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1 Recap

1.1 Monte Carlo

Monte Carlo methods such as rejection sampling and importance sampling allow us to compute the expecta-
tion of functions of random variables. They can also be used to simply obtain samples from the underlying
distribution. In graphical models, they can be used to perform inference, even when we cannot compute the
marginal distribution or the partition function directly.

However, there are several limitations of Monte Carlo methods. One important issue is that the performance
of Monte Carlo methods relies heavily on having good proposal distributions, which are difficult to find
when the true distribution is complex and/or high-dimensional. For example, in rejection sampling and
importance sampling, the proposal distribution is fixed throughout the sampling procedure. This means
that if the proposal distribution does not capture the true distribution sufficiently well, the algorithm will
propose a lot of bad samples and the acceptance rate will be low.

1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) gets around this issue by having a proposal distribution conditioned
on the current sample. In Metropolis-Hastings, the acceptance probability of a proposal is the ratio of
importance weights and favors more “important” samples.

However, Metropolis-Hastings also has a problem of its own. Consider the two-dimensional toy example in
Figure 1, where P (x) denotes the true distribution and Q(x′ | x) denotes the symmetric proposal distribution.

Due to the symmetry of Q, the acceptance rate simply becomes A(x′, x) = min
{

1, P (x′)
P (x)

}
.
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(a) P (x)

x

(b) Q(x′ | x)

Figure 1: When Metropolis-Hastings can suffer.

Although the proposal distribution does not assume any correlation between the two dimensions, the (un-
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known) true distribution has a high correlation, as shown in Figure 1. Then, when the current sample is
at x1, where the contour of P is flat (i.e. gradient is small), the proposal distribution Q(x′ | x1) has a
relatively small variance, so it will explore the sample space more slowly – that is, it will display a random
walk behavior. Conversely, when the current sample is at x2, where the contour of P is steep (i.e. gradient
is large), the same proposal distribution Q(x′ | x2) will now have a relatively large variance, so that many
proposed samples will be rejected.

The two contrasting cases demonstrate that simply adjusting the variance of Q is not enough, because the
same variance can be small in certain regions and large in others. When the variance is too small, the next
sample is too close to the previous one. When the variance is too large, the next sample can more easily
reach a low-density region in P , so it is more easily rejected. Either case leads to a lower effective sample
size and slower convergence to the invariant distribution.

How do we get around this issue? One way is to make use of the gradient of P , as suggested above; this
leads to Hamiltonian Monte Carlo (Section 2). Another way is to approximate P directly, for example using
variational inference, and using the approximation as our proposal distribution (Section 3).

2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo, or Hybrid Monte Carlo, is a specialized Markov Chain Monte Carlo procedure
which unites traditional Markov Chain Monte Carlo with molecular dynamics. It was originally proposed
by [1], but [2] is widely credited with introducing it to the statistics and machine learning communities in
the context of performing inference on Bayesian neural networks.

For a more thorough explanation of HMC and its variants than is provided here, see the classic survey paper
[3], or the more recent[4].

2.1 Hamiltonian Dynamics

Before introducing HMC, it is necessary to provide some background on the molecular dynamics on which
it is based: Hamiltonian dynamics. Note that it is not essential that one grasps the motivating physics to
understand the components of the HMC algorithm. However, the basic physical concepts are useful in that
they provide intuition.

The basics of Hamiltonian dynamics are as follows. Consider the physical state of an object. Let q and p
denote the object’s position and momentum, respectively. Note that each of these variables has the same
dimension.

The Hamiltonian of the object is defined as

H(q, p) = U(q) +K(p)

where U is the potential energy and K is the kinetic energy. Hamiltonian dynamics describe the nature by
which the momentum and position change through time.

This movement is governed by the following system of differential equations called Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(1)

dpi
dt

= −∂H
∂qi

(2)
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Illustration of the intuition Consider a frictionless puck lying on a surface whose height. Here, consider
U(q) as proportional to the height of the surface at position q. Also, let p denote the momentum of the
puck. Let K(p) = p2/2. Figure 2 illustrates the movement of the puck according to Hamiltonian dynamics.

(a) The initial placement of the puck

(b) Simulation of the Hamiltonian movement of the
puck. The puck continues moving in the direction of
the green arrow until H(q, p) = U(q) and momentum
is 0.

(c) After reaching maximum U(q), the puck now re-
verses direction and continues until the same height
is reached in the other direction.

Figure 2: An illustration of the intuition of Hamiltonian Dynamics. The puck is shown in black. The surface
is shown in red and blue, with the blue showcasing an area where the surface is flat. The green represents
the movement of the puck.

For a concrete example for which Hamilton’s equations can be solved analytically, consider U(q) = q2/2.
Here, the solutions have the form q(t) = r cos(a+ t) and p(t) = −r sin(a+ t) for some a.

There are several important properties Hamiltonian dynamics which end up being useful in the context of
Hamiltonian Monte Carlo. First, it is reversible, meaning that if the momentum of the body is reversed,
it will retrace its previous movement. Also, the Hamiltonian is preserved: as the kinetic/potential energy
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increases the potential/kinetic energy decreases accordingly. That is,

dH

dt
=

d∑
i=1

[
dqi
dt

∂H

∂qi
+
dpi
dt

∂H

∂pi

]
=

d∑
i=1

[
∂H

∂pi

∂H

∂qi
+
∂H

∂qi

∂H

∂pi

]
= 0.

where d is the dimension of the space. This can be thought of as “conservation of energy”.

Finally, volume is preserved under the mapping by Hamiltonian dynamics (Louisville’s Theorem).

2.2 Numerically Simulating Hamiltonian Dynamics

In general, it is not possible to analytically solve Hamilton’s equations as we did for the simple case above.
Instead, it is common to discretize the simulation of the differential equations with some step size ε.

We briefly discuss two options here: Euler’s method (performs poorly) and the leapfrog method (performs
better).

Suppose that the momentum has the following expression (as is typical)

K(p) =

d∑
i=1

p2i
2mi

Euler’s method involves the following updates:

pi(t+ ε) = pi(t) + ε
dpi
dt

(t)

= pi(t)− ε
∂U

∂qi
(q(t))

qi(t+ ε) = qi(t) + ε
dqi
dt

(t)

= qi(t) + ε
pi(t)

mi

Unfortunately, Euler’s method performs poorly. The result often diverges, meaning that the approximation
error grows causing the Hamiltonian to no longer be preserved. Instead, the leapfrog method is used in
practice.

The leapfrog method deals with this issue by only making a ε/2 step in p first, using that to update q, and
then coming back to p for the remaining update. It consists of the following updates:

pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂qi
(q(t))

qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂qi
(q(t+ ε))

The leapfrog approach diverges far less quickly than Euler’s method. We now have the necessary tools to
describe how to formulate a MCMC strategy using Hamiltonian dynamics.
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2.3 MCMC using Hamiltonian dynamics

Hamiltonian Monte Carlo uses Hamiltonian dynamics to make proposals as part of an MCMC method.
To do so, auxiliary “momentum” variables are introduced to create an auxiliary probability distribution as
follows. Note that this auxiliary distribution admits the target distribution as a marginal.

Suppose that P (q) ∝ π(q)L(q|D) denotes our target density (the posterior of q given prior π and data D),
with q denoting our variables of interest. Define the auxiliary distribution

P (q, p) = P (q) exp(−K(p))

=
1

Z
exp (−U(q)/T ) exp(−K(p))

with

U(q) = − log [π(q)L(q|D)]

K(p) =

d∑
i=1

p2i
2mi

Note that the auxiliary momentum variables are assumed to be independent gaussians.

2.4 Sampling Algorithm

We want to sample from P (q, p). Note that because p is independent of q and has a tractable form (Gaussian)
it is simple to perform a Gibbs step on p to update it.

To update q, we use Metropolis-Hastings with a Hamiltonian proposal. We first propose new (q∗, p∗) using
Hamiltonian dynamics (enabled by discretization e.g. the leapfrog method). The MH ratio is just the ratio
between the probability density of the new and old points, because the proposal is symmetric (at least in
our case). That is:

A(q∗, p∗) =
P (q∗, p∗)Q(q, p | q∗, p∗)
P (q, p)Q(q∗, p∗ | q, p)

=
P (q∗, p∗)

P (q, p)
= exp (−H(q∗, p∗) +H(q, p))

Note that this step jointly samples both p and q.

The full sampling algorithm written in R code provided by [3] is duplicated on the following page. Note that
the leapfrog proposal consists of L leapfrog steps, and the momentum is negated at the end. This negation
is to make the proposal reversible. The result is the cancellation of the Q terms as shown above. Since the
Gaussian is symmetric, it does not affect the results of the algorithm and does not need to be performed in
practice.



6 17 : Optimization and Monte Carlo Methods

HMC = function (U, grad_U, epsilon, L, current_q)

{

q = current_q

p = rnorm(length(q),0,1) # independent standard normal variates

current_p = p

# Make a half step for momentum at the beginning

p = p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum

for (i in 1:L)

{

# Make a full step for the position

q = q + epsilon * p

# Make a full step for the momentum, except at end of trajectory

if (i!=L) p = p - epsilon * grad_U(q)

}

# Make a half step for momentum at the end.

p = p - epsilon * grad_U(q) / 2

# Negate momentum at end of trajectory to make the proposal symmetric

p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)

current_K = sum(current_p^2) / 2

proposed_U = U(q)

proposed_K = sum(p^2) / 2

# Accept or reject the state at end of trajectory, returning either

# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))

{

return (q) # accept

}

else

{

return (current_q) # reject

}

}

2.5 HMC is MCMC

The resultant HMC algorithm:

1. satisfies the detailed balance condition

2. can make far-off proposals with high acceptance rate

3. leaves the target distribution invariant

These properties all follow from the properties of Hamiltonian dynamics. Specifically, (1) follows from
reversibility, (2) follows from preservation of the Hamiltonian, and (3) follors from preservation of volume,
respectively.
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2.6 Limitations

HMC has some limitations. First, it only applies from continuous variables with differentiable densities. If
some of the variables are discrete or have non-differentiable densities, then we can use HMC moves on only
a subset of the variables.

In addition, tuning the step size ε and the number of steps L can be difficult. For more sophisticated
techniques that avoid this issue, see the discussion of the NUTS sampler in[4].

2.7 More on Discretization

Each step of the leapfrog method involves computing the gradient, which can be costly. For this reason, it
can be useful to avoid this step. Here, we briefly describe some approaches.

One way of trying to avoid repeatedly performing this computation is to use the Langevin dynamics version
of HMC, which amounts to the leapfrog approach with L = 1.

In practice, Langevin dynamics often allows one to skip the acceptance-checking step by ensuring that the
Hamiltonian does not change much, in which case updating p can be ignored completely as well. Since p
is updated through Gibbs and is not the variable we are targeting, there is no need to save the updated
momentums.

Stochastic Langevin dynamics involves Langevin dynamics with a stochastic gradient (only a subset of the
data is used). Here, if the an appropriate additional noise term is included in the updates, the correct
invariant distribution is targeted asymptotically.

3 Combining Variational Inference with MCMC

As we described earlier, the quality of the proposal distribution directly affects the convergence and mixing
properties of MCMC. An alternative to using HMC is to use variational inference to obtain a good proposal
distribution for Metropolis-Hastings. This method is referred to as variational MCMC [5].

3.1 Recap of Variational Inference

Assuming that data x came from a complex model p with latent variables z and parameters θ, variational
inference approximates p(z | x, θ) with a tractable variational distribution q(z | λ) with variational param-
eters λ. Jensen’s inequality provides the evidence lower bound (ELBO) to the logarithm of the marginal
likelihood:

log p(x | θ) ≥ Eq [log p(x, z | θ)]− Eq [log q(z | λ)]

When even evaluating p(x | θ) is intractable, we can further introduce another set of variational parameters
ξ to p. We can then obtain an estimate P est of the true posterior p(θ | x) such that

p(θ | x) ≥ P est(θ | x, λ, ξ)
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3.2 Variational MCMC

Now consider running the Metropolis-Hastings algorithm to sample from the posterior distribution p(θ | x).
We can define the proposal distribution to be

Q(θ′ | θ) = P est(θ′ | x, λ, ξ)

From our previous discussion, we can expect that the algorithm will work well if P est is sufficiently close to
p. However, this is rarely the case in high dimensions, because of correlations introduced by higher-order
moments that are not captured by simpler variational approximations such as mean-field distributions. Thus,
the algorithm still has low acceptance rates in high dimensions.

To resolve this issue, we can design the proposal in blocks of parameters such that the variational approxi-
mation models higher-order moments. This poses a trade-off between the block size and the quality of our
samples. Alternatively, we can use a mixture of random walk and variational proposals as our proposal dis-
tribution, while making sure that we can efficiently compute the acceptance ratio involving the mixture. In
experiments, it can be shown that these modifications can improve the mixing rate of the Metropolis-hastings
sampler [5].

3.3 Bridging the Gap

For large-scale problems, we can incorporate some of the recently introduced stochastic methods for varia-
tional inference [6, 7, 8, 9]. Using stochastic variational methods to estimate the proposal distribution P est

can lead to gradient-based Monte Carlo methods or Hamiltonian variational inference (HVI) [10], which
combines stochastic variational methods with Hamiltonian Monte Carlo.

4 Conclusions

Hamiltonian Monte Carlo, variational Markov Chain Monte Carlo, and their variants all attempt to choose
a good proposal distribution for a complex and high-dimensional distribution. A good proposal distribution
can improve convergence rates, mixing time, and acceptance rates, but most importantly, it allows the
sampler to yield uncorrelated samples within a reasonable amount of computations.
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