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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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 Representation of directed GM
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Notation
 Variable, value and index 

 Random variable

 Random vector

 Random matrix

 Parameters
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Example: The Dishonest Casino
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A casino has two dice:
 Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2
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Puzzles regarding the dishonest 
casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
 How likely is this sequence, given our model of how the casino 

works?
 This is the EVALUATION problem

 What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?
 This is the DECODING question

 How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?
 This is the LEARNING question
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Knowledge Engineering
 Picking variables

 Observed
 Hidden
 Discrete 
 Continuous 

 Picking structure
 CAUSAL 
 Generative
 Coupling 

 Picking Probabilities
 “Natural” 
 Zero probabilities
 Orders of magnitudes
 Relative values 
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Hidden Markov Model
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying 
source:

Phonemes

Speech signal

DNA sequence 

dice
genome function

sequence of rolls 
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Probability of a parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

 Marginal probability:

 Posterior probability:

 We will learn how to do this efficiently (polynomial time)
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Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Specification of a directed GM
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …

© Eric Xing @ CMU, 2005-2016 13



Local Structures & 
Independencies
 Common parent

 Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

 Cascade
 Knowing B decouples A and C

"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

 V-structure
 Knowing C couples A and B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

 The language is compact, the concepts are rich!

A CB

A

C

B

A

B

C
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A simple justification

A

B

C

© Eric Xing @ CMU, 2005-2016 15



I-maps
 Defn : Let P be a distribution over X. We define I(P) to be the 

set of independence assertions of the form (X  Y | Z) that 
hold in P (however how we set the parameter-values).

 Defn : Let K be any graph object associated with a set of 
independencies I(K). We say that K is an I-map for a set of 
independencies I, if I(K)  I.

 We now say that G is an I-map for P if G is an I-map for I(P), 
where we use I(G) as the set of independencies associated.
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Facts about I-map
 For G to be an I-map of P, it is necessary that G does not 

mislead us regarding independencies in P: 

any independence that G asserts must also hold in P. Conversely, P may have 
additional independencies that are not reflected in G

 Example:

P1

P2
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What is in I(G) ---
local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose 
nodes represent random variables X1, . . . ,Xn. 

local Markov assumptions

 Defn : 
Let PaXi denote the parents of Xi in G, and NonDescendantsXi denote the 
variables in the graph that are not descendants of Xi. Then G encodes the 
following set of local conditional independence assumptions Iℓ(G):

Iℓ(G): {Xi  NonDescendantsXi | PaXi :  i),

In other words, each node Xi is independent of its nondescendants given its 
parents.
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Defn: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:

© Eric Xing @ CMU, 2005-2016 19



Active trail
 Causal trail X → Z → Y : active if and 

only if Z is not observed.

 Evidential trail X ← Z ← Y : active if 
and only if Z is not observed.

 Common cause X ← Z → Y : active if 
and only if Z is not observed.

 Common effect X → Z ← Y : active if 
and only if either Z or one of Z’s 
descendants is observed

Definition : Let X, Y , Z be three sets of nodes in G. We say that X and Y
are d-separated given Z, denoted d-sepG(X;Y | Z), if there is no active trail 
between any node X  X and Y  Y given Z.
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What is in I(G) ---
Global Markov properties of BN
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete
(more details later)

 );(dsep:)(I YZXYZXG G
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Example: 
 Complete the I(G) of this 

graph:

x1

x2

x4

x3
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Toward quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to 
G,

Then D1≡D2.

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents





di

i i
XPP

:

)|()(
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XX
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Summary of BN semantics

 Defn : A Bayesian network is a pair (G, P) where P factorizes 
over G, and where P is specified as set of CPDs associated 
with G’s nodes.

 Conditional independencies imply factorization

 Factorization according to G implies the associated conditional independencies.

 Are there other independences that hold for every distribution P that factorizes 
over G?
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Soundness and completeness 
D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G)  I(P).

"Completeness":
"Claim": For any distribution P that factorizes over G, if (X  Y | Z) I(P) 
then d-sepG(X; Y | Z). 

Contrapositive of the completeness statement 

 "If X and Y are not d-separated given Z in G, then X and Y are dependent in all 
distributions P that factorize over G."

 Is this true?
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Distributional equivalence and I-
equivalence

 All independence in Id(G) will be captured in If(G), is the reverse 
true?

 Are "not-independence" from G all honored in Pf ?  
© Eric Xing @ CMU, 2005-2016 28



Distributional equivalence and I-
equivalence

 All independence in Id(G) will be captured in If(G), is the reverse 
true?

 Are "not-independence" from G all honored in Pf ?  
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Soundness and completeness
 Contrapositive of the completeness statement 

 "If X and Y are not d-separated given Z in G, then X and Y are dependent in all 
distributions P that factorize over G."

 Is this true?

 No. Even if a distribution factorizes over G, it can still contain 
additional independencies that are not reflected in the structure

 Example: graph A->B, for actually independent A and B 
(the independence can be captured by some subtle way 
of parameterization) 

 Thm: Let G be a BN graph. If X and Y are not d-separated given Z in 
G, then X and Y are dependent in some distribution P that factorizes 
over G.
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 Theorem : For almost all distributions P that factorize over 
G, i.e., for all distributions except for a set of "measure zero" 
in the space of CPD parameterizations, we have that I(P) = 
I(G)
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Uniqueness of BN
 Very different BN graphs can actually be equivalent, in that 

they encode precisely the same set of conditional 
independence assertions.

(X  Y | Z).
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I-equivalence
 Defn : Two BN graphs G1 and G2 over X are I-equivalent if I(G1) = 

I(G2). 

 The set of all graphs over X is partitioned into a set of mutually exclusive and 
exhaustive I-equivalence classes, which are the set of equivalence classes 
induced by the I-equivalence relation.

 Any distribution P that can be factorized over one of these graphs can be 
factorized over the other. 

 Furthermore, there is no intrinsic property of P that would allow us associate it 
with one graph rather than an equivalent one. 

 This observation has important implications with respect to our ability to 
determine the directionality of influence. 
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Detecting I-equivalence
 Defn : The skeleton of a Bayesian network graph G over V is an 

undirected graph over V that contains an edge {X, Y} for every edge 
(X, Y) in G.

 Thm : Let G1 and G2 be two graphs over V. If G1 and G2 have the 
same skeleton and the same set of v-structures then they are I-
equivalent.

 graph equivalence 
 Same trail
 But not necessarily active 
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Minimum I-MAP
 Complete graph is a (trivial) I-map for any distribution, yet it 

does not reveal any of the independence structure in the 
distribution.
 Meaning that the graph dependence is arbitrary, thus by careful parameterization 

an dependencies can be captured
 We want a graph that has the maximum possible I(G), yet still  I(P)

 Defn : A graph object G is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the removal of 
even a single edge from G renders it not an I-map.
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Minimum I-MAP is not unique
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Simple BNs: 
Conditionally Independent Observations

y1



Data

Model parameters

y2 yn-1 yn
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The “Plate” Micro

yi

i=1:n



Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
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Definition (of HMM)
 Observation space

Alphabetic set:
Euclidean space:

 Index set of hidden states

 Transition probabilities between any two states

or

 Start probabilities

 Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Probability of a parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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 Representation: what is the joint probability dist. on multiple 
variables?

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?

 Factored representation: the chain-rule

 This factorization is true for any distribution and any variable ordering
 Do we save any parameterization cost?

 If Xi's are independent: (P(Xi|·)= P(Xi))

),,,,,,,,(  87654321 XXXXXXXXP

Summary: 
Representing Multivariate Distribution
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Summary: take home messages
 Defn (3.2.5): A Bayesian network is a pair (G, P) where P 

factorizes over G, and where P is specified as set of local 
conditional probability dist. CPDs associated with G’s nodes.

 A BN capture “causality”, “generative schemes”, “asymmetric 
influences”, etc., between entities

 Local and global independence properties identifiable via d-
separation criteria (Bayes ball)

 Computing joint likelihood amounts multiplying CPDs 
 But computing marginal can be difficult
 Thus inference is in general hard

 Important special cases:
 Hidden Markov models
 Tree models
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A few myths about graphical 
models

 They require a localist semantics for the nodes

 They require a causal semantics for the edges 

 They are necessarily Bayesian 

 They are intractable
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