School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Directed GMs: Bayesian Networks

Reading: see class homepage
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Two types of GMs S

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

= P(Xp) P(Xy) P(X5| Xp) PCX,| Xp) P(Xs| X,)
P(Xel X3 X,) POX7| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
P(Xy, Xy, X3, Xy Xs, X, X7, Xg)
o
= 1/Z exp{E(X)+E(CX,)+E(X;, X)+E(X,, X)+E(X;, X)) s
+ E(Xq, X3, X)HE(X7, Xo)+E(Xg, X5, Xo)} . e
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e Representation of directed GM

\
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Notation

e Variable, value and index

Random variable

Random vector

Random matrix

Parameters
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Example: The Dishonest Casino :

A casino has two dice:

e Fair die
P(1)=P((2)=P(3)=P(5)=P(6) =1/6
e Loaded die
P(1)=P(2)=P(3)=P(5) =1/10
P(6)=1/2

Casino player switches back-&-forth
between fair and loaded die once every
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2
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Puzzles regarding the dishonest | 322
casino -

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e This is the EVALUATION problem

e \What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e This is the DECODING question

e How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
e This is the LEARNING question
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Knowledge Engineering

e Picking variables
e Observed
e Hidden
e Discrete
e Continuous

e Picking structure

e CAUSAL
e Generative
e Coupling
e Picking Probabilities
e “Natural”
e Zero probabilities

e Orders of magnitudes
e Relative values
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Hidden Markov Model

The underlying
source:

QS OR OO
genome function

dice

thoseauence: () () () .. (O

Phonemes
DNA sequence
sequence of rolls
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0000
T
Probability of a parse o
e Given a sequence x = Xj...... X1
and aparsey=y;, ...... . Y1 @ @ @ @
e To find how likely is the parse: @ @ @ @

(given our HMM and the sequence)

p(x,y) =p...... Xy Yo wvvee , Y1) (Joint probability)
=Py PG 1Y) PO YD PO Y2 o PO | Yry) POST | YD)
=Py POV YD) - PO Yy X PO YD) POG [Ys) oo POt | V)
=pVYy - , V) P(Xe.. .. Xp|Yis eee- , Y1)

T T
e Marginal probability: p(x)= Zy P(X,y) = Zyl Zyz...ZyN 7 [1a, , [Ty
e Posterior probability: 0(y | %) = p(x,y)/ p(x) t=2 t=1

e We will learn how to do this efficiently (polynomial time)
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Bayesian Network: -

e A BN is a directed graph whose nodes represent the random
variables and whose edges represent direct influence of one
variable on another.

e Itis a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way;

e |t offers a compact representation for a set of conditional
independence assumptions about a distribution;

e \We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by
nature using a distribution that depends only on its parents. In other
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem | ¢

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents™:
PX)=]]P(X1X,)
i=1.d
where X _ is the set of parents of X;, d is the number of nodes
(variables) in the graph.

P(Xy, Xy, X3, Xy, Xs, X, X7, Xg)

P(X6| X3’ X4) P(X7| XG) P(x8| x5’ X6)
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Specification of a directed GM

e There are two components to any GM:

e the qualitative specification
e the quantitative specification
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Qualitative Specification

e \Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Local Structures &
Independencies

e Common parent

e Fixing B decouples A and C @ CC O

"given the level of gene B, the levels of A and C are independent”

e (Cascade

e Knowing B decouples A and C CA_ DO CB_ > CC O

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!
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A simple justification

i
A > &
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I-maps | :

e Defn : Let P be a distribution over X. We define |(P) to be the
set of independence assertions of the form (X LY | Z) that
hold in P (however how we set the parameter-values).

e Defn : Let K be any graph object associated with a set of
independencies |(K). We say that K is an I-map for a set of
independencies |, if [(K) c |.

e \We now say that G is an I-map for P if G is an |I-map for I(P),
where we use |(G) as the set of independencies associated.
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Facts about I-map -

e For Gto be an I-map of P, it is necessary that G does not
mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have
additional independencies that are not reflected in G

e Example: X Y |PX.Y)
z’ y° 0.08
0 ol 0.32
gl 0 0.12
rl gl 0.48

@ X Y |P(X.Y)
a2V Y 0.4

Yp Ux—y Oy —x Y yl 0.3
xt g0 0.2

xt oyl 0.1

© Eric Xing @ CMU, 2005-2016 17



What is in I(G) --- cece
local Markov assumptions of BN o

A Bayesian network structure G is a directed acyclic graph whose
nodes represent random variables X, ... X..

\

local Markov assumptions

e Defn:

Let Pa,; denote the parents of X; in G, and NonDescendants,; denote the
variables in the graph that are not descendants of X;. Then G encodes the
following set of local conditional independence assumptions |/{G):

I{G): {X; L NonDescendants,; | Pa,, : V i),
In other words, each node X; is independent of its nondescendants given its

parents.
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Graph separation criterion +-

e D-separation criterion for Bayesian networks (D for Directed
edges):

Defn: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
X x{ y—
. Y
— z Y = z y

original graph ancestral moral ancestral

© Eric Xing @ CMU, 2005-2016 19



Active trail ot

e Causal trail X - Z — Y : active if and
only if Z is not observed.

e Evidential trail X — Z < Y : active if
and only if Z is not observed.

e Common cause X — Z — Y : active if
and only if Z is not observed.

e Common effect X - Z «— Y : active if
and only if either Z or one of Z's
descendants is observed

Definition : Let X, Y, Z be three sets of nodes in G. We say that X and Y
are d-separated given Z, denoted d-sep (X;Y | Z), if there is no active trail
between any node X e Xand Y € Y given Z.

© Eric Xing @ CMU, 2005-2016
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What is in |(G) --- i+
Global Markov properties of BN o

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball* algorithm illustrated bellow (and plus some boundary
conditions):

=  Defn: I(6)=all independence

properties that correspond to d-

@ ®
separation:
AR A
X_ Z X _z

1(G) = X LZ|Y :dseps (X;Z|Y)}

(a) (b)
O\v/Q Q\ « D-separation is sound and
; N (Y complete
y y (more details later)
(b)
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X e Complete the I(G) of this
4 graph:

X3

Scriber please fill in
the rest of this slide !

© Eric Xing @ CMU, 2005-2016
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Toward quantitative specification of 3
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e The Equivalence Theorem

For a graph G,
Let 9, denote the family of all distributions that satisfy 1(G),
Let 9, denote the family of all distributions that factor according to

G,
PX)=]]P(X;[X,)

i=1:d

Then 9,=9,.

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents
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Conditional probability tables
(CPTs)

a |0.75

al 10.25

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
cV 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 [0.5
d’ 07 |0.5
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Conditional probability density sece
func. (CPDs) os

P(a,b,c.d) =
A~N(u,, £,) B~N(u,, Z,) P(a)P(b)P(c|a,b)P(d|c)

‘ D~N(u,+C, 2,) 5 C
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Summary of BN semantics :

e Defn : A Bayesian network is a pair (G, P) where P factorizes
over G, and where P is specified as set of CPDs associated
with G’s nodes.

e Conditional independencies imply factorization
e Factorization according to G implies the associated conditional independencies.

e Are there other independences that hold for every distribution P that factorizes
over G?
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Soundness and completeness :

D-separation is sound and "complete” w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) < I(P).

"Completeness™:

"Claim": For any distribution P that factorizes over G, if ( X L Y | Z) € |(P)
then d-seps(X; Y | Z).

Contrapositive of the completeness statement

e '"lfXandY are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

e Is this true?
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Distributional equivalence and I- | 8322
equivalence g

e All independence in I (G) will be captured in I(G), is the reverse
true?

e Are "not-independence” from G all honored in P; ?
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Distributional equivalence and I- | 8322
equivalence ¢ s

e All independence in I (G) will be captured in I(G), is the reverse
true?

e Are "not-independence” from G all honored in P; ?
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Soundness and completeness :

e Contrapositive of the completeness statement

e '"lfXandY are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

e Is this true?

e No. Even if a distribution factorizes over G, it can still contain
additional independencies that are not reflected in the structure

e Example: graph A->B, for actually independent A and B A0 b
a” |04 0.6
al |04 0.6

(the independence can be captured by some subtle way
of parameterization)

e Thm: Let G be a BN graph. If X and Y are not d-separated given Z in
G, then X and Y are dependent in some distribution P that factorizes
over G.
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e Theorem : For almost all distributions P that factorize over
G, i.e., for all distributions except for a set of "measure zero"

in the space of CPD parameterizations, we have that I(P) =
I(G)

© Eric Xing @ CMU, 2005-2016
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Uniqueness of BN 4+

e Very different BN graphs can actually be equivalent, in that
they encode precisely the same set of conditional
Independence assertions.
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l-equivalence

e Defn : Two BN graphs G1 and G2 over X are [-equivalent if |(G1) =
1(G2).

e The set of all graphs over X is partitioned into a set of mutually exclusive and
exhaustive l-equivalence classes, which are the set of equivalence classes

induced by the I-equivalence relation.
€ Y)
N,

(d)

(a) (b)

e Any distribution P that can be factorized over one of these graphs can be
factorized over the other.

e Furthermore, there is no intrinsic property of P that would allow us associate it
with one graph rather than an equivalent one.

e This observation has important implications with respect to our ability to

determine the directionality of influence.
© Eric Xing @ CMU, 2005-2016
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Detecting l-equivalence .o

e Defn : The skeleton of a Bayesian network graph G over V is an
undirected graph over V that contains an edge {X, Y} for every edge
(X,Y)in G.

O 0
(b)
e Thm: Let G1 and G, be two graphs over V. If G; and 62 have the

same skeleton and the same set of v-structures then they are |-
equivalent.

e graph equivalence
e Same trail
e But not necessarily active

© Eric Xing @ CMU, 2005-2016 34



Minimum I-MAP oo

e Complete graph is a (trivial) I-map for any distribution, yet it
does not reveal any of the independence structure in the
distribution.

e Meaning that the graph dependence is arbitrary, thus by careful parameterization
an dependencies can be captured

e We want a graph that has the maximum possible I1(G), yet still c I(P)

e Defn : A graph object G is a minimal I-map for a set of
independencies | if it is an [-map for I, and if the removal of
even a single edge from G renders it not an I-map.
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Minimum I-MAP is not unique o°

(D; \\D (D\ v\

6 ” &
(L\ ( L\/

_ 4 N
(a) (b)

€«
4

pas]
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Simple BNs: T
Conditionally Independent Observations oo

Model parameters

®@O--DD o

© Eric Xing @ CMU, 2005-2016
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The “Plate” Micro oo

‘ Model parameters

Data = {y,,...y,,}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Hidden Markov Model: sece
from static to dynamic mixture models oo
Static mixture Dynamic mixture
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Definition (of HMM) o2
e Observation space @ @ @ @
Alphabetic set:  C={c,,c,,,¢, |

() (o) (& - &

Euclidean space:  R¢
e Index set of hidden states
1={2-- M}
e Transition probabilities between any two states
P(Yt' =1 Yti—1 =1)= a ;-
or  p(y, |y, =1 ~Multinomial(a, ,.a,,,...,a, , | Vi .
e Start probabilities
p(y;) ~ Multinomial(ﬂl,ﬂz,...,ﬂM )
e Emission probabilities associated with each state
p(x, |y! =1) ~ Multinomial(b, ;,b ,.....b ) Vi .
or in general:
p(x.lyi =D ~f(16)Viel
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0000
0000
o0 0
Probability of a parse o
e Given a sequence x = Xj...... Xt
and aparsey=y;, ...... , Y1 @ @ @ @
e To find how likely is the parse: Q @ @ @

(given our HMM and the sequence)

px,y) =pX...... Xy Yis veene , Y1) (Joint probability)
=Py PG 1Y) PO YD PO Y2 o PO | Yry) POST | YD)
=Py PO YD) - PO [ Y1) X PO YD) POG [Ys) <o POt | YD)
=pVYy - , Y1) P(X...... Xp| Vi onvee , Y1)
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Summary:
Representing Multivariate Distribution

e Representation: what is the joint probability dist. on multiple

variables?
P(X, X,, X5, X4, X5, X, X5, Xg,)
e How many state configurations in total? --- 28 A
e Are they all needed to be represented? 5]
e Do we get any scientific/medical insight?
. . CH]
e Factored representation: the chain-rule
P(Xlaxz’x3ax4’X5’X6’X7’X8)
= P(XI)P(XZ ‘ xl)P(XS ‘ xla XZ)P(X4 | Xla XstS)P(x5 ‘ xla XZ’ X3’ X4)P(X6 | Xla X29x3’ X4’X5)
P(x7 ‘ xl’x29x3’x43x5’X6)P(x8 ’ X19x2’x33x4’x5ﬂxé>x7)
e This factorization is true for any distribution and any variable ordering
e Do we save any parameterization cost?
e If Xi's are independent: (P(X|-)= P(X)))
P(Xy, X5, X3, X g, Xg, X, X5, X3) eWhat do we gain?
= P(X)P(X2)P(X3)P(X,)P(X5)P(X()P(X;)P(Xs) =H P(X}) eWhat do we lose?

© Eric Xing @ CMU, 2005-2016
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Summary: take home messages S

e Defn (3.2.5): A Bayesian network is a pair (G, P) where P
factorizes over G, and where P is specified as set of local
conditional probability dist. CPDs associated with G’s nodes.

Hh 13 Hh 13

e A BN capture “causality”, “generative schemes”, “asymmetric
influences’, etc., between entities

e Local and global independence properties identifiable via d-
separation criteria (Bayes ball)

e Computing joint likelihood amounts multiplying CPDs
e But computing marginal can be difficult
e Thus inference is in general hard

e |mportant special cases:
e Hidden Markov models
e Tree models

© Eric Xing @ CMU, 2005-2016
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A few myths about graphical i
models o

e They require a localist semantics for the nodes \/
e They require a causal semantics for the edges X
e [hey are necessarily Bayesian X

e They are intractable VL
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