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Abstract

Learning large-scale Latent Dirichlet Allocation
(LDA) is beneficial in many applications, but is
also hard due to the massive amount of data and
the lack of efficient inference algorithm. Re-
cently, a novel distributed scheme, i.e. embar-
rassingly parallel stochastic gradient Langevin
dynamics (EPSGLD), was proposed for efficient
large-scale LDA inference, which demonstrates
four orders of magnitude higher scalability than
other existing state-of-the-art methods. How-
ever, the success of EPSGLD relies on the con-
stant bulk-synchronizations on the shared vari-
ables throughout the training, leading to exces-
sive communication overheads.

In this project, we propose to alleviate this is-
sue by adopting the parameter server paradigm
which enables a fully-pipelined update of shared
variables with dedicated servers to eliminate
the network latency, namely Asynchronous-
EPSGLD (A-EPSGLD). We discuss in detail
the theoretical and algorithmic aspects of A-
EPSGLD. In Experiments, A-EPSGLD demon-
strates: 1) a better convergence due to a tighter
lower bound obtained from parameter server; and
2) a faster execution speed due the reduction in
network latency.

1. Introduction

Latent Dirichlet Allocation (LDA) is widely used in many
applications that involve large collections of documents.
LDA is a probabilistic generative model which describes
the documents and words in them to be generated by sam-
pling from multinomial distributions that are in turn deter-
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mined by Dirichlet priors. Due to its intractability of ex-
act inference, training LDA model is usually done by uti-
lizing approximate methods such as Markov Chain Monte
Carlo (MCMC) and Variational Inference (VI). In particu-
lar, MCMC method has become the main workhorse since
the Collapsed Gibbs sampling method (Griffiths, 2002) was
proposed. For a standard MCMC sampler, the sampling
complexity scales linearly with the number of topics and
the total number of words in the collection. Apparently,
the overhead for such method increases significantly as the
model size and/or data size get larger.

There are two approaches to scale up the inference of
LDA: stochastic subsampling and distributed computing.
Stochastic methods reduce the sampling complexity by es-
timating the full update of the model by observing only a
fraction of the data. For topic models, representative work
includes and stochastic gradient MCMC, such as stochastic
gradient Riemannian Langevin dynamics (SGRLD) (Pat-
terson & Teh, 2013), The other way is to distribute the com-
putation on the full dataset to multiple compute nodes, with
representative work for topic models includes Yahoo!LDA
(Ahmed et al., 2012), LightLDA (Yuan et al., 2015). These
frameworks follow a common design paradigm of param-
eter server (Xing et al., 2015), where the global variables
are updated and shared through a dedicated server. Another
emerging paradigm for parallel computation is Embarrass-
ingly Parallel (EP) (Neiswanger et al., 2013; Wang & Dun-
son, 2013; Minsker et al., 2014) which, compared to the
parameter server approach, requires little (or no) commu-
nication between compute nodes during the training pro-
cess. This property makes it helpful for large-scale LDA
inference since the communication cost can be excessive
as the model size increases. Recently, Yang et al. (Yang
et al., 2016) proposed EPSGLD, an Embarrassingly Paral-
lel scheme dedicated for LDA inference, and was demon-
strated to outperform other state-of-the-art schemes at least
one order of magnitude. However, due to the very nature
of unidentifiability of LDA, EPSGLD still relies heavily on
bulk-synchronization in estimating the full-data posterior,
imposing a certain amount of communication overhead.

In this project, we propose to reduce this overhead
by adopting an asynchronous style for updating the
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shared parameters, namely Asynchronous-EPSGLD (A-
EPSGLD). Specifically, we provide the insight that two dis-
tributed paradigms—parameter server and Embarrassingly
Parallel—are compatible. To do this, we show that the
EP scheme can be interpreted as a classical Expectation-
Maximization (EM) process between master and worker
nodes. And different ways of updating the shared vari-
ables essentially create lower bounds of the true posterior
that varies in terms of their tightness. Then we discuss
practical aspects of how to combine these two paradigms,
and present experiments for further demonstration. The re-
maining contents are organized as follows: We first review
the inference method for LDA, and then discusses in de-
tail the parameter server and EPSGLD; then we introduce
how to adopt the parameter server into EPSGLD in both
theoretical and algorithmic aspects; in experiment section
we compare A-EPSGLD with EPSGLD by measuring their
convergence and speed; finally we conclude with a discus-
sion on our future work.

2. Background & Related Work
2.1. LDA & sampling method

LDA is a probabilistic graphical model for topic discovery
in text documents. It describes how the words in documents
are explained by a set of K topics in a generative procedure.
Each of the topics is represented as a V' -dimensional multi-
nomial distribution ¢y, where V' is the vocabulary size, and
is referred to a topic-word distribution. The topics are of-
ten assumed to follow a conjugate Dirichlet prior, that is,
i ~ Dir(8), with hyperparameter 3. For each docu-
ment w, that contains NV, tokens, where each token in it
is denoted as wyy,, a K -dimensional topic mixing distribu-
tion -y, is sampled from a Dirichlet prior Dir(«). Then,
for each token, a topic assignment zg, is sampled from
a multinomial distribution z4, ~ Multi(+,), followed by
sampling the token itself again from a multinomial distri-
bution wg;,, ~ Multi(¢.,, ). The matrix that contains all ¢,
is denoted as ®, and the one that contains all v, is T

Inference over LDA is to determine the posterior distri-
bution of all topic assignment P(z|w, «, ), where the ®
and I" are integrated out. A classical method for perform-
ing MCMC sampling on this marginalized posterior is col-
lapsed Gibbs sampling (Griffiths, 2002). For each z4, we
sample a new topic using

(Oé _|_ n(;kzdn ) (/6 + n]:’ljdn)
2o Bt m

where ng, denotes the number of times that topic & is as-
signed to document d, ny,, denotes the number of times
that topic k is assigned to word w, zg4, the topic assign-
ments, superscript —zg,, denotes the counts matrix without
Zdn, and we omit the condition w for simplicity. Opera-

P(zan = k|rest) « (1)

tionally, we sample using Eq.(1) for all assignments for a
few iterations, and the last sample of z is used to estimate
dandT.

One can notice that sampling zg4, grows at the speed of
O(K), which can be inefficient as the K becomes large.
One variants of this method, namely LightLDA (Yuan
et al., 2015) proposes to use alias table and successfully
reduces the complexity into O(1). Specifically, it decom-
poses Eq.(1) into

(ﬁ + nkw)
Z k ﬁ + Nkw ’
For each time it samples from the first term and the second
term alternatively. The first term can be sampled in O(1)
time since zq is already the alias table of it; and the second
term uses a stale copy of ng.,, out of which one can build
an alias table and sample from it with O(1) time. Since
samples are drawn from an incorrect distribution, an extra
Metropolis step is used to correct the bias in the samples.

P(z4n = E|rest) oc (a4 ng ™) x

2.2. Parameter server

Parameter server paradigm is widely used to maintain the
globally shared variables in distributed optimization or in-
ference tasks, such as generalized linear models, graphical
models and deep learning models (Li et al., 2014). For
LDA, representative work includes Yahoo!LDA (Ahmed
et al., 2012) and Petuum (Xing et al., 2015) on which the
state-of-the-art LightLDA scheme is built. The key idea
is exploiting the error-tolerant nature of machine learning
algorithms: both of them, especially Petuum, introduce
the idea of bounded staleness and synchronize the shared
parameters in a delayed but efficient way. Formally, for
LDA inference, the global shared matrix ny,, is stored in
the server, while each client node 7 also maintains a local
copy of it g 4. And Ny, ; is allowed to be different from
Ny due to the delayed update. If the staleness threshold is
reached, global matrix nyg,, is updated using

Nkw < Nkw + Z(ﬁkw,i - nkw,i)' (2)

(2

2.3. EPSGLD

Another paradigm for distributed inference is known as
Embarrassingly parallel (EP), based on which Yang et
al. (Yang et al., 2016) proposed a novel distributed scheme,
namely EPSGLD, for LDA sampling. This paradigm al-
lows worker nodes to draw samples only from their sub-
posteriors, and then approximate the full-data posterior
(true posterior) samples in master node using some ag-
gregation methods, such as weighted average (Neiswanger
et al., 2013), kernel density estimators (Wang & Dunson,
2013), and posterior median (Minsker et al., 2014). One
of the central features for this paradigm is that individual
workers need no/few communications when sampling from
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sub-posteriors, which significantly reduces the network I/O
and latency.

However, sampling from the posterior of shared variables
requires to average the same local variables (e.g. all vari-
ables that correspond to the same topic). But due to the
unidentifiability of LDA, it becomes infeasible as the num-
ber of topics increases. Thus EPSGLD makes use of an
EM-style mechanism to synchronize between the true pos-
terior stored in the master node and the sub-posterior in
worker nodes. This leads a certain amount of communi-
cation overheads. And since this process is implemented
with bulk-synchronization, local sampling process would
be suspended until the update runs to a full completion,
which further introduces potential network latency into the
scheme.

3. Towards Asynchronous-EPSGLD

We begin our discussion by first take insights into the
scheme of EPSGLD. We first introduce ©, an unnormal-
ized version of ® whose each element can be recovered by
Phw = Ze’“g’kw, as the globally shared variable in EPS-
GLD. And the unnormalized model maintained locally in
each computational node 7 is denoted as 7;. Then for
each topic k, EP scheme (specifically Weierstrass trans-
form (Wang & Dunson, 2013)) claims the following prob-
abilistic locality

P(Or,te1--  ten|w) HK(akatk,i)P(tk,i|Wi)v 3)

from which we can further derive a block-wise Gibbs sam-
pling procedure to estimate these variable

P(ty,i|0k, wi) o K (O, i) P(te,i|w) @
P(Gk‘tk,la"' atk,n) O<-/\[(Ekv-[{())a
where Hj is a constant, and ¢, = %ZZ tx,i. The first

equation in Eq.(4) indicates that the posterior distribution
of ¢; ; given the evidence of global estimation can be seen
as the product of the local sub-posterior in node ¢ and a
kernel function w.r.t t;; and 6. The second term sug-
gests that the full conditional distribution of 6 follows a
Gaussian distribution with the mean as the mean local evi-
dences. This implies a point-estimate of 6, can be as sim-
ple as ék = %Zl ti,i. Operationally, Eq.(4) suggests in
order to sample from the joint, one first comes up with an
initial global estimation and then sample ¢, ; independently
in each node, and finally collect and aggregate these sam-
ples to give a hopefully better estimation of 6, for another
round.

We now provide a few insights about EPSGLD that are not
(or not fully) explored in Yang et al’s discussion (Yang
et al., 2016), which will not only help us to better under-

stand the nature of EPSGLD, but also serve as the theoreti-
cal foundations for our later effort of bridging between two
paradigms of distributed computation: EP and parameter
server.

3.1. Inference on sub-posterior

First, we notice that EP scheme itself does not spec-
ify any method to perform inference over P(ty ;|0k, w;)
which we refer to as the corrected sub-posterior. And in-
deed, in (Wang & Dunson, 2013) Wang et al. demon-
strate this scheme with models such as logistic regres-
sion with only vanilla MCMC as its local inference de-
vice. EPSGLD, however, opts to apply one of the mem-
bers of Hybrid Monte Carlo methods (HMC) family as its
inference device, i.e. Stochastic Gradient Langevin Dy-
namics (SGLD) (Welling & Teh, 2011). As its name sug-
gests, SGLD owes its origin to the joint effort from both
optimization community and Bayesian community. It com-
bines Robbins-Monro type algorithms which stochastically
optimize a likelihood, with Langevin dynamics which in-
jects noise into the parameter updates in such a way that
the trajectory of the parameters will converge to the full
posterior distribution rather than just the maximum a pos-
teriori mode. The resulting algorithm starts off being sim-
ilar to stochastic optimization, then automatically transi-
tions to one that simulates samples from the posterior us-
ing Langevin dynamics (Welling & Teh, 2011). Formally,
in EPSGLD a new sample of ¢, ; in time (s + 1) is gener-
ated using

(s)
; s € ; ;
i) Vit (“h(t s — i)+

&)
B _ t(s)

b+ E) + (£, ) P,
where €(*) denotes the step size at the sth iteration and
Ngkw denotes the number of times topic k is assigned to
w in document d. 7y, is obtained from 7y, ~ N(0, 6(5)),
h is a constant and E is the shorthand of expectation over
distribution over all z4,, in a minibatch

D
D)

Z Ezdn|rest,{>[ndkw - @kwndk]a (6)

d: wgew(s)

where d : wy € w(5) denotes each document in the mini-
batch and the numbers of documents in w(*) and w are
denoted as D®) and D respectively. For the rest of our
discussion we assume this method as the local inference
device for consistency, but we will see later this implicitly
couples the update of global and local variables and thus
making it difficult for adopting the delayed (asynchronous)
update. And we will discuss how to overcome this issue in
later contents.
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Figure 1. A graphical model representation of the underlying
probabilistic dependencies among three variables that are implied
by the EP scheme. Shaded circle means the variable is observed,
otherwise unobserved.

K

3.2. EP as an EM process

The update equation Eq.(4) suggests an alternative way of
estimation for interdependent variables. In (Yang et al.,
2016) Yang realizes this as a certain form of classical
Expectation-Maximization (EM) algorithm, but then fails
to fully exploit this idea. On the other hand, Eq.(4) also
suggests that 0, needs to be updated for each round of the
update, which, again, couples the updates of global and lo-
cal variables, and eventually leads to potential latency and
excessive communication cause. Yang proposes to allow
for using a stale copy of 6 in each node when sampling
from the corrected sub-posterior, and the update of 0y is
not performed until node being notified by a scheduler that
consists of a heuristic function determining the timing of
update. Yang realizes that this can introduce error into the
procedure but failed to characterize this error with respect
to its EM algorithm nature. In this section we explore in
detail the connection between EP and EM algorithm and
provide theoretical insights about the error introduced by
the delayed update.

Through inspection, we notice that Eq.(4) essentially repre-
sents an EM algorithm procedure over an implicit graphical
model with unobserved variables 6. This is illustrated in
Fig.1. Formally, for each computational node ¢ it “max-
imizes” ! the marginal posterior distribution P(y ;|w;)
where 0 was integrated out. It is then equivalent to max-
imize the log posterior, and thus the lower bound of the
target is give as:

Pltislws) o log [ Pt Oulwo)db

P(ty,q, 0c|w;)
> / Q) log 45271

where () is an arbitrary distribution of 6}, and is usu-
ally set to its posterior distribution P(0|tx 1, ,tpn)—

'The term “maximize” is not a strictly accurate description
since it implies a frequentist treatment. However, since we notice
that the estimation of ¢ ; is done deterministically and can be
viewed as the result of maximum a posterior (MAP) approach
which is readily compatible with maximum likelihood approach,
we still use this term to fit the EP process into EM framework.

exactly the same as the second term in Eq.(4). Thus the EM
process is formulated below

E-step: 1
Eekltk,lu“' thon [ek] = E Z ki @)
i
M:-step: argt max P(ty |0k, w;). (8)
ki

Now we justify the delayed update of ;.

Proposition 3.2. For any time step (s) € {(1),...,(s),...}
in EM update, using 0,(:) with (t) < (s) does not change
the monotonicity of the EM algorithm, given that 9,(;”) €
{0 1) < (1)}, for ¥() < (s).

This is straightforward, since Eq.(7) constructs a tight
lower bound of the sub-posterior, so if the E-step is de-
layed, it essentially means Eq.(8) still maximizes the old
lower bound instead of the one that is up-to-date, which in-
deed does no harm to the EM process. However the value
will not be further improved if maximum is reached. But
we notice that, since the realization of Eq.(8) is done itera-
tively using MCMC which usually takes many iterations to
iterations to converge, thus a reasonable delay in E-step is
not likely to bound the M-step, leading a waste of compu-
tational resources.

3.3. Identifiability

Those readers familiar with Bayesian mixture model may
worry about the correctness of Eq.(7). Indeed, like Gaus-
sian mixture model (GMM), LDA has the issue of “uniden-
tifiability”: The complete posterior P(T;|O, w;) are es-
sentially multimodal and there are K'! equivalent permuta-
tions to realize the the same posterior probability. Thus
the same index k in different models may indicates dif-
ferent topics. This is also referred as the label switching
effect (Stephens, 2000). Methods dealing with this effect
usually requires polynomial time that explores every K la-
bels, and thus assuming K to be small. However, in large-
scale LDA K can be the order of 10* or even larger. Such
explicit methods are, therefore, practically infeasible.

A heuristic approach is to use the same initialization copy
for each node and then synchronize (i.e. perform Eq.(7))
as frequently as possible to prevent the topics from drift-
ing apart (Newman et al., 2009). This approach is fol-
lowed in (Yang et al., 2016), and Yang further found that
insufficient synchronization leads to convergence on a sub-
optimum, and this optimum gets worse as even less syn-
chronizations are performed.

This error, again, can be qualitatively characterized from
EM perspective. Since EM algorithm always proposes the
lower bound of target distribution, and tightens this bound
by setting Q(6y) to its posterior distribution. Due to the
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Figure 2. A hypothetical example showing how A-EPSGLD cre-
ates a lower bound of the true posterior compared with those cre-
ated by EPSGLD in two updates.

switching effect, the resulting E[0;] does not come from
the posterior but from some unknown distribution, which
leads to a subsequent optimization actually performed on a
“loose” lower bound. And this eventually leads to a sub-
optimum.

Algorithm 1 A-EPSGLD for client node i
Local tables for ith worker: ¢;, ;
Global PS table: 6,

Initialization;

for batch of documents in the collection do
g= VP(tk7i|PS.Get(9k), Wi)
thi = |tk + € g
/I €: the step size for gradient descent
PS.Inc(0. %)
/I n: the number of client nodes
PS.Clock()

end for

4. Asynchronous-EPSGLD with Parameter
Server

In previous section, we have shown that delaying Eq.(7) is
not likely to hamper the EM process (label switching ef-
fect is discussed in later contents), and is computationally
beneficial since it significantly reduces the communication
overhead. The update scheme is illustrated in Fig.3(a). In-
tuitively, it’s even more beneficial if we can do Eq.(7) asyn-
chronously. Compared to EPSGLD, where E-step is per-
formed as an atomic operation, this approach completely
decouples the E-step from M-step, which eliminates com-
pletely the network latency. It is also theoretically correct,
since it creates an automatically tightened lower bound as
the training proceeds. Fig.2 illustrates this point with a hy-
pothetical example. It suggests that lower bound obtained

in A-EPSGLD is always tighter than that obtained using
bulk-synchronization, since the shared variables ares up-
dated the same time when workers perform local sampling.
And a tighter lower bound helps to reduce the approxima-
tion error due to the unidentifiability property.

We now see that the EM interpretation eventually leads us
to a more general update schedule. And this idea turns
out to fit perfectly with the model-parallelism paradigm.
Specifically, in parameter server (PS) community, the idea
of asynchronous update is studied extensively (Ahmed
et al., 2012; Li et al., 2014; Xing et al., 2015). Data and
model parameters are distributed into several client nodes.
In the meantime, a server node has the global model pa-
rameters. client nodes use CLOCK operator to record the
timestamps. PS synchronizes parameters between clients
and server via staleness value. It requires that the differ-
ence of timestamps between server and client nodes is less
than staleness value.

Treating © the global word-topic distribution as the shared
variables. The A-EPSGLD scheme can be readily imple-
mented with common PS toolkits. And in this project, we
use Petuum (Xing et al., 2015), a distributed ML platform
with built-in high performance PS and communication pro-
tocols. Procedures in worker node are straightforward to
design. We present its pseudo-code in Algorithm.1. We
calculate gradient for a batch of documents using GET op-
erator to retrieve stale global 6. Then the gradient is ap-
plied to the local ¢ ; and global ), via INC operator. It
is worth noting that we have to make sure the updated
i, is positive. If ¢ ; + € - g is a negative value, we use
M as our gradient, which has the equivalent result
as taking absolute value. The update scheme is illustrated
in Fig.3(b).

Note that A-EPSGLD is even more flexible than other dis-
tributed LDA implementations that are based on bounded
staleness, such as LightLDA. In LightLDA, bounded stal-
eness is applied on the model block in each computational
node, which will potentially suspend the local sampling
process if the bound is reached. But in A-EPSGLD, the
bound is applied on 8y, instead of ¢ ; and as already indi-
cated in Proposition 3.2, a reasonably stale 6y, is not likely
to hamper the local M-step. Therefore, this completely de-
couples the local process from the distribution framework
with theoretical guarantees of correctness.

To address the label switching effect, we still lack a method
that is both theoretically sound and computationally cheap.
And a full discussion on this topic lies beyond the scope
of this paper. Here, as a compromise, we follow the same
heuristics used in (Newman et al., 2009; Yang et al., 2016).
We control the synchronization frequency by adding an
additional staleness bound on each 6y, entry. The logi-
cal clock for this bound is (s;): the number of iterations
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Figure 3. Overview of update strategies of: (a) EPSGLD and (b) A-EPSGLD, with 3 worker nodes. Global variables have green shade,
while local have blue shade. Arrows with different colors denote update operation of corresponding variables. The box with gray shade
indicates the life span of a certain instant of global variable and € denotes the potential staleness.

elapsed for a node generating the sample t,(jj))i, this time is
compared to the time label of last synchronizétion and then
tested if it lies within the bound. As suggested in (Yang
et al., 2016), this bound should be initially small since top-
ics are likely to vary frequently; and then gradually in-

creases as the model tends to converge.

5. Experiments

To demonstrates the benefits of A-EPSGLD over the orig-
inal version we conduct experiments for two frameworks
together with a serial SGLD. Results are compared in terms
of their (1) convergence: for the same amount of data,
which one converges faster; and (2) performance: for the
same amount of time, which one leads to a higher log-
likelihood. All frameworks are implemented on distributed
machine learning framework Bosen?. And experiments are
done in Amazon Web Service with C4.4xlarge instance. It
has 16 cores and 30GB memory. Both A-EPSGLD and
EPSGLD are run with 8 workers.

Dataset: We use 20 Newsgroups® and NYTimes* datasets.
20 Newsgroups contains 18846 passages with vocabulary
size of 61188. NYTimes contains 299752 financial docu-
ments with vocabulary size of 101636 and average length
of a document of 332. When processing the dataset, 476
documents for 20 Newsgroups and 1000 documents for
NYTimes are extracted in order to form the held-out test
datasets for evaluation.

Hyperparameters: Both models require hyperparameters
in order to determine the trade-off point between conver-
gence and execution speed. In EPSGLD a scheduler needs
to be specified by a polynomial function such as N2, and
N3; while in A-EPSGLD one needs to specify the staleness

*https://github.com/sailing-pmls/bosen

3https://archive.ics.uci.edu/ml/machine-learning-
databases/20newsgroups-mld/

*https://archive.ics.uci.edu/ml/machine-learning-
databases/bag-of-words/

bound with an integer. For 20 Newsgroup dataset we con-
duct a comprehensive comparison, where different settings
of two frameworks are tested: EPSGLD with schedule 2.V,
N2, and N2 and A-EPSGLD with staleness 0, 2, 5 and 10.
For a larger dataset (i.e. NYTimes) the best settings found
in 20 Newsgroup are used.

5.1. Convergence

We first show A-EPSGLD indeed yields a tighter lower
bound than previous version , which should eventually lead
to a better convergence. To show this we compare log-
likelihood of held-out test datasets against number of doc-
ument visited, using

Z(W) = Z ﬁd~ﬁ“w;

as specified in (Wallach et al., 2009), where 74, and 7y,
are obtained by running Gibbs sampling on test set with ®
and I" specified by the model. We compare these two model
in two datasets 20 Newsgroup and NYTimes with 8 threads
in a single machine.

As demonstrated in Fig.4(a), A-EPSGLD with blue curves
has overall higher log-likelihood value and faster conver-
gence than EPSGLD with red curves. Since experiments
are explored in a small dataset, some comparisons are hard
to distinguish. Staleness 5 is the best instead of staleness
0. This result is out of our expectation. One assumption is
that the Petuum performs unstably in a small dataset. Try-
ing a larger dataset will alleviate this problem. We follow
the best parameter settings of S = 5 for A-EPSGLD and
N2 for EPSGLD. Using this parameters, the same faster
convergence of A-EPSGLD is shown in Fig.4(b) for NY-
Times. This outcome demonstrates our previous explana-
tion on the intuition of our approach. Unlike EPSGLD that
relies on bulk synchronization in estimating posterior, A-
EPSGLD generates a tighter lower bound of posterior and
converges faster.

The curve of single thread SGLD serves as the upper bound
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Figure 4. Log-likelihood against the number of visited documents for SGLD, EPSGLD, and A-EPSGLD. (a) Comparing different syn-
chronization schedulers for EPSGLD and different staleness values for A-EPSGLD on 20 Newsgroup; (b) SGLD, EPSGLD, and A-

EPSGLD with the best setting on NYTimes.
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Figure 5. Log-likelihood against training time for EPSGLD and A-EPSGLD. (a) Comparing different synchronization schedulers for
EPSGLD and different staleness values for A-EPSGLD on 20 Newsgroup; (b) EPSGLD an A-EPSGLD with the best setting on NY-

Times.

of both of the distributed schemes, since the approxima-
tion error is zero. We can see in smaller dataset, i.e. 20
Newsgroup SGLD performs significantly better, while in
NY Times, the differences are not obvious. This is a sensi-
ble results since partitioning a small dataset to many work-
ers is highly likely to violate the i.i.d assumption, leading
to a larger approximation error. And as the size of dataset
grows, this error is compensated by the corpus redundancy
leading to a smaller error.

5.2. Performance

We compared the log-likelihood of A-EPSGLD with that
of EPSGLD in terms of time. In Fig.5(a), A-EPSGLD with
blue curves has overall higher log-likelihood value and
have better performance than EPSGLD with red curves.
Tuning staleness value is a trade off between network la-
tency and convergence. Small staleness value will spend
more time on synchronization, but it will converge a bet-
ter result. We found the best parameter settings of S = 5
for A-EPSGLD and N2 for EPSGLD. Using this parame-
ters, we confirmed the same trend that A-EPSGLD has bet-

ter performance than EPSGLD in Fig.5(b) for NYTimes.
Given the same amount of time, we expect A-EPSGLD has
less network latency due to its asynchronous style of updat-

ing the shared parameters. Thus, it has better performance
than EPSGLD over the time.

5.3. Network Latency

To validate our previous statement that A-EPSGLD has
the smaller latency than EPSGLD. We computed the net-
work latency that indicates the total time of synchroniza-
tion for each model using the best parameter settings for
the two dataset. In Fig.6, A-EPSGLD with blue bar graphs
have much less network latency than EPSGLD with red bar
graphs.

5.4. Scalability of A-EPSGLD

In this experiments, we test scalability of A-EPSGLD
framework by setting different number of worker nodes and
record the wall-time usage for completing a epoch of up-
date on a dataset. We run A-EPSGLD on a single machine
with 16 cores. Time usage for 1, 2, 4 and 8 threads is shown
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Figure 6. Network Latency of A-EPSGLD and EPSGLD using
the best parameter settings.

in Fig.7 together with ideal scaling curve. We can see that
A-EPSGLD scales closely to the ideal curve, demonstrat-
ing a low network latency.

Scalability
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Figure 7. Scalability of A-EPSGLD with 1, 2, 4 and 8 threads on
a single machine.

6. Discussion

In this paper, we have discussed how to adopt the model-
parallelism setting into a data-parallelism paradigm (i.e.
EP) for a particular way of training certain type of topic
models. However, this method is not restricted to any spe-
cific optimization/sampling method or model, but applica-
ble to general distributed ML tasks.

One can view this as a generic strategy of trading-off be-
tween system overhead and algorithm accuracy with theo-
retical guarantees of convergence. For example, any appli-
cation with PS can be seen as a EP paradigm with only one
set of variables, i.e. global variables. If each worker is al-
lowed to explicitly maintain a local copy of the shared vari-
ables, then it becomes an standard EP scheme. Applying
this strategy, essentially leads to a complete decoupling be-
tween the synchronization of shared variables and the local
working flow, leading to zero network latency. This is com-
parable to a complete asynchronous update without stale-
ness bound. However, the latter lacks a theoretical guar-
antee of convergence, and is often found hard to use and
fine-tune in practice.

We expect to continue to explore this idea in the future,
as well as better methods for solving the unidentifiability

issue with LDA model.

7. Conclusion

We have presented A-EPSGLD, an effort of integrating two
distributed computation paradigm, i.e. parameter server
(PS) and embarrassingly parallel (EP), for large-scale LDA
inference. We first show how EP paradigm can be ab-
stracted from the local inference process and then ex-
plained within the EM framework, which provides theoreti-
cal support for adopting PS paradigm. Then we show how a
specific implementation of PS, i.e. Petuum, can fit into this
EM framework. Using the implementation of A-EPSGLD
and EPSGLD on the Pentuum system, we demonstrated
that A-EPSGLD outperforms EPSGLD. Specifically, A-
EPSGLD has tighter lower bound in estimating poste-
rior and faster convergence than EPSGLD given the same
amount of data. A-EPSGLD has performance better in time
than EPSGLD due to the smaller network latency.
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