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Reminders

* Midway Project Report
— Due March 23, 12:00 noon

* Course Survey #1

* Today: wrap up Topic Modeling



Outline

Motivation [ Applications

Background
— de Finetti Theorem
— Exchangeability
— Aglommerative and decimative properties of Dirichlet distribution

CRP and CRP Mixture Model
— Chinese Restaurant Process (CRP) definition
— Gibbs sampling for CRP-MM
— Expected number of clusters

DP and DP Mixture Model
— Ferguson definition of Dirichlet process (DP)
— Stick breaking construction of DP
— Uncollapsed blocked Gibbs sampler for DP-MM
— Truncated variational inference for DP-MM

DP Properties

Related Models
— Hierarchical Dirichlet process Mixture Models (HDP-MM)
— Infinite HMM
— Infinite PCFG



Parametric vs. Nonparametric

* Parametric models:
— Finite and fixed number of parameters
— Number of parameters is independent of the dataset

* Nonparametric models:

— Have parameters (“infinite dimensional”’ would be a
better name)

— Can be understood as having an infinite number of
parameters

— Can be understood as having a random number of
parameters

— Number of parameters can grow with the dataset

* Semiparametric models:

— Have a parametric component and a nonparametric
component



Parametric vs. Nonparametric

Frequentist Bayesian

Parametric Logistic regression, Conjugate analysis,
ANOVA, Fisher hierarchical models,
discrimenant analysis, conditional random
ARMA, etc. fields

Semiparametric Independent [Hybrids of the above

component analysis,  and below cells]
Cox model, nonmetric

MDS, etc.

Nonparametric Nearest neighbor, Gaussian processes,
kernel methods, Dirichlet processes,
boostrap, decision Pitman-Yor processes,

trees, etc. etc.



Parametric vs. Nonparametric

Application

Parametric

Nonparametric

function
approximation

polynomial regression

Gaussian processes

classification

logistic regression

Gaussian process

classifiers
clustering mixture model, k- Dirichlet process
means mixture model
time series hidden Markov model | infinite HMM

feature discovery

factor analysis, pPCA,
PMF

infinite latent factor
models




Table adapted from Jordan ICML 2005

Parametric vs. Nonparametric

e Def: a modelis a collection of distributions

{pg:gé@}

* parametric model: the parameter vector is
finite dimensional

® C RF

* nonpdrametric model: the parameters are
from a possibly infinite dimensional space,

O CF



Motivation #1

Model Selection

How many clustersin a
mixture model?

How many topics in
LDA?

How many non-
terminals in a PCFG?

How many objects,
parts, features?



Motivation #1

Model Selection

How many clustersin a

mixture model? U
How many topics in ‘.
LDA?

How many non- y -.,'-.: ’
terminals in a PCFG? 00,0, *

How many objects,
parts, features?



Motivation #1

Model Selection 1. Parametric
approaches:

cross-validation,
bootstrap, AlC,
BIC, DIC, MDL,
Laplace, bridge

How many clustersin a
mixture model?

How many topics in

LDA? sampling, etc.
2. Nonparametric
How many non- approach:
terminals in a PCFG? average of an
infinite set of
How many objects, models

parts, features?



Figure from Teh MLSS 2007

Motivation #2

Density Estimation

* Given data, estimate a probability density function that best explains it
* A nonparametric prior can be placed over an infinite set of distributions

Prior:
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Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: draws.
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Figure from Teh MLSS 2007

Motivation #2

Density Estimation

* Given data, estimate a probability density function that best explains it
* A nonparametric prior can be placed over an infinite set of distributions

Posterior:
0451

0.4+

0.35F

0.3r

0.25F

0.2

0.15-

0.1

0.05

-15 -10

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.
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Background

Suppose we have a random variable X drawn from some
distribution Py(X) and X ranges over a set S.

S is a countable set.

e Continuous distribution:
Py(X =x)=0forallz e S

e Discrete distribution: | ‘ ‘ ‘ | ‘

e Mixed distribution:
S can be partitioned into two disjoint sets D and C s.t.
1. A is countable and 0 < Pp(X € D) < 1
2. (X =z)=0forall x €C

i




Exchangability and

de Finetti’s Theorem
Exchangeability:
* Def #1: a joint probability distribution is
exchangeable if it is invariant to permutation

* Def #2: The possibly infinite sequence of random
variables (X,, X,, X, ...) is exchangeable if for any
finite permutation s of the indices (1, 2,...n):

P(X) Xy vy X)) = PXs1p Xip +oor Xsp)

Notes:
* i.i.d. and exchangeable are not the same!

* the latter says that if our data are reordered it
doesn’t matter



Slide from Jordan

Exchangability and (ML 2005
de Finetti’s Theorem

Theorem (De Finetti, 1935). If (zq,x2,...) are infinitely exchangeable,
then the joint probability p(xy,xs,...,xN) has a representation as a mixture:

N
p(iBl,iEz,...,LL'N) = / (Hp($z|9)> dP(0)

for some random variable 0.

e The theorem wouldn’t be true if we limited ourselves to parameters 6 ranging
over Euclidean vector spaces

e In particular, we need to allow 6 to range over measures, in which case P(#)
IS @ measure on measures

— the Dirichlet process is an example of a measure on measures...



Slide from Jordan

EXChangability and ICML 2005
de Finetti’s Theorem

e A plate is a “macro’ that allows subgraphs to be replicated:

0 X; 0

O—T@

e Note that this is a graphical representation of the De Finetti theorem

p(ajl,xg,...,xN):/p(H) (Hp(me)) do
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Chinese Restaurant Process

* Imagine a Chinese restaurant with an infinite number of tables

e Each customer enters and sits down at a table
— The first customer sits at the first unoccupied table

— Each subsequent customer chooses a table according to the
following probability distribution:

p(kth occupied table) o< n,
p(next unoccupied table) oca

where n, is the number of people sitting at the table &
P S
/ \
\ I LN ]
\ /
N -
2 / 3 2 a
S+ a S+ a S+ a

Co

+ a 8+ a



Chinese Restaurant Process

Properties:

* (CRP defines a distribution over clusterings (i.e. partitions) of the
indices /,...,n
— customer = index
— table = cluster
* Expected number of clusters given n customers (i.e.
observations) is O(a log(n))

— effect on clusters: popular tables tend to get more
crowded

* Behavior of CRP with a:
— As a goes to 0, the number of clusters goes to /
— As a goes to +oo, the number of clusters goes to n

* The CRP is an exchangeable process

* Wewritez, z,, ..., z, ~ CRP(a) to denote a sequence of cluster
indices drawn from a Chinese Restaurant Process



CRP Mixture Model

Draw n cluster indices from a CRP:
Zy Zg ooy 2, ~ CRP(at)

For each of the resulting K clusters:
where H is a base distribution

Draw n observations: / Customer i orders a dish x;
(observation) from a table-

*
Lg ™~ p(ajz ‘ ezz ) specific distribution over
dishes 6," (cluster parameters)

02 ® 0% o0
/ \
. ( ) o
\ /
N -

(color denotes different values of x,)
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CRP Mixture Model

Draw n cluster indices from a CRP:
Z;, Zy .., 2, ~ CRP(at)

For each of the resultlng K clusters:
0,'~H
where H is a base distribution

Draw n observations:

xi ~ p(x; | 07))

(color denotes different values of x,)
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CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors
* Alg. 1: (uncollapsed)

— Markov chain state: per-customer parameters 6,, ..., 0

— Fori=1, ..., n:Draw 60, ~p(6.| 0, x)

n

* Alg. 2: (uncollapsed)

All the thetas except 0,

— Markov chain state: per-customer cluster indices z,, ..

and per-cluster parameters 6, ..., 6,
— Fori=1, .., mDrawz,~p(z |z, x, 0°)
— Set K = number of clustersin z
— Fork=1, .., K:Draw 0" ~p(0," | {x,: z, = k})
* Alg. 3: (collapsed)

— Markov chain state: per-customer cluster indices z,, ..

— Fori=1, ..., n:Drawz,~p(z; | z., X)

. Z

. Z

n

n
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CRP Mixture Model

* Q: How can the Alg. 2 Gibbs samplers permit
an infinite set of clusters in finite space?

* A: Easy!
— We are only representing a finite number of

clusters at a time — those to which the data have
been assigned

— We can always bring back the parameters for
the “next unoccupied table” if we need them



Dirichlet Process

Ferguson Definition
* Parameters of a DP:
1. Base distribution, H, is a probability distribution over @
2. Strength parameter, & € R
* Wesay G ~DP(a, H)
if for any partition 4, UA,U...UAg =©
we have:

(G(A1),...,G(Ak)) ~ Dirichlet(aH (A1), ..., aH(Ak))

A partition of the space @

In English: the DP is a

distribution over A ~
probability measures s.t. A
marginals on finite As A
partitions are Dirichlet Ae

distributed



Whiteboard

* Stick-breaking construction of the DP



Properties of the DP

Base distribution is the ““mean” of the DP:
E|G(A)] = H(A) for any A C ©

. Strength parameter is like “inverse variance”

VIG(A)] = H(A)(1 - H(A))/(a+1)

. Samples from a DP are
(stick-breaking construction of G ~ DP(a, H)
makes this clear)
of G ~DP(a, H)
given samples 6,, ..., 6, from G is a DP

n Z?:l 59z‘ )

a+n n

Gl0y,...,0, ~DP (a+n,a;;%H+



Whiteboard

e Dirichlet Process Mixture Model
(stick-breaking version)



CRP-MM vs. DP-MM

For both the CRP and stick-breaking
constructions, if we marginalize out G, we

have the following predictive distribution:
1

H |
i (o)

(Blackwell-MacQueen Urn Scheme)

en_‘_l‘Hl,. ..,Hn g

The Chinese Restaurant Process Mixture
Model is just a different construction of the

Dirichlet Process Mixture Model where we
have marginalized out G




Slide from Eric Xing (2014)

Graphical Models for DPs

G, <> G,

G pe
0. v
X

N

The Polya urn construction The Stick-breaking construction
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model

initial iteration 2

iteration 5

-20

—40

Figure 2: The approximate predictive distribution given by variational inference at

different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model
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= |-&- CDP
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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Summary of DP and DP-MM

* DP has many different representations:
— Chinese Restaurant Process
— Stick-breaking construction
— Blackwell-MacQueen Urn Scheme

— etc.

* These representations give rise to a variety of
inference techniques for the DP-MM and related
models

— Gibbs sampler (CRP)

— Gibbs sampler (stick-breaking)

— Variational inference (stick-breaking)
— etc.



Related Models

e Hierarchical Dirichlet Process Mixture Model
(HDP-MM)

e [Infinite HMM

* Infinite PCFG



Slide from 10-708, 2015

HDP-MM

In LDA, we have M independent samples from a Dirichlet
distribution.

The weights are different, but the topics are fixed to be the
same.

If we replace the Dirichlet distributions with Dirichlet
processes, each atom of each Dirichlet process will pick a
topic independently of the other topics.

Because the base measure is continuous, we have zero
probability of picking the same topic twice.

If we want to pick the same topic twice, we need to use a
discrete base measure.

For example, if we chose the base measure to be

K
H = Z axds, then we would have LDA again.
k=1

We want there to be an infinite number of topics, so we want
an infinite, discrete base measure.

We want the location of the topics to be random, so we want
an infinite, discrete, random base measure.
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Figure from Teh MLSS 2007

HDP-MM

Hierarchical Dirichlet process: @_’

G()h/, H ~ DP(7> H)

Gj|o, Gy ~ DP(a, Gy) @_»@

0il G ~ G y
GO i=1..., J
| | .‘. I‘ |
Gl|. ‘.||| GZ'I"""
X . %,
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Figures from Liang et al. (2007)

HDP-PCFG (Infinite PCFG)

HDP-PCFG

B ~ GEM(«) [draw top-level symbol weights]
For each grammar symbol z € {1,2,... }:

dr ~ Dirichlet(aT) [draw rule type parameters]

$E ~ Dirichlet(a”) [draw emission parameters]

»Z ~ DP(a?,B87) [draw binary production parameters]
For each node 7 in the parse tree:

t; ~ Multinomial(¢;,) [choose rule type]

If t; = EMISSION:

Ty~ Multinomial(QSZEi) [emit terminal symbol]

If t; = BINARY-PRODUCTION:
(2L(i)> ZR(:)) ~ Multinomial(¢2)  [generate children symbols]

B ~ GEM(a) | 1.,

state

left child state

T afgn® | - - -
Be ||.|l el
i " L -
right child state
left child state
¢7 ~ DP(3B” R T

right child state

o7

.
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