt =
(t− s)modτ

τ
.

Openness of the time gate kt rises from 0 to 1 during the
first phase and drops from 1 to 0. During the third phase,
the time gate kt is closed so that the previous cell state is
mostly maintained while the leaky parameter α propagate
important gradient information.

From here we use a new notation such that j represents
the update time point tj and j − 1 represents the previ-
ous update time point tj−1. The cell state cj and the hid-
den output state hj , are updated only when the sample is
observed at the time point tj . Therefore, Phased-LSTM
sparsely updates its status at the irregularly sampled time
points instead of being updated at every time step, which is
controlled by the time gate kj . In detail, instead of follow-
ing the updating rule described in Eq 7, the cell state cj is
updated as follow:

c̃j = fj � cj−1 + ij � σc(xjWxc + hj−1Whc + bc)

cj = kj � c̃j + (1− kj)� cj−1.

Similarly, instead of following the updating rule Eq 9, the
hidden output state hj is updated as follow:

h̃j = oj � σh(c̃j)

hj = kj � h̃j + (1− kj)� hj−1.

Phased-LSTM models rate of memory decay using the time
gate kt controlled by independent rhythmic oscillation.
Therefore, the gradient back-propagates through fewer up-
dating time steps leads to slower decay of the memory and
possibly faster convergence of the learning process.

3.3. Predictive Model using Phased-LSTM-D

Note that the imputation for missing values of asyn-
chronously sampled features should precede the learning
of Phased-LSTM on EHR data. Now we suggest Phased-
LSTM-D to simultaneously deal with the asynchronously
sampled features in addition to the irregularity of sampling
intervals. Phased-LSTM-D embeds the decay mechanism
for the asynchronously sampled features suggested by Cho
et al. (2014) into Phased-LSTM to capture the long-term
temporal dependencies in continuous time as well as sepa-
rately model the two different missing patterns. Note that
we assumes that there is two different missing mechanisms:
(1) irregularity of sampling intervals and (2) asynchronism
of sampling features. To deal with the irregularity of sam-
pling interval, we adapt basic framework of Phased-LSTM
using the time gate kt controlling the gate for updating the
cell state ct and the hidden output state ht on and off. Note
that the update of the Phased-LSTM is event-based: the
states of a patient n are updated only at each time sequences
tj for j = 1, · · · , Tn where the patient n is observed. That
is, the time gate kt only opens at t = t1, · · · , tTn . At each
event tj , the missing features xj induced from the asyn-
chronously sampled features are replaced with a weighted
sum of the last measurement xj′ and average measurement
x̃ controlled by a decay rate γj . The previous hidden state
hj−1 is also replaced with a fraction of previous hidden
state controlled by the decay rate γj .
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I. OPEN PERIOD

When the time gate is open, the missing feature x(d)j are
replaced as follow:

x
(d)
j ← m

(d)
j x

(d)
j + (1−m(d)

j )γ(d)xj
x
(d)
j′

+ (1−m(d)
j )(1− γ(d)xj

)x̃(d).

Note that we use same definitions and notations as we de-
fined in Sec 3.1. That is, x(d)j be the value of the d-th vari-
able at time tj ; x̃d denotes the empirical mean of the d-th
variable; and x(d)j′ be the last available observation of x(d)

(i.e. tj′ < tj). The masking variable m(d)
j (See Eq (1) for

definition) tells whether the feature d is missing or not at
the event tj so it indicates whether the missing value will
be replaced with the weighted sum of x̃d and x(d)j′ or the

observed value x(d)j will be used.

The decay rate γ(d)xj for the input feature d at time tj con-
trols the weight between x̃(d) and x(d)j′ . TheD-dimensional

vector γxj =
[
γ
(1)
xj , · · · , γ

(D)
xj

]
is defined as:

γxj
= exp{−max(0,Wγxδj + bγx)} (10)

whereWγ and bγ are model parameters to be trained jointly
with the other parameters. δ(d)j (See Eq (2) for definition)
represents the time interval between the current time step
and the time step when the last observation of x(d)j is avail-
able.

Similarly, we define a decay rate for the previous hidden
state hj−1 at time j,

γhj
= exp{−max(0,Wγhδj + bγh)} (11)

The decay rate γ(d)hj
also controls a fraction of previous hid-

den state hj−1 to be used as an input for the current cell.

hj−1 ← γhj
� hj−1. (12)

That is, the previous hidden state hj−1 is decayed before
it is used to compute the next hidden output state hj as
follow:

II. CLOSED PERIOD

When all the features of a sample n are missing at time
t, the gate kt will be closed, which the missing pattern
is induced from the irregular pattern of subject sampling.
Phased-LSTM-D simply works exactly same as Phased-
LSTM as described in Sec 3.2.

4. Experiments
4.1. Data collection

The dataset we used for this study is the Physionet Chal-
lenge 2012 dataset (Silva et al., 2012). This dataset con-
tains time-series multivariate intensive care unit (ICU)
records of the first 48 hours after a patient was admitted
to the ICU. The Training Set A comprises 4000 records
with available label information of mortality. The records
contain 6 general descriptors, and 36 time-series variables
in total, such as Albumin, Hematocrit and Heart rate. The
number of measured time-series variables varies in differ-
ent records, with the average around 26. There are six
outcome-related descriptors. They are respectively recor-
dID, SAPS-I score(cite), SOFA score(cite), length of stay
(days), survival (days) and in-hospital death (0: survivor or
1: died in hospital).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48patient

patient
patient_1
patient_2
patient_3
patient_4
patient_5
patient_6
patient_7
patient_8
patient_9
patient_100

1

2

3

4

5

Time/hour

Figure 4. Physionet Challenge 2012 ICU records of ten patients
randomly selected. X-axis represents the time. Y-axis represents
five features: HR, SysABP, DiasABP, MAP, and Urine.

We observed both the irregular sampling problem and asyn-
chronism of feature sampling problem in this dataset (See
Fig 4). The 36 time series variables were measured at var-
ied frequencies across the records. Some variables (such as
heart rate and blood pressure) were measured much more
frequently than the others, while some variables were mea-
sured only few times. The time points where measurements
were taken within the 48 hours are not only irregularly dis-
tributed within a single record, but also change among dif-
ferent records. Among the 2881 time points within the 48
hours (unit:minute), the number of sampled time points for
each patient ranges from 50 to 120, and all the 2881 time
points were sampled for at least one patient. We present
the irregularity and asynchronism of feature sampling for
10 randomly chosen records, as shown in Figure 4.

In our experiment, we aim to use the multivariate time-
series ICU record data to predict the in-hospital death of
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a patient. We need to address the problems of the irregu-
lar sampling and missing features due to the asynchronous
feature sampling.

4.2. Result

First we extracted all the six types of variables for each
record from the Physionet Challenge 2012 dataset, as de-
scribed in Sec 3.1. They are respectively Xn (for the n-th
record), Sn, Mn, ∆n, Xprev

n and Xmean
n , n = 1, · · ·N .

The label is a binary variable indicating the in-hospital
death of the corresponding patient. There are respectively
554 positive samples (in-hospital death: 1) and 3446 nega-
tive samples (in-hospital death: 0). We divided the samples
into training data and test data based on 5-fold cross vali-
dation. Thus for each fold, there are 3200 training samples
and 800 test samples.
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Figure 5. Accuracy and AUC versus the number of hidden units

We applied all the five methods as described in Sec 3.2
to the dataset for model training and making predictions
for the test samples. The first four methods are Phased-
LSTM-Forward, Phased-LSTM-Linear, Phased-LSTM-All
and Phased-LSTM-Masking respectively. The fifth method
is the proposed Phased-LSTM-D.

The feature vector of each sample varies upon the specific
method applied. The first four methods are all based on the
Phased-LSTM model. For the Phased-LSTM-D model, We
use additional information such as feature masking vectors
and time interval vectors to train additional hidden layers
in the proposed neural network for estimating the decay
coefficients, in order to perform input decay and hidden
state decay simultaneously with the model training.

We used 60 epochs and the batch size of 50 for each of
the methods in model training. Performance evaluation
is based on 5-fold cross validation for each of the five
methods. All the five methods use the same set of 5-
fold splits. The evaluation metrics we employ are accu-
racy, AUC (area under the Receive Operating Character-
istic curve) and the loss function value. Accuracy is de-
fined as (TP + TN)/(P +N). The loss function is com-

Method Accuracy AUC Loss
PLSTM-Forward 86.40 71.85 0.438
PLSTM-Linear 86.44 71.86 0.402

PLSTM-All 86.66 75.61 0.357
PLSTM-Masking 86.56 74.33 0.367

PLSTM-D 86.38 73.94 0.363

Table 1. Accuracy, AUC, and value of the loss function of the test
dataset.

puted as the cross entropy between the predicted labels and
the ground truth labels. For each method, the average of
prediction performance on each fold with respect to each
metric is used for evaluation. To determine the appropri-
ate number of hidden units in the model, we ran Phased-
LSTM-D on Physionet Challenge 2012 dataset with differ-
ent number of hidden units (ranging from 10 to 80). For
different number of hidden units, we compared the pre-
diction accuracy for training and testing data to see if the
model is over-fitted. We found that when the number of
hidden units is between 10 and 32, the prediction accuracy
for training data is slightly higher than testing data. But if
the number of hidden units is larger than 32, the prediction
accuracy of training data will be much higher than testing
data and testing AUC will start to decrease (Figure 5), sug-
gesting that the model is over-fitted. Therefore, we decided
to choose 32 as the number of hidden units for following
experiment.We apply this number to hidden layer config-
uration of both the Phased-LSTM model and the Phased-
LSTM-D model for implementation of the compared five
methods.

Performance evaluation of the five methods on the Phys-
ioNet Challenge 2012 dataset with respect to average ac-
curacy, AUC and the loss function value is shown in Ta-
ble 1. Since we choose the number of hidden units with
model training and evaluation to reduce the overfitting, the
overfitting problem in the performance evaluation is not ob-
vious to observe. We present the performance on the the
test data here. We can observe that among five methods,
Phased-LSTM-ALL, Phased-LSTM-Masking and Phased-
LSTM-D achieve better performance than the other two
methods. Phased-LSTM-ALL achieve the highest accu-
racy (86.66%), AUC (75.61%) and the lowest loss func-
tion (0.357) value on the dataset. The next-best methods
is Phased-LSTM-Masking with accuracy (86.56%), AUC
(74.33%) and the loss function (0.367). Phased-LSTM-
D has accuracy (86.38%), AUC (73.94%) and the loss
function (0.363). All methods can achieve high predic-
tion accuracy (around 86%) and the difference is less than
0.3% among different methods. Fig 6 shows the change of
test accuracy and AUC during training process for Phased-
LSTM-D method. The test accuracy increases at first 15
epochs, and then fluctuates around 86.2% after 30 epochs.
The test AUC increases fast for the first 10 epochs, and
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is flattened after that. It eventually converges at around
74%. We also observed that during the cross-validation
of Phased-LSTM-D method, sometimes the AUC perfor-
mance will still increase after 50 epochs. This suggests that
there is room for further improvement of Phased-LSTM-D
if we train the model for longer epochs. Figure 7 shows
the ROC curves of different methods for testing data. Sim-
ilar to results shown in Table 1, Phased-LSTM-ALL gives
the highest AUC and Phased-LSTM-Masking and Phased-
LSTM-D achieve comparable AUC performance. Phased-
LSTM-Forward and Phased-LSTM-Linear gives the lowest
AUC score.
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Figure 6. Accuracy and AUC during training process for Phased-
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5. Conclusion
We learn predictive models based on Phased-LSTM for dis-
ease diagnosis and prediction using EHR data. The main
challenge is to deal with two types of missing patterns of
EHRs: (1) irregularity of sampling intervals and (2) asyn-
chronism of sampling features. Combination of the two
missing patterns induced from irregularly sampled subjects
and asynchronously sampled features makes it complicate
to learn predictive model from EHRs.

In order to deal with the problem, we use two approaches:
(1) to impute the missing features first, and then fit

Phased-LSTM to deal with the irregularly sampled in-
tervals, and (2) to learn Phased-LSTM-D to simultane-
ously deal with the irregularity sampling and asynchro-
nism of feature sampling during training. The first type of
approach include Phased-LSTM-Forward, Phased-LSTM-
Linear, Phased-LSTM-Masking and Phased-LSTM-ALL,
which are named based on the imputation method used
to replace the missing values. The second approach is
the new model Phased-LSTM-D that embeds the decay
rates γt suggested by Che et al. (2016) into Phased-LSTM.
Phased-LSTM-D takes advantages of both Phased-LSTM
and GRU-D. The cell state ct allows information to pass
the LSTM cell so it can capture long range dependencies.
The new time gate kt makes to efficiently learn from the
irregularly sampled time-series data generated in continu-
ous time as it does in Phased-LSTM. In order to deal with
asynchronously sampled features, it also introduces the de-
cay rates γt to impute inputs and update hidden states as it
does in GRU-D.

We applied our methods to a real EHR dataset (Phys-
ioNet Challenge 2012). Among the five methods, Phased-
LSTM-ALL achieves the best performance. Our proposed
method Phased-LSTM-D, although not the overall best per-
formance method, can achieve comparable score to the
best imputation methods. During our model training, we
noticed the problem of over-fitting. Since we only have
records of 4000 patients as input, our model is very likely
to be over-fitted as the number of parameters increases. We
performed a parameter scanning to reduce the number of
parameters used and minimize the effect of over-fitting to
the model. In ideal situation, more data points should be
collected in order to train the model with better perfor-
mance. In summary, our result suggests that directly imput-
ing missing values is probably not the best way to handle
missing values in EHR data. Instead, adding masking and
time interval information as additional features can give
us better prediction performance. In addition, we showed
that Phased-LSTM based algorithms are capable of han-
dling the problem of irregularly and asynchronously sam-
pled EHR data simultaneously.
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