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Abstract
Robust continuous detection of heart beats from
bedside monitors are very important in patient
monitoring. The most exiting methods are QSR
detectors which are based on electrocardiogra-
phy (ECG) data. However, ECG data sometime
might be very noisy, which will lead to the un-
reliability of QRS detectors. Recurrent neural
networks (RNNs) are designed to model sequen-
tial data, and recent studies on RNNs make it
possible to use deep learning methods to solve
the above problem. Phased-LSTM successfully
learns the hidden pattens of the event-based data.
RNNs have shown their strength in the problem
of sequence labeling and sequence translation. In
this paper, we view the heart beat detection prob-
lem from two different perspectives: sequence la-
beling and sequence translation, and design two
different deep learning architectures. Since heart
beat sequence is event-based data, phased-LSTM
is used as basic neuron of our deep learning ar-
chitectures. As far as we known, no one has ex-
plored deep learning methods for the problem.

1. Introduction
Robust continuous detection of heart beats from bedside
monitors plays a critical role in patient monitoring (Moody
et al., 2014). The most existing heat beat detectors used in
hospitals are QRS detectors (Pan & Tompkins, 1985), and
usually only operate on electrocardiography (ECG) data
which records the electrical activity of the heart over a pe-
riod of time using electrodes placed on the skin (Bonow
et al., 2011). Even though ECG data is reliable in most of
the cases, sometimes it might be very noisy and thus not
reliable. One way to solve this problem is to build a model
which take into account not only the the local information,
but also the historical information of ECG data. An alter-
native way is to leverage the monitoring data from other
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modalities, such as blood pressure (BP) and pulmonary ar-
terial pressure (PAP). The intuition is that it is rare that
monitoring data of all modalities are noisy at the same time.

Few researchers have explored the methods in this area un-
til the 15th PhysioNet challenge. In the challenge, partici-
pants were given the task of writing an algorithm to exam-
ine an arbitrary multi-channel recording, and produce a se-
ries of annotations indicating the likely locations of heart-
beats in the recording (Moody et al., 2014). The data used
in the challenge contains the signal record for each patient,
ranging from four to eight signals. Apart from the ECG
signal, other physiologic signals like BP and ART, are pro-
vided to assist for robust beat detection.

After investigating the methods proposed by the top teams
of the challenge, we divide their work into two types. The
first line of work apply different kinds of signal filters to
locate the potential heart beat positions for different sig-
nal sources, and then develop algorithms to merge the re-
sult of different signals (Yang et al., 2014; De Cooman
et al., 2014; Vollmer, 2014; Johnson et al., 2014). The other
line of work focuses on applying sequential graphical mod-
els to find the patterns in the data. Techniques like Hid-
den Markov Model (HMM) and pattern mining are used
(Ghosh et al., 2014; Pimentel et al., 2014).

As far as we have known, no one has explored the deep
learning methods for the robust heart beat detection prob-
lem. In this paper, we explore the practical possibility of
applying deep learning methods to solve this problem. In
fact, we can view the heart beat detection problem either
as a sequence labeling problem (Graves et al., 2006) or se-
quence translation (sequence to sequence) (Sutskever et al.,
2014) problem. From the perspective of sequence labeling,
we can view the heart beat detection problem as a frame-
wise classification problem. To be more specific, for a
given sequence, each point in the sequence is treated ”in-
dependently”, and the task is to classify each point in the
sequence as positive instance (heart beat) or negative in-
stance (not heart beat). From the perspective of sequence
translation problem, we can first encode the information of
the data sequence into a vector, and then decode the vector
into heart beat sequence.

In addition, a key challenge in modeling electronic health
record (EHR) data is that the data is usually collected dur-
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ing clinical visits and thus the data is sparse and irregularly
sampled. Currently, complicated latent variable graphi-
cal models, such as CRF (Lafferty et al., 2001), are the
most common approaches to accurately model the longi-
tudinal EHR data. However, these graphical model based
approaches might over-fit on the massive amount of histor-
ical data (Lafferty et al., 2001).

Recurrent neural network(RNN) models are designed to
model sequential data(Mikolov et al., 2010; Hochreiter &
Schmidhuber, 1997). However, most of the RNNs are un-
able to model the sparse and irregularly sampled sequential
data such as heart beat sequence. Recently, (Neil et al.,
2016) has proposed a Phased-LSTM which is able to learn
from the these data, and thus suitable for the hear beat de-
tection task. Therefore, Phased-LSTM is used as basic neu-
ron in both of our deep learning architectures.

Based on the above thoughts, firstly, only ECG data is used
to detect heart beat. Then multi-modal data, such as BP and
ART are used to detect heart beat.

The main contributions of this paper are:

• We explore the application of deep learning methods
(sequence labeling and sequence translation) to robust
heart beat detection problem.

• Phased-LSTM is used to model electronic data.

• We conduct experiments on not only ECG data, but
also on multi-modal data.

2. Related Work
In this section, we first review some previous work fo-
cusing on extracting heart beat from multi-modal signals.
Then we review two models that serve as the building block
of our proposed method.

2.1. Heart Beat Detection

The methods used by the participants in the challenge are
two-folds. The first line of work is straightforward. The
idea is to use some heuristic method to extract candidate
heart beat positions for each “reliable” signal sources, and
then try to merge them. Most teams participating the chal-
lenge use this kind of method.

Vollmer et al. (Vollmer, 2014) pre-process the data with
high pass filtering and range filtering, and then get the
threshold in different time windows to identify heart beat.
To combine the information from different signals, they
first validate the confidence (e.g., to see if it has too much
noise) of that signal channel, and then merge the extracted
heart beats if there are a sequence of points within 150 mil-
liseconds. De Cooman et al. (De Cooman et al., 2014)

first identify the noiseless segment of the ECG and apply
existing ECG peak detection algorithm to find the heart
beat there. Then they use the heart beats extracted here as
golden standard to select other reliable signal sources. Af-
ter applying peak detection on all confident signal sources,
they combine the candidate heart beat positions together
with an adaptive time window size.

Johnson et al. (Johnson et al., 2014) develop two efficient
merging algorithms to combine the predictions among dif-
ferent signals. They are based on the signal quality indices
(SQI) metric and the regularity of the RR interval time-
series (REG). The algorithms are both used to detect the
noise and artifacts in the wave for one signal. In this way,
predictions made inside the noisy part will not be merged.
Yang et al. (Yang et al., 2014) only look at the ECG data
and the blood pressure data. They first use existing peak
detecting tools on the two types of data. Then they try to
locate heart beats with clear patterns, e.g., a “sandwich”
model where one ECG peak is sandwiched by two blood
pressure peaks. In the process, they also learn the average
delay between the heart beat and the blood pressure peak
so as to predict heart beat when the signal is noisy.

The other line of work uses machine learning and data min-
ing methods that are suitable for fitting sequential data. Pi-
mentel et al. (Pimentel et al., 2014) apply a hidden semi-
Markov model (HSMM) on the data. They calculate the
slope function value as features from the ECG and BP sig-
nal graph. There are two states defined in the model: one
point can either be on the QRS complex (a wave that con-
tains a heart beat) or off the segment. They extend the stan-
dard HMM by integrating the probability of remaining in a
state in the model. This probability is modeled as Gaussian
distributions.

2.2. Phased LSTM

Recurrent neural networks (RNNs), such as LSTM, are
specifically designed neural networks for modeling sequen-
tial data. RNNs have been proved to be powerful for learn-
ing the patterns of sequences and generating the sequen-
tial data (Hochreiter & Schmidhuber, 1997; Mikolov et al.,
2010; Graves, 2013), due to memories they are equipped
with. However, traditional RNNs implicitly assume a fixed
sampling rate for the input sequential data, which violates
the fact that many sequential data is event-based such as
heart beat sequence. To deal with this problem, (Neil et al.,
2016) recently proposes a Phase-LSTM which extends the
LSTM by adding a new time gate. Different from the tradi-
tional LSTM, Phased-LSTM adds a new time gate (Figure
1). The opening and closing of the gate kt is controlled by
an independent rhythmic oscillation specified by three pa-
rameters; updates to the cell state ct and ht are permitted
only when the gate is open. Due to the fact that the gates
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of different neurons are open at irregularly sampled time
points. This allows the RNNs to work with event-driven,
asynchronously sampled input data. The experiment results
show that Phased-LSTM preforms significantly better than
the traditional RNNs, such as LSTM and batch-normalized
LSTM (Laurent et al., 2016), on event-based data.

Figure 1. Phased-LSTM model, with time gate kt controlled by
time stamp t.

2.3. RNN based Sequence Labeling

There are two different types of RNN based sequence la-
beling methods. First one, called frame-wise classifica-
tion(Graves et al., 2006), assumes each frame in a sequence
is ”independent” (in the context of RNN, current frame is
dependent to the previous frames), and then trains a frame-
wise classifier to label the frames in the given sequence.
While the other one, called connectionist temporal classi-
fication (CTC), interprets the network outputs as a proba-
bility distribution over all possible label sequences, con-
ditioned on a given input sequence(Graves et al., 2006).
Even though the CTC performs much better than frame-
wise classification, CTC takes the entire sequence as input.
Since heart beat detection needs a real-time output, thus it
is not suitable for hear beat detection task. Therefore, we
apply the frame-wise classification approach for the heart
beat detection task with phased-LSTM based RNN.

2.4. RNN based Sequence Translation

Sequence translation is also called sequence-to-sequence
learning, which takes one sequence as input, then gener-
ates a different output sequence. This method is extensively
studied in the context of machine translation. (Sutskever
et al., 2014)(2) proposes to use multi-layer LSTM to map
the input sequence into a vector with a fixed dimensionality,
and then use another deep LSTM to translate the informa-

tion of the vector into the target sequence. (Bahdanau et al.,
2014; Graves, 2013) introduces novel differentiable atten-
tion mechanism that allows neural networks to focus on dif-
ferent part of the sequence. However, the attention mech-
anism will significantly increase the training time, thus we
only explore the first approach in this paper.

Figure 2. Sequence to sequence model reads an input sentence
ABC and produces WXYZ as the output sentence. The model
stops making predictions after generating end-of-sentence token.

The original work of (Sutskever et al., 2014) takes the en-
tire sequence as input, and thus not suitable for real-time
heart beat detection. In this paper, we propose a new dy-
namic mechanism for training the model and generating
target sequences.

3. Proposed Methods
We view the problem of heart beat detection from two dif-
ferent perspectives: sequence labeling (frame-wise classi-
fication) and sequence translation. In either case, we use
Phased-LSTM as the basic neuron, since it has been proven
to be good at modeling event-based data such as heart beat.

3.1. Sequence Labeling

For a monitoring sequence S, assume that the noisy frames
are in the middle or at the end of S. If a model could learn
patterns from the non-noisy frames in the front section of
S, it should be able to robustly predict the heart beat point
from the noisy frames. Fortunately, RNN based sequence
labeling models are able to do so.

In this paper, we explore frame-wise classification model.
The framework of our model contains only one hidden
layer, which is comprised of Phased-LSTM neurons. The
output layer is a fully connected layer with sigmoid activa-
tion function. The output is treated as probability of each
frame to be a heart beat point. The loss of the model is
the cross entropy between predicted probability with the
ground truth. Figure 3 illustrate the framework of model.

One drawback of this approach is that when predicting
the heart beat point, the model might predict many frames
around the reference point (human labeled heart beat point)
as the heart beat points. This is because the model assumes
each frame is “independent” to its following frames. To
solve this problem, we cluster the consecutive predicted
heart beat points together, and treat the centroids of clus-
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ters as the predicted points.

Phased-
LSTM

Phased-
LSTM

S1

sigmoid

T

Phased-
LSTM

.

.

.

Figure 3. The framework of frame-wise classification model. S
and T are input and output respectively.

3.2. Sequence Translation

An alternative approach for heart beat detection problem
is sequence translation. We can view a monitoring data
sequence (e.g. ECG data) as source sequence, while heart
beat sequence as target sequence. The task is to translate
the source sequence into target sequence. The framework
of sequence-to-sequence model in the context of machine
translation first encodes the entire source sequence into a
vector of fixed number of dimensions, and then decodes the
vector into target sequence (Figure 2). However, for heart
beat detection problem, the proposed models are required
to detect heart beat in real-time.

Thus, we propose to dynamically train the model and trans-
late the sequence. Before we present our idea, it is worth
noticing that the source S = {S1, ..., SN} and target se-
quence T = {T1, ..., TN} in the problem of heart beat de-
tection have the same length, where N is the length of en-
tire sequence. Now, our idea is that we can first segment the
source and target sequences into sub-sequences of length n:

S(i) = {Si·n+1, ..., S(i+1)·n}

T (i) = {Ti·n+1, ..., T(i+1)·n}
Then instead of encoding the information of entire source
sequence, we only encode a sub-sequence S(i) of it. No-
tice that the initial hidden states and cell states of encoder
when encoding S(i) are the last output and last cell state of
encoder after encoding S(i−1). After encoding the infor-
mation of S(i) which has the length of n, we decode the

output of encoder into h
(i)
j (the sequence of outputs of de-

coder) which also has the length of n. Finally, sequence
h
(i)
j is transformed into T

(i)
j through a sigmoid unit. The

loss of the model is also the cross entropy between the pre-
dicted probability with the ground truth. The framework of
our model is illustrated in the Figure 4.
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Figure 4. Dynamic sequence to sequence model. S refers to the
source sequence, T refers to the target sequence, and h refers to
the output sequence of decoder.

This modification allows the model to generate the corre-
sponding heart beat sequence T (i) for sub-sequence S(i) in
nearly real time when n is sufficiently small. If we choose
n = 1, then the model is very similar to frame-wise clas-
sification model. If we choose n = N , then our model is
same as the sequence-to-sequence model used in machine
translation. It will be perfect if n is close to the real heart
beat rate. We will leave this problem as a future work and
in this paper we fix n as the sampling frequency.

This model also suffers from predicting many points
around real heart beat points as hear beat. We use the same
clustering method mentioned in previous section to tackle
with this problem.

4. Experiments
4.1. Experiment Settings

4.1.1. DIFFERENT MODALITIES

We evaluate proposed model from two perspectives: sin-
gle modality and multi-modality. For single modality, we
choose ECG data sequence, since it is the most common
and informative modality. We conduct experiments on two
of our frameworks with Phased-LSTM neurons and LSTM
neurons, LSTM based models are baselines for Phased-
LSTM models. For multi-modality experiments, we use
all of the available modalities in the dataset. Again, we use
both Phased-LSTM and LSTM as basic neurons. In ad-
dition, we compare our results with original sequence-to-
sequence model (without dynamic training and translation)
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to show the feasibility of sequence-to-sequence model. Be-
sides, we also compare our results with top teams in 15th
PyhsioNet challenge.

4.1.2. DETAILS OF MODELS

Firstly, in the experiments of single modality (ECG data):
for frame-wise classification model, the hidden layer con-
tains 100 neurons and the dimension for hidden vector is
10; for sequence-to-sequence model, no matter with or
without dynamic mechanism, we also use 100 neurons for
hidden layer, and the dimension of hidden vector is also 10.
In multi-modal experiments, we use same models (as we
used for ECG data) for each single modality. Then a fully
connected layer is used to combine the outputs of different
modalities together.

4.1.3. EVALUATION METRICS

In the following experiments, we adopt two metrics defined
by the challenge to evaluate the performance. These two
metrics are sensitivity (commonly known as recall) and
predictivity (commonly known as precision).

4.2. Dataset Description

We use the dataset provided by 15th PhysioNet challenge
(Moody et al., 2014). Currently, only training and aug-
mented training sets are publicly available.1 The train-
ing set contains 100 records, and we randomly choose
20 of them as development dataset and leave the rest as
the training set. The augmented training set contains 100
records from the original test dataset. Both training and
test datasets contain signals at most 10 minutes in length
(or occasionally shorter). The signals are multi-parameter
recordings of human adults, including patients with a wide
range of problems as well as healthy volunteers. Each sig-
nal record contains four to eight signals, the first of which is
always an ECG signal. The remaining signals could be any
of a variety of simultaneously recorded physiologic sig-
nals that might be useful for robust beat detection, such as
blood pressure (BP), arterial line (ART), pulmonary arte-
rial pressure (PAP), and respiration (Resp). The signals are
digitized at rates between 120 and 1000 Hz; in any given
record, however, all signals are sampled at the same, fixed
frequency. Figure 5 shows an illustration of the signals in
the training dataset:

4.3. Challenges and Preprocessing of the Dataset

4.3.1. ECG DATA SEQUENCE

We observe that there are significant differences between
the ECG sequence in the training set and test set. Most

1https://physionet.org/challenge/2014/

Figure 5. An illustration of electronic signals in the dataset (part
of #199 sample in the training set). ECG, BP, EEG and Resp are
four different signals it has. The blue dots are human labeled heart
beat points (reference points).

of ECG signals in the training set are of very high quality
(Figure 6). The differences are reflected on two perspec-
tives. On the one hand, some records in the test set has no
ECG signal, as shown in Figure 7. On the other hand, some
ECG signals in the test set are extremely noisy (Figure 8).
The curves of these signals are very difficult for human to
tell which points are the heart beats. Hence, when conduct-
ing experiments on single modality (ECG data), we remove
the records that don’t have ECG signals.

Figure 6. The ECG data is in good shape.

Figure 7. There is no signal in this ECG data.

Figure 8. Highly noise ECG data.
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4.3.2. DIFFERENCES OF MODALITIES

The modalities in the test set only have a little overlap with
the modalities in the training set. The most commonly
shared modality of the two dataset is ECG, as shown in
Table 1. In some extreme cases of test dataset, all modali-
ties of them never occur in the training set. This is a very
tricky problem for model based machine learning. Gener-
ally, it is impossible to train a model on one modality and
then test it on an unseen modality. When test models on the
test dataset, we only use the modalities that appear in the
training set.

Training Set Test Set
’ECG’, ’EMG’,
’EOG’,
’EOG(right)’,
’EEG(C4-A1)’,
’EEG(O2-A1)’,
’EEG(C3-O1)’,
’Resp(abdomen)’,
’Resp(abdominal)’,
’Resp(chest)’,
’Resp(nasal)’,
’Resp(sum)’,
’SO2’, ’SV’,
’BP’.

’Nosignal’, ’ART’, ’LeadAVF’,
’LeadII’, ’Resp(chest)’, ’EMG’,
’Pressure2’, ’CO2’, ’Pressure1’,
’ECG2’, ’EEG(C3-O1)’, ’ECGII’,
’ECG’, ’EOG(right)’, ’EEG(C4-
A1)’, ’Nothing’, ’LeadIII’,
’CO2off’, ’SV’, ’II’, ’CVP’,
’leadAVL’, ’leadII’, ’Pres-
sure’, ’EOG’, ’PAP2’, ’PAP’,
’BP’, ’Pressure4’, ’Resp(nasal)’,
’CVPoff’, ’CVP3’, ’Resp.Imp.’,
’Resp(abdominal)’, ’SO2’, ’PA-
Poff’, ’signal’, ’ART1’,’Pressure3’,
’NoPAP’, ’lead2’, ’ECGIII’

Table 1. Different modalities in training set and test set

4.3.3. DIFFERENT SAMPLING FREQUENCIES

All the signals in the training set are sampled at the same,
fixed frequency, which is 250Hz. However, signals in the
test dataset have been sampled at rates between 120 and
1000 Hz. Phased-LSTM is able to deal with this differ-
ences, while LSTM is unable to deal with it. It has been
shown by (Neil et al., 2016), that Phased-LSTM performs
significantly better than LSTM on these kind of data. For
fairness, we re-sample the data in the test dataset. The de-
tails of re-sampling process is as follows: if the sampling
frequency f is less than 250Hz, this means there are less
sample data points in one second. We then duplicate each
original data point for about ( 250f ) (round) times to make
up missing data. If the sampling frequency f is larger than
250Hz, this means there are more sample data points in
one second. We then have to re-sample from the original
data points. Concretely, We only select the data point with
index=i ∗ ( f

250 ). One thing to note here is that when we are
scaling the data points, we also need to move the labeled
heart beat position correspondingly.

4.4. Baseline Results

We list the baseline results (the results of top teams in 15th
PhysioNet challenge) here. Their results are based on the
multi-modality data. The first two approaches (Johannesen
et al., 2014) and (Vollmer, 2014) apply sliding windows
and filtering methods to deal with the problem. (Pimentel
et al., 2014) uses semi-HMM to deal with the problem.

Train (S/P) Test (S/P)
(Johannesen et al., 2014) 99.90/99.90 85.5/88.0

(Vollmer, 2014) 99.90/99.70 91.51/83.43
(Pimentel et al., 2014) N/A 89.7/83

Table 2. The performance of top teams in PhysioNet challenge. S
and P refers to Sensitivity and Predictivity respectively.

4.5. Experiments on Sequence Labeling

First, we run the Phased-LSTM and LSTM model on devel-
opment dataset. The results are in table 3. Figure 9 offers
a intuitive observation: the predicted heart beats match the
label data with a high precision and recall. Phased LSTM
and LSTM has similar sensitivity but Phased LSTM out-
performs LSTM on Predicitivity. It is also in line with our
expectation that Phased LSTM performs better than tradi-
tional RNNs on event-based data.

Then, we run the Phased-LSTM and LSTM model only
with ECG modality on the whole test set except those
records without ECG signal. As shown in the 1 & 2 rows
in table 3, both Phased-LSTM and LSTM don’t perform
well in the test dataset because of the reality of the data.
The predictivity is caused by a large amount of False pos-
itive. The first idea we come up with is to use clustering
to reduce the number of positive predictions. But after in-
vestigating the results, we find that it is not that case. An
typical type is Figure 8. From the figure, we can’t find a
clear match between the heat beats and the peaks in the
signal. The prediction for part of the ECG data for this pa-
tient is shown in Figure 10. We can see that the pattern of
the predicted signals quite resemble the pattern of the origi-
nal signals. However, from timetick around 600 to timetick
around 1400, we predicted all of them as heart beats, which
leads to many false positives.

We also explore the possible improvement with multi-
modality. We adopt the full set of modalities in the training
set to train the model and force the test data to align with
the training modalities by filling the mismatch with a mask
value. However, as we mentioned above, the modalities
in the test set don’t match well with the modalities in the
training set. So, we don’t expect multi-modal data will help
much. The experiment results show that multi-modal data
help to improve the sensitivity, while doesn’t help for pre-
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Dataset
Description

Cell
Type

Sensitivity
(%)

Predictivity
(%)

Dev set with 1
modality

Phased-
LSTM

97.57 94.96

Dev set with 1
modality

LSTM 97.59 88.68

Test set with 1
modality

Phased-
LSTM

93.29 25.83

Test set with 1
modality

LSTM 92.85 31.72

Dev set with multi-
ple modalities

Phased-
LSTM

99.69 21.46

Test set with multi-
ple modalities

Phased-
LSTM

99.08 21.67

Table 3. Comparison Between Different Models on Different
Datasets for Frame-Wise Classification

Figure 9. A good prediction matching the labeled data well. The
upper plot is our predicted result, and the bottom plot is the la-
beled heart beat position.

Figure 10. A bad prediction which yields high recall but low pre-
cision. The upper plot is our predicted result, and the bottom plot
is the labeled heart beat position.

dictivity.

4.6. Experiments on Sequence Translation

In this section, we show the experiment results using
the sequence translation methods proposed in Section 3.2.

We implemented two models here: the standard Seq2Seq
model and the modified Seq2Seq model. The standard
Seq2Seq encodes the whole ECG data and decodes to the
heart beat positions. As discussed above, this model is not
practical for real-time predictions, but can help to get an
idea on the performance of the Seq2Seq model. We then
show the results of the modified Seq2Seq model, which is
suitable for real-time heart beat detection.

The experiment results for the standard Seq2Seq model is
shown in Table 4. Similar to the experiments for sequence
labeling models, we measured the sensitivity and predic-
tivity on the dev set and test set, using the LSTM Cell and
Phased-LSTM Cell respectively. We can see that the met-
rics on the dev set is again quite good. Also, there is not
much difference between the LSTM and Phased-LSTM,
with Phased-LSTM has a bit higher predictivity and LSTM
has a bit higher sensitivity. However, when the model is
applied to the test set, it’s a bit surprised to see that both
the sensitivity and the predictivity drop dramatically.

We plotted the predicted heart beats and the labeled heart
beat for some instances to analyze the reason behind the
result. We found that the output of the Seq2Seq model is
generally in good patterns, which shows its ability to learn
the internal patterns of the ECG data. In good cases, the
predicted results match the labeled data quite well (Figure
11). However, in some cases, we found a time lag of the
predicted results to the labeled results, as is shown in Figure
12. The prediction is in the same pattern with the real hear
beats, but always some distance away. One potential reason
is that in the standard Seq2Seq model, we encode the entire
ECG data so that we learn the major pattern of the data
(e.g., a heart beat every 500ms). In this way, the model will
also predict the heart beat using the same major pattern,
ignoring any minor deviations. For example, it’s possible
that in a short period of time, the patient’s heart beats every
300ms. This pattern won’t be captured by the model, but
will influence the distribution of the real heart beat data.
If the model still predicts according to the major pattern,
there will be time lag in the prediction, and leads to both
bad recall and precision.

The modified model can relieve the problem mentioned
above, since it encodes the data of only a short period of
time, learn the patterns and decodes to output. It will then
capture all kinds of the patterns in the whole ECG data, and
predict the heart beat accordingly. We post the results for
this model in Table 5.

The results for the modified Seq2Seq model is shown in
Table 5.
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Dataset
Description

Cell
Type

Sensitivity
(%)

Predictivity
(%)

Dev set Phased-
LSTM

89.46 90.79

Dev set LSTM 90.44 87.31
Test set Phased-

LSTM
34.22 38.75

Test set LSTM 32.17 40.73
Dev set with
multiple
modalities

Phased-
LSTM

92.81 89.33

Test set with
multiple
modalities

Phased-
LSTM

43.32 50.21

Table 4. Comparison Between Different Models on Different
Datasets for Standard Seq2Seq Model

Figure 11. A good prediction matching the labeled data well with
the standard Seq2Seq model. The green spikes mark the heart
beats predicted, while the red spikes mark the labeled heart beat
position.

Figure 12. A bad prediction with the standard Seq2Seq model.
The green spikes mark the heart beats predicted, while the red
spikes mark the labeled heart beat position. The predicted heart
beats have a time lag to the ground truth.

5. Conclusion
In conclusion, we explore to look at the problem of heart
beat detection from the view of sequence labeling and se-

Dataset
Description

Cell
Type

Sensitivity
(%)

Predictivity
(%)

Dev set Phased-
LSTM

99.71 97.13

Dev set LSTM 99.62 96.55
Test set Phased-

LSTM
45.21 46.13

Test set LSTM 45.12 46.6
Dev set with
multiple
modalities

Phased-
LSTM

99.81 99.01

Test set with
multiple
modalities

Phased-
LSTM

50.33 56.23

Table 5. Comparison Between Different Models on Different
Datasets for Modified Seq2Seq Model

quence translation. We also explored the performance of
using a new RNN cell, Phased-LSTM to help capture the
patterns in ECG data. We deliver some experiment re-
sults on the models we tried. We think it will be better
to make use of different modalities to improve the perfor-
mance, which is left as our future work.
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