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Abstract
There is a great need for technologies that can
predict the mortality of patients in intensive care
units with both high accuracy and accountabil-
ity. We present joint end-to-end neural network
architectures that combine long short-term mem-
ory (LSTM) and a latent topic model to simul-
taneously train a classifier for mortality predic-
tion and learn latent topics indicative of mor-
tality from textual clinical notes. For topic in-
terpretability, the topic modeling layer has been
carefully designed as a single-layer network with
constraints inspired by LDA. Experiments on the
MIMIC-III dataset show that our models signif-
icantly outperform prior models that are based
on LDA topics in mortality prediction. How-
ever, we achieve limited success with our method
for interpreting topics from the trained models by
looking at the neural network weights.

1. Introduction
Many intensive care units (ICUs) suffer from a shortage of
nurses and doctors to care for patients in critical conditions.
As caregivers inevitably have to prioritize patients based on
the severity of their conditions, it is essential to leverage
patient data—collected from laboratory tests and clinical
notes—to help determine the most efficient ICU resource
allocation, e.g., by estimating patient mortality. The prob-
lem of mortality prediction involves several challenges. (1)
Mortality prediction requires dealing with time series data,
where a progressive analysis of the patients’ conditions is
preferred to cross-sectional analysis. While prior work has
conducted time series analysis of clinical notes (Jo & Rosé,
2015; Grnarova et al., 2016) and other measurements (Lip-
ton et al., 2015) for predicting mortality/diagnoses, there
is no standard methodology that yields high accuracy in
mortality prediction. (2) Algorithmic accountability is also
critical, as doctors cannot blindly accept the machine’s de-
cisions without knowing the rationales behind them. While
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neural network techniques have demonstrated promising
performance in prediction tasks (Grnarova et al., 2016; Lip-
ton et al., 2015), they often lack interpretability and suffer
from data sparsity (e.g., text vocabulary), especially in the
case of insufficient data.

We present two-layer joint models for mortality prediction
that combine the advantages of long short-term memory
(LSTM) and latent topic modeling. The LSTM layer cap-
tures long-range dependencies in sequential data, trained
for mortality prediction, and this information propagates
back to the topic modeling layer to learn topics that are pre-
dictive of mortality. We tried three different structures for
the topic modeling layer. The Encoder only structure has
a single-layer network that encodes a bag-of-words to a la-
tent document vector (topic distribution) using a trainable
word-topic weight matrix. The Encoder+Decoder structure
reconstructs the input vector from the document vector us-
ing a trainable topic-word weight matrix that aims to asso-
ciate each latent dimension with cohesive words. The En-
coder+Transcoder+Decoder structure has an intermediate
Transcoder layer that converts a document representation
to a sparse vector to mimic the sparsity constraints in LDA.

We evaluate our model on the MIMIC-III dataset. The pre-
diction accuracy of our models is compared to that of LDA-
based models. The learned topics are evaluated by exam-
ining top words associated with each latent dimension. We
also analyze the quality of learned topics in terms of their
similarity to LDA topics.

2. Background & Related Work
2.1. Clinical Outcome Prediction

The three main types of clinical data that have been used
for clinical outcome prediction are textual notes (Ghassemi
et al., 2014; Jo & Rosé, 2015; Grnarova et al., 2016), real-
valued measurements (e.g., laboratory/physiologic mea-
surements) (Lipton et al., 2015), and categorical measure-
ments (e.g., medical codes).

Textual clinical notes contain qualitative information that
cannot be found in numeric measurements, such as insights
from nurses and doctors, patients’ progress, and social con-
text (e.g., relationships with family and friends). Clinical
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notes were found to be helpful for long-term prediction, but
not as much for short-term prediction (Jo & Rosé, 2015).
Numeric measurements provide useful insight into the pa-
tients current health condition and health record.

Some of the main challenges in analyzing textual clin-
ical notes include unstructured text, incomplete sen-
tences/phrases, irregular use of language, abundant ab-
breviations, and rich medical jargons and their varia-
tions. These characteristics make it difficult to apply NLP
tools, such as part-of-speech taggers, dependency parsers,
named-entity recognition, etc. Topic modeling is one of the
techniques applied to tackle these problems. Ghassemi et
al. (2014) did a cross-sectional analysis of topics to predict
mortality, and later, Jo and Rosé (2015) did a time series
analysis using a joint model of HMM and LDA to find pa-
tients’ latent states and state transition patterns.

Both studies offer good interpretability due to the topics
learned from the notes, but the time series analysis with
Markovian assumption in the latter study achieved only a
minor improvement from the former cross-sectional analy-
sis. Our model can hopefully capture more complex time
dependencies in patient trajectories by using an LSTM. Re-
cently, a joint model of LSTM and convolutional neural
network (CNN) was used to predict mortality and found
phrases that are highly related to mortality (Grnarova et al.,
2016). This model outperforms the previous models, but
it is cross-sectional and has limited interpretability. Our
work may improve this model by introducing progression
analysis and interpretable topics.

For real-valued time series measurements, Chia and
Syed (2014) predicted mortality using the variability of
ECG signals for each patient measured by dynamic time
warping between every pair of consecutive heart beats.
Chia and Syed (2013) also used time series heart rate pat-
terns for mortality prediction, by binning each heart rate
(per minute), clustering subsequences of the bins, and
choosing clusters that are indicative of mortality and sur-
vival respectively. Recently, LSTM without feature engi-
neering was used for diagnosis prediction, where 13 types
of time series data (e.g., blood pressure, blood oxygen satu-
ration) were resampled to an hourly rate by taking the mean
value and then put into an LSTM for prediction (Lipton
et al., 2015). However, this study found evidence that even
simple statistics (e.g., max, min, mean) of the measure-
ments throughout the entire timeline of a patient achieve
almost comparable accuracy with a simple MLP.

2.2. Neural Network for Topic Modeling

Our goal is to design a neural network architecture, where
the upper layer is LSTM for predicting mortality, and the
lower layer feeds the LSTM at each time point with a la-
tent topic distribution learned from clinical notes. In this
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Figure 1. Framework of our mortality prediction task. We define
time points as 12 hour-long time segments of a patient’s timeline
from admission (e.g., time point 1 is the first 12 hours, time point
2 is the next 12 hours, etc.) We aggregate all clinical notes in
each time point into one document. At each time point t, we use
all documents up to t to predict the mortality of the patient at t.

section, we review prior work on modeling topic distribu-
tions using neural networks.

One of the simplest and earliest approaches is a restricted
Boltzmann machine (Srivastava et al., 2013; Hinton &
Salakhutdinov, 2009). The activation probability of each
hidden node is a sigmoid function on a weighted sum of the
frequency of individual words. Hence, a hidden node can
be interpreted as a latent topic that has a weight associated
with each word. Inspired by these models, a deep sigmoid
belief network has been proposed to learn topic distribu-
tions in a supervised way given a bag-of-words, and there
has been an attempt to interpret the hidden layers (Zhang
et al., 2016). In the same vein, we try to interpret topics
from the hidden layers of our joint models LSTM+E and
LSTM+E+D.

In a more recent model, TopicRNN, the topic distribution
of text is assumed to be drawn from a normal distribu-
tion whose mean and variance are computed from the in-
put BoW using a neural network (Dieng et al., 2016). This
topic distribution serves as the global semantics of the text,
and is fed into an RNN to help predict the following word.

Topics learned by the above models are based on unigrams,
but general n-grams may capture better topics for some
tasks, as shown in (Zhai & Boyd-Graber, 2013; Hardisty
et al., 2010; Wallach, 2006). A neural network model has
been proposed that learns the association between an ar-
bitrary n-gram and topics (Cao et al., 2015). This model,
however, takes individual n-grams of interest as separate
inputs, which makes training tricky. Recently, hierarchical
LSTM has been proposed (Chung et al., 2016). Our other
joint model, the hierarchical LSTM, exploits this architec-
ture and explores the idea of using a lower LSTM layer for
learning topic distributions from a sequence of words with-
out limiting itself to unigrams.
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Figure 2. Overview of the LSTM models. In all four models, the
input is a bag-of-words representation x(t) of the documents at
time point t, which is then converted to a latent document embed-
ding z(t) by either a pre-trained LDA model (as in LSTM+LDA)
or an Encoder (E) network. The LSTM layer inputs zt and
generates a predicted outcome ŷ(t). In LSTM+E+D, we add a
Decoder (D) that reconstructs bag-of-words data from z(t). In
LSTM+E+T+D, we add an intermediate Transcoder (T) that maps
the latent vector z(t) to a sparse topic vector ẑ(t), before the De-
coder (D) converts ẑ(t) to a bag-of-words vector x̂(t). The mod-
els are trained to minimize the prediction loss H(ŷ(t), y) and (for
LSTM+E(+T)+D) the reconstruction loss H(x̂(t), x(t)) over all
time points.

3. Methods
Our task is to build a classifier for predicting a patent’s mor-
tality given his/her clinical notes written so far (Figure 1).
Throughout the report, we define time points as 12 hour-
long time segments of a patient’s timeline from admission
(e.g., time point 1 is the first 12 hours, time point 2 is the
next 12 hours, etc.) (Ghassemi et al., 2014). For each pa-
tient, we aggregate all notes in each time point t into a bag-
of-words representation xt, normalized to sum to 1.

In this section, we present each of our models (see Fig. 2
for an overview). First, we present and compare two LDA
baseline models to analyze the benefit of using LSTM over
linear SVM for capturing long-term dependencies (Sec-
tion 3.1). Then we present three end-to-end models which
jointly learn topic models and mortality prediction (Sec-
tion 3.2).

3.1. LDA baselines

Here, we present two baseline methods that use LDA,
which has been used to infer topic distributions in textual
clinical notes. Note that these models are not a joint model
of topic modeling and mortality prediction, because they
use a separate LDA model to train topics.

SVM+LDA is the model proposed by Ghassemi et
al. (2014). This model builds a linear SVM for each time
point that predicts a patient’s mortality given the patient’s
clinical notes written up to that time point. To obtain the

input for the classifier for time point t, we first compute
the topic distribution of each note using LDA and then ag-
gregate all topic distributions up to time point t by simply
averaging the topic distribution vectors.

LSTM+LDA replaces the linear SVM with LSTM, allow-
ing us to evaluate the ability of LSTM to capture time de-
pendencies for mortality prediction. The LSTM inputs a
sequence of topic distribution vectors z = (z(1), . . . , z(T )),
generates a predicted outcome ŷ(t) at each time point t, and
is trained to minimize the prediction lossH(ŷ(t), y) over all
time points, where y ∈ {0, 1} is the mortality label of the
patient and H(p, q) is the weighted cross-entropy defined
as

H(p, q) = −CFNq log p− (1− q) log(1− p), (1)

where CFN is the cost for false negative classification.

Unlike the SVM baseline, LSTM+LDA does not build sep-
arate classifiers for different time points, and instead is
trained to predict the correct outcome at any time point.
By comparing these baselines, we try to establish whether
an LSTM can infer relevant semantic information based on
topic distributions. (As shown in Fig. 3, LSTM+LDA is
more robust than SVM+LDA in predicting the mortality of
patients who stay longer in the hospital.)

3.2. Joint Models

Next, we present three end-to-end models which jointly
learn topic modeling and mortality prediction.

The LSTM Encoder (LSTM+E) model replaces the pre-
trained LDA topic model in LSTM+LDA with an Encoder
(E) network. The Encoder is a single-layer neural network
that is expected to find latent topics. Due to the Encoder
structure, the Encoder weights θE are reminiscent of LDA
word-topic weights in that we can interpret the Encoder as
a graphical model that relates words in x(t) to the latent
topics in z(t) (see Section 5.2 for our analysis).

The Encoder of LSTM+E does not guarantee that cohesive
words fall into the same hidden node, which may make hid-
den nodes difficult to interpret. Hence, LSTM Encoder-
Decoder (LSTM+E+D) adds a Decoder (D), a single-layer
network with no biases that tries to reconstruct the original
bag-of-words data by minimizing the reconstruction loss
H(x̂(t), x(t)) across all time points. Our rationale behind
the Decoder is that the words with the highest weights for
each hidden node are likely to be generated together in the
same document through the Decoder, thus finding cohesive
topics like LDA topics. We can interpret topics from the
Decoder weights θD in the same way we do from the En-
coder weights.

One potential drawback of LSTM+E+D is that latent docu-
ment vectors z are tied to both the LSTM network and the
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Decoder, thereby being optimized neither for mortality nor
for topic interpretation. To relax this tie, LSTM Encoder-
Transcoder-Decoder (LSTM+E+T+D) adds an interme-
diate Transcoder (T) that maps the latent vector z(t) to a
sparse topic vector ẑ(t), before the Decoder (D) converts
ẑ(t) to a bag-of-words vector x̂(t).

Inspired by LDA’s sparsity constraints on the document’s
probability distribution over topics and the topic’s proba-
bility distribution over words, we impose L1 regulariza-
tions on the learned topic vector ẑ(t) and the Decoder’s
weights θD, respectively. Thus, our final loss function for
LSTM+E+T+D is

T∑
t=1

H(ŷ(t), y)︸ ︷︷ ︸
prediction

+λ1H(x̂(t), x(t))︸ ︷︷ ︸
reconstruction

+λ2‖ẑ(t)‖1

+λ3‖θD‖1
(2)

where λ1, λ2, λ3 are hyperparameters to control the weight
of each loss.

Unlike LSTM+LDA, which uses a pre-trained topic model
to generate topic vectors for documents at each time point,
these joint LSTM models are end-to-end in that they jointly
learn the topic models and the contexts between docu-
ments. As a result, they learn a better latent document
representation z(t) for mortality prediction and outperform
LSTM+LDA on all three mortality prediction tasks (see
Fig. 3).

4. Experiments
4.1. Evaluation Metrics

Following Ghassemi et al. (2014; 2016), we evaluate our
model on three mortality prediction tasks: in-hospital mor-
tality, 30-day post-discharge mortality, and 1-year post-
discharge mortality. These three tasks cover both short-
term and long-term mortality. We measure accuracy via the
Area Under ROC Curve (AUC) metric (Rakotomamonjy,
2004), which captures how well a trained classifier discrim-
inates between positive instances and negative instances.

4.2. Data and Preprocessing

We use the MIMIC-III dataset which contains data about
patients admitted to critical care units at a large tertiary
care hospital (Johnson et al., 2016). For data preparation,
we followed Ghassemi et al. (2014)’s work as closely
as we could, as their setting has been widely used (Jo &
Rosé, 2015; Grnarova et al., 2016). We also excluded
patients who are less than 18 years old; these patients
(mostly infants) show very different trajectories from adult
patients (Jo & Rosé, 2015). We used all textual clinical
notes except discharge summaries because they explicitly
mention the patient’s outcomes. We randomly split pa-

# patients 36,218 # unique words 83,176
Seq. len (median) 13 Seq. len (max) 1,145
Doc. len (median) 113 Doc. len (max) 2,507

Table 1. Data statistics for MIMIC-III after preprocessing. Here,
“Seq. len” refers to the last time point of a patient’s timeline from
admission, and “Doc. len” refers to the number of words in the
concatenation of the notes at a time point t.

tients into training, validation, and test sets with the ratio
of 6:2:2. Since the classes are severely skewed toward neg-
ative (i.e., survival), the negative instances in the training
set are downsampled such that negative instances consti-
tute no more than 70% of the training set. The validation
and test sets are not downsampled.

For preprocessing of the text, we first normalized some text
into categories to cluster meaningful text. We replace dei-
dentified information in text with the given category (e.g.,
“[** First Name 3 **]” → “##firstname##”). We also re-
place times and numbers with “##time##” and “#” using
regular expressions. Next, we tokenized the text with non-
alphanumeric letters. We removed stop words using the
Onix stop word list1.

To reduce the vocabulary size, we retained at most 500
words that have the highest tf-idf among all documents for
each patient in the training set, and only included these
words into the vocabulary. We excluded subjects from the
training set if the total length of the clinical notes is less
than 100 words. The statistics of the final data after prepro-
cessing are listed in Table 1.

For our LSTM models, we handle missing time points by
using zero vectors for documents x(t). Note that this setting
does not affect the prediction and reconstruction loss.

4.3. Models and Parameters

For the LDA baseline, the number of top-
ics is set to 50 (Ghassemi et al., 2014). The
cost C and the weight w for the positive class
(“died”) in libsvm are explored on the grid of
C = {2−5, 2−3, 2−1, 21, 23, 25, 27, 29, 211, 213, 215}
and w = {1, 3, 5, 7, 9} and tuned on the validation set. The
weight for the negative class (“survived”) is fixed to 1.

The network configuration of our models is summarized
in Table 2. The batch size is 10, the number of training
steps is 100,000, and the learning rate is 0.001. As in the
SVM, we explored different false negative costs (Eq. 1)
CFN = {20, 21, 22, 23} and chose the optimal value based
on the validation set.

1http://www.lextek.com/manuals/onix/
stopwords1.html

http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html
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LSTM+LDA LSTM+E LSTM+E+D LSTM+E+T+D

# nodes in the topic layer 50 50 50 50
# nodes in the LSTM hidden layer 128 128 128 128
LSTM activation Softmax Softmax Softmax Softmax
Encoder activation - ReLU ReLU ReLU
Transcoder activation - - - ReLU
Decoder activation - - Softmax Softmax

Table 2. Network configurations for each of our models.

For the loss function (Eq 2), we explored λ1 =
{10−2, 10−1, 100, 101} and λ2, λ3 ∈ {0, 1}. Ultimately,
we found that λ1 = 10−2, λ2 = 0, λ3 = 1 resulted in the
highest AUC score for mortality prediction on the valida-
tion set, and used these settings for our experiments.

5. Results
We evaluate our models on both mortality prediction (Sec-
tion 5.1) and the quality of learned topics (Sections 5.2
and 5.3).

5.1. Mortality Prediction Accuracy

In Fig. 3, we plot the AUC score of each model for each
time point on the three mortality prediction tasks. The
joint models LSTM+E(+T)(+D) outperform the LDA base-
lines on all three mortality prediction tasks. For example,
LSTM+E outperforms LSTM+LDA by about +4% (Hospi-
tal), +2% (30Days), +7% (1Year) on average.

The LSTM-based approaches show less accuracy drop over
time than the SVM+LDA baseline, notably for the in-
hospital prediction. One of the reasons for SVM+LDA’s
performance drop is having fewer training instances for
later time points, as patients who have died or been dis-
charged at a certain time point are excluded from the train-
ing set (Ghassemi et al., 2014). According to the in-
hospital prediction, LSTM seems to be able to relieve this
problem. We suspect that the way we define our cost
function—the average of losses at previous time points—
might have compensated for the data loss. Another rea-
son for performance drop is that it is more difficult to pre-
dict the destiny of patients who stay in an ICU for long.
Long-term time dependencies captured by LSTM might
have help make stable prediction.

We introduced the cost CFN for false negative classifica-
tion to compensate for the fewer number of positive in-
stances, but this cost had inconsistent effects. For exam-
ple, we found that a cost greater than 1 improved the ac-
curacy for in-hospital and 1-year post-discharge mortality
prediction, but decreased the accuracy for the 30-day post-
discharge prediction.

The latent document vectors learned by our joint models
have a better ability to separate documents by mortality
rate. This is demonstrated in Fig. 4, where we visualize
the latent document vectors z(t) for each model, and see
that the joint models, LSTM+E(+D), have documents with
the same mortality label clustered more closely.

5.2. Topic Interpretation

A popular method for qualitatively analyzing latent topics
is to examine the top words of each topic. We expected
each hidden node in the Encoder to represent a cohesive
topic that is indicative of mortality. We tried interpreting
the hidden nodes by examining the words that have the
highest weights for each hidden node. As shown in Table
3b, the top words consist largely of typos and infrequent
words and thus hardly represent an interpretable notion of
topics compared to LDA topics in Table 3a. We conclude
that (I) mortality is related with certain words individually
rather than as a group like an LDA topic, and (II) the En-
coder weights cannot find cohesive topics partly because
words in the same document are not encouraged to be tied
to the same hidden node.

We introduced the Decoder of LSTM+E+D to alleviate (II).
We tried interpreting topics from the Decoder weights in
the same way we did from the Encoder weights. As shown
in Table 3c, the top words consist of more frequent words
than do the top words from the Encoder weights. Yet, there
still appear many typos and infrequent words, and the top-
ics are quite difficult to interpret. This does not necessarily
mean that topics are not cohesive. Due to the limited time,
we could not further investigate the learned topics, which
consist of a lot of medical terms and jargons. We leave this
for future work.

The topics interpreted from the Decoder weights of
LSTM+E+T+D are shown in Table 3d. We expected that
the sparsity constraints for ẑ(t) and θD imposed on this
model would produce more interpretable, cohesive, LDA-
like topics, but the learned topics do not show signifi-
cant difference from those from LSTM+E+D. Moreover,
we found that L1 regularization on ẑ(t) caused the AUC
to fall, while L1 regularization on the Decoder weights
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Figure 3. Accuracy on predicting in-hospital mortality (left), 30-day post-discharge mortality (center), and 1-year post-discharge mor-
tality (right) at every time point. We use the Area Under ROC Curve (AUC) metric. The LSTM+E(+D) models outperform the LDA
baselines on all three mortality prediction tasks.
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Figure 4. We visualize how well the latent representations separate documents according to mortality label. Each dot corresponds to a
latent document embedding z(t), colored by in-hospital mortality label where pink indicates positive instances (“died”) and dark blue
indicates negative instances (“survived”). The joint models LSTM+E(+D) produce latent representations that better separate documents
corresponding to mortality rate: the pink dots are more closely clustered together in the “LSTM+E(+D) latent vectors” plots, whereas
the pink dots are more spread apart in the “LDA topic vectors” plot.

θD increased the AUC. However, these results might be
due to using a suboptimal setting for topic modeling. We
leave further experiments on finetuning λ1, λ2, λ3 in Eq.
(2) to balance the tradeoff between better mortality predic-
tion performance and better latent topic modeling as future
work.

Interpreting topics from single-layer encoder and decoder
turns out to be extremely difficult. The Encoder seems
to pick important words predictive of mortality, instead
of finding cohesive topics. The structure of the Decoder
is similar to probabilistic latent semantic indexing (PLSI),
which computes the probability of word w in document d
as follows:

p(w|d) =
∑
t

p(w|t)p(t|d),

where p(w|t) and p(t|d) correspond to the input vector and

the weights of the Decoder, respectively. We imposed spar-
sity on p(w|t) and p(t|d) in an attempt to make topics more
interpretable, but we could not attain satisfactory topics. In
order to make sure that the Decoder works as expected, we
may need to run PLSI on the data and compare the result
topics with those obtained from our models. The learned
topics may not be interpretable simply because documents
are noisy; each document is a concatenation of multiple
clinical notes in the same time point that may be of very
different types.

5.3. Topic Quality

We evaluate the quality of learned topics by analyzing the
t-SNE plots of the latent document vectors in Fig. 5. We
visualized the LDA topic vectors and the latent vectors of
LSTM+E(+D) with colors representing patients (Fig. 5).
We focused on the documents in the blue box in the left
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LSTM+E  latent  vectors LSTM+E+D  latent  vectorsLDA  topic  vectors

Figure 5. We visualize the topic clusterings produced by the latent vectors of each model. Each point represents to a document, and
each color corresponds to a different patient. (We colored the dots by patient id because documents belonging to the same patient are
more likely to have the same topics, and so it is slightly easier to visualize topic clusters.) Generally, we observed that the Autoencoder
model (LSTM+E+D) produces topic clusterings that are more similar to the LDA topic clusterings than the Encoder model (LSTM+E).
For example, consider the cluster of documents inside the box in the “LDA topic vectors” plot. We circle the corresponding documents
in the LSTM+E(+D) plots. Notice that in the LSTM+E+D plot, the documents are also clustered closely together, but in the LSTM+E
plot, these documents are more dispersed. We observed this general trend for many LDA topic clusters, and concluded that the Decoder
network indeed helps the model learn better topic distributions. We did not observe any significant difference in the quality of topic
clusters learned by LSTM+E+D vs. by LSTM+E+T+D, so we omit the plot for LSTM+E+T+D here.

pane and looked at whether these documents are clustered
closely in the LSTM+E (middle pane) and LSTM+E+D
(right pane) plots. LSTM+E+D seems to produce a more
similar clustering to LDA than LSTM+E does, and thus
LSTM+E+D may outperform LSTM+E with respect to the
first method. Note that we did not observe any signifi-
cant difference in the quality of topic clusters learned by
LSTM+E+D vs. by LSTM+E+T+D, so we omitted the plot
for LSTM+E+T+D.

6. Conclusion
We presented three joint models of LSTM and topic mod-
eling that combine the benefits of both (1) LSTMs, which
can capture time dependencies for mortality prediction, and
(2) topic modeling, which can interpret topics predictive of
mortality. Our models improved the accuracy of mortality
prediction significantly from the baseline LDA-based mod-
els and were able to learn latent document representations
indicative of mortality. We also proposed a method for in-
terpreting topics from our models based on the Encoder
and Decoder weights. However, the words with the highest
weights for each hidden node did not provide interpretable,
cohesive topics as LDA topics do. This may imply that
LDA-like topics are suboptimal as feature for mortality pre-
diction, and more indicative information is conveyed rather
by certain individual words. We tried to make the Decoder
work in a similar manner to PLSI and LDA by imposing
constraints, but it turned out to be extremely difficult to ob-
tain interpretable LDA-like topics from the Decoder. This
noise might come from our concatenating multiple clinical
notes of different types in the same time point.

Future work

To understand which words are indicative of mortality and
survival, we can investigate which words trigger each hid-
den node in the LSTM. To do this, we calculate the deriva-
tive of the value of each hidden node in the LSTM cell in
terms of each input word, while fixing the weights of the
whole network after they are trained. By training in this
way, our model may be able to generate a bag-of-words
vector that maximizes each hidden node in the LSTM.

We observed that most of the top words for each hidden
node (ranked by the Encoder or Decoder weights) are ty-
pos (e.g., “recomendations”, “evenign”) or rare words. To
make these top words more interpretable, we suggest pre-
processing the data in the following ways: (1) Remove the
n most frequent and infrequent words. (2) Use a spell-
checker to fix typos. Since electronic health records have
many medical jargons, we want to be careful and only re-
place 1-character typos (e.g., correct “cooeprative” to “co-
operative”).

In Section 5.3, we evaluated the quality of learned topics
by analyzing the t-SNE plots of the latent document vec-
tors. For future work, we suggest a method to quantitatively
evaluate the learned topics by comparing the clusters they
form to a gold standard. More specifically, for each latent
vector, we identify k nearest neighbors and compute the
overlap with gold standard neighbors of the vector. Since
no ground truth quality scores are available, we tried two
gold standards: LDA topics and patient identity. In the first
method, we identify the k nearest neighbors for each LDA
latent vector and compute the overlap with the k nearest
neighbors of the same document vector for LSTM+E and
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T0 #, pt, impaired, ##date##, activity, sit, status, balance, mobility, stand
T1 #, ##date##, ##time##, am, dl, mg, meq, weight, arterial, nutrition
T2 tube, #, placement, chest, reason, line, ##date##, tip, ##time##, left
T3 #, insulin, gtt, blood, dm, hr, diabetes, patient, continue, type
T4 chest, ##date##, reason, ap, #, portable, left, ##time##, examination, report

(a) Top 10 words with the highest weights in the LDA model

T0 barium, dsfx, diagonosis, darts, ndka, swallon, palplabe, cpapwith, ileoileo, laminar
T1 evenign, tranversing, #dex, bronchusplan, ecxema, degenerate, flunisolide, sangiunous, sternotony, interstitices
T2 thorcic, medisternal, proxtmal, merry, reslts, depressant, presacral, godchild, killed, q#am
T3 lb#, wenckebach, quaderant, aticoagulated, nonproducted, emg, en, hypotherm, faa, dalaudid
T4 diagnosing, gallstones, retroardiac, parieto, lymphoproliferative, isoview, pati, femoroacetabular, periampullary

(b) Top 10 words with the highest Encoder weights θE in LSTM+E

T0 tacromulius, kerly, parathroid, programming, coure, placeemrnt, toilteting, reveals, intervan, pheochromocytoma
T1 filmr, dap, nugauze, extubed, intracystic, plsn, replete, implements, intraparotid, wrote
T2 sunburn, infrahilar, peppermint, extenisve, #reisman, intraconal, overwhich, isoview, evevning, ischiorectal
T3 finesteride, helmut, rhabdomyo, hepatopulmonary, displ, comparison#, franc, doudoerm, posterioly, diminutive
T4 relan, interluminal, reinserted, peforation, reticulation, ooob, allohsct, cholangiograms, hemiparesus, contniued

(c) Top 10 words with the highest Decoder weights θD in LSTM+E+D

T0 recomendations, left, odorous, tachynea, #pcs, doxazosin, specifice, hydromyelic, message, spiration
T1 pharmacology, pancreati, cofirm, frn, eventially, wthdrawal, rslts, wean, famiily, rpb
T2 relaxation, baseclinical, titarted, sadk, lymphomatoid, bph, mahogany, atelelectasis, frontalis, dlr
T3 carcino, eea, orlsca, hospitization, captain, suringe, wellness, obstructed, agrestat, dilatation
T4 after#, syggestive, nutritions, leni, diruetics, diaphroetic, vase, breathsounds, insominia, perirectal

(d) Top 10 words with the highest Decoder weights θD in LSTM+E+T+D.

Table 3. Example topics T0, . . ., T4 and their top 10 words sorted by LDA weights (a) or the trained networks weights (b-d). The topics
were chosen randomly from LDA and from the joint models trained on in-hospital mortality. Limited interpretability is offered by these
top words, which include many typos (e.g., “evenign”, “placeemrnt”) and rare words or medical jargons (e.g., “tachynea”, “doxazosin”).

LSTM+E+D, respectively. Document representations sim-
ilar to LDA topics may be considered good in that they rep-
resent cohesive, interpretable topics, but setting the stan-
dard to LDA topics is not optimal, as our ultimate goal is to
find more indicative topics than LDA topics. In the second
method, we assume that each patient has consistent top-
ics, and for each latent vector, we compute the percentage
of the k nearest neighbor vectors that are from the same
patient. The assumption may not hold, however, if a pa-
tient’s symptoms and condition are diverse and change sig-
nificantly over time.

Since we interpret topics from the Decoder weights θD
in LSTM+E(+T)+D, we can use arbitrarily deep Encoder
and Transcoder networks to increase the complexity of our
model, which may allow the model to learn better hidden
representations for both topic modeling and mortality pre-
diction. However, keep in mind that a more complex net-
work requires more training data in order for the model to
saturate.
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