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Reminders	
  

•  Midway	
  Project	
  Report	
  
– Due	
  March	
  23,	
  12:00	
  noon	
  

•  Course	
  Survey	
  #1	
  

•  Today:	
  wrap	
  up	
  Topic	
  Modeling	
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Outline	
  
•  Motivation	
  /	
  Applications	
  
•  Background	
  

–  de	
  Finetti	
  Theorem	
  
–  Exchangeability	
  
–  Aglommerative	
  and	
  decimative	
  properties	
  of	
  Dirichlet	
  distribution	
  

•  CRP	
  and	
  CRP	
  Mixture	
  Model	
  
–  Chinese	
  Restaurant	
  Process	
  (CRP)	
  definition	
  
–  Gibbs	
  sampling	
  for	
  CRP-­‐MM	
  
–  Expected	
  number	
  of	
  clusters	
  

•  DP	
  and	
  DP	
  Mixture	
  Model	
  
–  Ferguson	
  definition	
  of	
  Dirichlet	
  process	
  (DP)	
  
–  Stick	
  breaking	
  construction	
  of	
  DP	
  
–  Uncollapsed	
  blocked	
  Gibbs	
  sampler	
  for	
  DP-­‐MM	
  
–  Truncated	
  variational	
  inference	
  for	
  DP-­‐MM	
  

•  DP	
  Properties	
  
•  Related	
  Models	
  

–  Hierarchical	
  Dirichlet	
  process	
  Mixture	
  Models	
  (HDP-­‐MM)	
  
–  Infinite	
  HMM	
  
–  Infinite	
  PCFG	
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Parametric	
  vs.	
  Nonparametric	
  
•  Parametric	
  models:	
  
–  Finite	
  and	
  fixed	
  number	
  of	
  parameters	
  
–  Number	
  of	
  parameters	
  is	
  independent	
  of	
  the	
  dataset	
  

•  Nonparametric	
  models:	
  
–  Have	
  parameters	
  (“infinite	
  dimensional”	
  would	
  be	
  a	
  

better	
  name)	
  
–  Can	
  be	
  understood	
  as	
  having	
  an	
  infinite	
  number	
  of	
  

parameters	
  
–  Can	
  be	
  understood	
  as	
  having	
  a	
  random	
  number	
  of	
  

parameters	
  
–  Number	
  of	
  parameters	
  can	
  grow	
  with	
  the	
  dataset	
  

•  Semiparametric	
  models:	
  
–  Have	
  a	
  parametric	
  component	
  and	
  a	
  nonparametric	
  

component	
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Parametric	
  vs.	
  Nonparametric	
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Frequentist	
   Bayesian	
  

Parametric	
   ︎︎︎︎︎︎︎Logistic	
  regression,	
  
ANOVA,	
  Fisher	
  
discrimenant	
  analysis,	
  
ARMA,	
  etc.	
  

Conjugate	
  analysis,	
  
hierarchical	
  models,	
  
conditional	
  random	
  
fields	
  

Semiparametric	
   Independent	
  
component	
  analysis,	
  
Cox	
  model,	
  nonmetric	
  
MDS,	
  etc.	
  

[Hybrids	
  of	
  the	
  above	
  
and	
  below	
  cells]	
  

Nonparametric	
   Nearest	
  neighbor,	
  
kernel	
  methods,	
  
boostrap,	
  decision	
  
trees,	
  etc.	
  

Gaussian	
  processes,	
  
Dirichlet	
  processes,	
  
Pitman-­‐Yor	
  processes,	
  
etc.	
  

Table	
  adapted	
  from	
  Jordan	
  ICML	
  2005	
  



Parametric	
  vs.	
  Nonparametric	
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Application	
   Parametric	
   Nonparametric	
  

function	
  
approximation	
  

polynomial	
  regression	
   Gaussian	
  processes	
  

classification	
   logistic	
  regression	
   Gaussian	
  process	
  
classifiers	
  

clustering	
   mixture	
  model,	
  k-­‐
means	
  

Dirichlet	
  process	
  
mixture	
  model	
  

time	
  series	
   hidden	
  Markov	
  model	
   infinite	
  HMM	
  

feature	
  discovery	
   factor	
  analysis,	
  pPCA,	
  
PMF	
  

infinite	
  latent	
  factor	
  
models	
  

Table	
  adapted	
  from	
  Ghahramani	
  2015	
  



Parametric	
  vs.	
  Nonparametric	
  

•  Def:	
  a	
  model	
  is	
  a	
  collection	
  of	
  distributions	
  

•  parametric	
  model:	
  the	
  parameter	
  vector	
  is	
  
finite	
  dimensional	
  

•  nonparametric	
  model:	
  the	
  parameters	
  are	
  
from	
  a	
  possibly	
  infinite	
  dimensional	
  space,	
  F	
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Table	
  adapted	
  from	
  Jordan	
  ICML	
  2005	
  

{p✓ : ✓ 2 ⇥}

⇥ ⇢ Rk

⇥ ⇢ F



Motivation	
  #1	
  

•  For	
  clustering:	
  
How	
  many	
  clusters	
  in	
  a	
  
mixture	
  model?	
  

•  For	
  topic	
  modeling:	
  	
  
How	
  many	
  topics	
  in	
  
LDA?	
  

•  For	
  grammar	
  induction:	
  	
  
How	
  many	
  non-­‐
terminals	
  in	
  a	
  PCFG?	
  

•  For	
  visual	
  scene	
  analysis:	
  	
  
How	
  many	
  objects,	
  
parts,	
  features?	
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Model	
  Selection	
   1.  Parametric	
  
approaches:	
  
cross-­‐validation,	
  
bootstrap,	
  AIC,	
  
BIC,	
  DIC,	
  MDL,	
  
Laplace,	
  bridge	
  
sampling,	
  etc.	
  

2.  Nonparametric	
  
approach:	
  
average	
  of	
  an	
  
infinite	
  set	
  of	
  
models	
  



Motivation	
  #2	
  

•  Given	
  data,	
  estimate	
  a	
  probability	
  density	
  function	
  that	
  best	
  explains	
  it	
  
•  A	
  nonparametric	
  prior	
  can	
  be	
  placed	
  over	
  an	
  infinite	
  set	
  of	
  distributions	
  

11	
  

Density	
  Estimation	
  

university-logo

Density Estimation
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Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: draws.
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Figure	
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  2007	
  



Motivation	
  #2	
  

•  Given	
  data,	
  estimate	
  a	
  probability	
  density	
  function	
  that	
  best	
  explains	
  it	
  
•  A	
  nonparametric	
  prior	
  can	
  be	
  placed	
  over	
  an	
  infinite	
  set	
  of	
  distributions	
  

12	
  

Density	
  Estimation	
  

Figure	
  from	
  Teh	
  MLSS	
  2007	
  

university-logo

Density Estimation
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Background	
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Work Notes

Matt

March 20, 2016

Contents

Suppose we have a random variable X drawn from some

distribution P✓(X) and X ranges over a set S.

• Discrete distribution:

S is a countable set.

• Continuous distribution:

P✓(X = x) = 0 for all x 2 S

• Mixed distribution:

S can be partitioned into two disjoint sets D and C s.t.

1. A is countable and 0 < P✓(X 2 D) < 1
2. P✓(X = x) = 0 for all x 2 C

1



Exchangability	
  and	
  	
  
de	
  Finetti’s	
  Theorem	
  

Exchangeability:	
  
•  Def	
  #1:	
  a	
  joint	
  probability	
  distribution	
  is	
  

exchangeable	
  if	
  it	
  is	
  invariant	
  to	
  permutation	
  
•  Def	
  #2:	
  The	
  possibly	
  infinite	
  sequence	
  of	
  random	
  

variables	
  (X1, X2, X3, …) is	
  exchangeable	
  if	
  for	
  any	
  
finite	
  permutation	
  s	
  of	
  the	
  indices	
  (1, 2,…n):	
  
	
  	
  
P(X1, X2, …, Xn) = P(Xs(1), Xs(2), …, Xs(n))  

	
  
Notes:	
  	
  
•  i.i.d.	
  and	
  exchangeable	
  are	
  not	
  the	
  same!	
  
•  the	
  latter	
  says	
  that	
  if	
  our	
  data	
  are	
  reordered	
  it	
  

doesn’t	
  matter	
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Exchangability	
  and	
  	
  
de	
  Finetti’s	
  Theorem	
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Actually,	
  this	
  is	
  the	
  Hewitt-­‐Savage	
  generalization	
  of	
  the	
  de	
  Finetti	
  theorem.	
  	
  
The	
  original	
  version	
  was	
  given	
  for	
  the	
  Bernoulli	
  distribution	
  

Slide	
  from	
  Jordan	
  
ICML	
  2005	
  



Exchangability	
  and	
  	
  
de	
  Finetti’s	
  Theorem	
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Slide	
  from	
  Jordan	
  
ICML	
  2005	
  

xiθ

N

θ

xN
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Chinese	
  Restaurant	
  Process	
  
•  Imagine	
  a	
  Chinese	
  restaurant	
  with	
  an	
  infinite	
  number	
  of	
  tables	
  
•  Each	
  customer	
  enters	
  and	
  sits	
  down	
  at	
  a	
  table	
  

–  The	
  first	
  customer	
  sits	
  at	
  the	
  first	
  unoccupied	
  	
  table	
  
–  Each	
  subsequent	
  customer	
  chooses	
  a	
  table	
  according	
  to	
  the	
  

following	
  probability	
  distribution:	
  	
  
	
  
p(kth occupied table) ∝ nk 
p(next unoccupied table) ∝α 
	
  
where	
  nk is	
  the	
  number	
  of	
  people	
  sitting	
  at	
  the	
  table	
  k 

17	
  

…	
  

2 
8 + α 

1 
8 + α 

3 
8 + α 

2 
8 + α 

α 
8 + α 



Chinese	
  Restaurant	
  Process	
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Properties:	
  
•  CRP	
  defines	
  a	
  distribution	
  over	
  clusterings	
  (i.e.	
  partitions)	
  of	
  the	
  

indices	
  1,…,n 
–  customer	
  =	
  index	
  
–  table	
  =	
  cluster	
  

•  Expected	
  number	
  of	
  clusters	
  given	
  n	
  customers	
  (i.e.	
  
observations)	
  is	
  O(α log(n)) 
–  rich-­‐get-­‐richer	
  effect	
  on	
  clusters:	
  popular	
  tables	
  tend	
  to	
  get	
  more	
  

crowded	
  
•  Behavior	
  of	
  CRP	
  with	
  α:	
  

–  As	
  α	
  goes	
  to	
  0,	
  the	
  number	
  of	
  clusters	
  goes	
  to	
  1	
  
–  As	
  α	
  goes	
  to	
  +∞,	
  the	
  number	
  of	
  clusters	
  goes	
  to	
  n	
  

•  The	
  CRP	
  is	
  an	
  exchangeable	
  process	
  
•  We	
  write	
  z1, z2, …, zn ~ CRP(α)	
  to	
  denote	
  a	
  sequence	
  of	
  cluster	
  

indices	
  drawn	
  from	
  a	
  Chinese	
  Restaurant	
  Process	
  



CRP	
  Mixture	
  Model	
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•  Draw	
  n	
  cluster	
  indices	
  from	
  a	
  CRP:	
  
	
   	
  z1, z2, …, zn ~ CRP(α)	
  	
  

•  For	
  each	
  of	
  the	
  resulting	
  K	
  clusters:	
  
	
   	
  θk

*~ H 
  where	
  H is	
  a	
  base	
  distribution	
  

•  Draw	
  n	
  observations:	
  
	
  
	
   	
  	
  xi ⇠ p(xi | ✓⇤zi)

θ1
*	
   θ3

*	
  θ2
*	
   θ4

*	
   …	
  

(color	
  denotes	
  different	
  values	
  of	
  xi)	
  

Customer	
  i	
  orders	
  a	
  dish	
  xi	
  	
  
(observation)	
  from	
  a	
  table-­‐
specific	
  distribution	
  over	
  
dishes	
  θk

* (cluster	
  parameters)	
  



CRP	
  Mixture	
  Model	
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•  Draw	
  n	
  cluster	
  indices	
  from	
  a	
  CRP:	
  
	
   	
  z1, z2, …, zn ~ CRP(α)	
  	
  

•  For	
  each	
  of	
  the	
  resulting	
  K	
  clusters:	
  
	
   	
  θk

*~ H 
  where	
  H is	
  a	
  base	
  distribution	
  

•  Draw	
  n	
  observations:	
  
	
  
	
   	
  	
  

xi ⇠ p(xi | ✓⇤zi)

θ1
*	
   θ3

*	
  θ2
*	
   θ4

*	
   …	
  

(color	
  denotes	
  different	
  values	
  of	
  xi)	
  

•  The	
  Gibbs	
  sampler	
  is	
  easy	
  
thanks	
  to	
  exchangeability	
  

•  For	
  each	
  observation,	
  we	
  
remove	
  the	
  customer	
  /	
  dish	
  
from	
  the	
  restaurant	
  and	
  
resample	
  as	
  if	
  they	
  were	
  the	
  
last	
  to	
  enter	
  

•  If	
  we	
  collapse	
  out	
  the	
  
parameters,	
  the	
  Gibbs	
  sampler	
  
draws	
  from	
  the	
  conditionals:	
  
	
  
zi ~ p(zi | z-i, x) 



CRP	
  Mixture	
  Model	
  
Overview	
  of	
  3	
  Gibbs	
  Samplers	
  for	
  Conjugate	
  Priors	
  
•  Alg.	
  1:	
  (uncollapsed)	
  
– Markov	
  chain	
  state:	
  per-­‐customer	
  parameters	
  θ1, …, θn	
  
–  For	
  i = 1, …, n:	
  Draw	
  θi ~ p(θi | θ-i, x)	
  

•  Alg.	
  2:	
  (uncollapsed)	
  
– Markov	
  chain	
  state:	
  per-­‐customer	
  cluster	
  indices	
  z1, …, zn	
  

and	
  per-­‐cluster	
  parameters	
  θ1
*, …, θk

*	
  
–  For	
  i = 1, …, n:	
  Draw	
  zi ~ p(zi | z-i, x, θ*) 
–  Set	
  K =	
  number	
  of	
  clusters	
  in	
  z	
  
–  For	
  k = 1, …, K:	
  Draw	
  θk

* ~ p(θk
* | {xi : zi = k})	
  

•  Alg.	
  3:	
  (collapsed)	
  
– Markov	
  chain	
  state:	
  per-­‐customer	
  cluster	
  indices	
  z1, …, zn	
  	
  
–  For	
  i = 1, …, n:	
  Draw	
  zi ~ p(zi | z-i, x) 

21	
  

All	
  the	
  thetas	
  except	
  θi	
  



CRP	
  Mixture	
  Model	
  

•  Q:	
  How	
  can	
  the	
  Alg.	
  2	
  Gibbs	
  samplers	
  permit	
  
an	
  infinite	
  set	
  of	
  clusters	
  in	
  finite	
  space?	
  

•  A:	
  Easy!	
  	
  
– We	
  are	
  only	
  representing	
  a	
  finite	
  number	
  of	
  
clusters	
  at	
  a	
  time	
  –	
  those	
  to	
  which	
  the	
  data	
  have	
  
been	
  assigned	
  

– We	
  can	
  always	
  bring	
  back	
  the	
  parameters	
  for	
  
the	
  “next	
  unoccupied	
  table”	
  if	
  we	
  need	
  them	
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Dirichlet	
  Process	
  
Ferguson	
  Definition	
  
•  Parameters	
  of	
  a	
  DP:	
  

1.  Base	
  distribution,	
  H,	
  is	
  a	
  probability	
  distribution	
  over	
  Θ	
  	
  
2.  Strength	
  parameter,	
  	
  

•  We	
  say	
  G ~ DP(α, H) 
if	
  for	
  any	
  partition	
  
we	
  have:	
  
	
  

23	
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Dirichlet Processes
A Proper but Non-Constructive Definition

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A Dirichlet Process (DP) is a distribution over probability measures.

Denote G ⇠ DP if G is a DP-distributed random probability measure.

For any finite set of partitions A1[̇ . . . [̇AK = X, we require
(G(A1), . . . , G(AK )) to be Dirichlet distributed.

6

A

A1

A A
A

A

2

3

4

5

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 32 / 80

↵ 2 R

A1 [A2 [ . . . [AK = ⇥

(G(A1), . . . , G(AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK))

In	
  English:	
  the	
  DP	
  is	
  a	
  
distribution	
  over	
  
probability	
  measures	
  s.t.	
  
marginals	
  on	
  finite	
  
partitions	
  are	
  Dirichlet	
  
distributed	
  

A	
  partition	
  of	
  the	
  space	
  Θ	
  



Whiteboard	
  

•  Stick-­‐breaking	
  construction	
  of	
  the	
  DP	
  

24	
  



Properties	
  of	
  the	
  DP	
  
1.  Base	
  distribution	
  is	
  the	
  “mean”	
  of	
  the	
  DP:	
  

2.  Strength	
  parameter	
  is	
  like	
  “inverse	
  variance”	
  

3.  Samples	
  from	
  a	
  DP	
  are	
  discrete	
  distributions	
  	
  
	
  (stick-­‐breaking	
  construction	
  of	
  G ~ DP(α, H) 
   makes	
  this	
  clear)	
  

4.  Posterior	
  distribution	
  of	
  G ~ DP(α, H) 
given	
  samples	
  θ1, …, θn	
  from	
  G	
  is	
  a	
  DP	
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have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+nH + n
↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n . The weight

associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n , pick a new color (draw ✓n+1 ⇠ H), paint a
ball with that color and drop the ball into the urn, or, with probability n

↵+n ,

5

E[G(A)] = H(A) for any A ⇢ ⇥

V [G(A)] = H(A)(1�H(A))/(↵+ 1)



Whiteboard	
  

•  Dirichlet	
  Process	
  Mixture	
  Model	
  
(stick-­‐breaking	
  version)	
  

26	
  



CRP-­‐MM	
  vs.	
  DP-­‐MM	
  
For	
  both	
  the	
  CRP	
  and	
  stick-­‐breaking	
  
constructions,	
  if	
  we	
  marginalize	
  out	
  G,	
  we	
  
have	
  the	
  following	
  predictive	
  distribution:	
  
	
  
	
  
	
  
The	
  Chinese	
  Restaurant	
  Process	
  Mixture	
  
Model	
  is	
  just	
  a	
  different	
  construction	
  of	
  the	
  
Dirichlet	
  Process	
  Mixture	
  Model	
  where	
  we	
  
have	
  marginalized	
  out	
  G 
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have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+nH + n
↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n . The weight

associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n , pick a new color (draw ✓n+1 ⇠ H), paint a
ball with that color and drop the ball into the urn, or, with probability n

↵+n ,

5

(Blackwell-­‐MacQueen	
  Urn	
  Scheme)	
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Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.

5 Empirical comparison

Qualitatively, variational methods offer several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be used to assess convergence. In contrast, assessing convergence
of a Gibbs sampler—namely, determining when the Markov chain has reached its sta-
tionary distribution—is an active field of research. Theoretical bounds on the mixing
time are of little practical use, and there is no consensus on how to choose among the
several empirical methods developed for this purpose (Robert and Casella 2004).

But there are several potential disadvantages of variational methods as well. First,
the optimization procedure can fall prey to local maxima in the variational parameter
space. Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
gence of the procedure. Second, any given fixed variational representation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational representations that approach the posterior in the limit, but these methods
may again incur serious computational costs. Lacking a theory by which these issues can
be evaluated in the general setting of DP mixtures, we turn to experimental evaluation.

We studied the performance of the variational algorithm of Section 3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussians with fixed inverse
covariance matrix Λ (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate base distribution for the DP is Gaussian, with covariance given by Λ/λ2 (see
Equation 7).

Figure 2 provides an illustrative example of variational inference on a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the figure plots the data and presents the
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134 Variational inference for Dirichlet process mixtures

Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

predictive distribution given by the variational inference algorithm at a given iteration
(see Equation (23)). The truncation level was set to 20. As seen in the first panel, the
initialization of the variational parameters yields a largely flat distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
convergence, it has further refined those modes. Even though 20 mixture components
are represented in the variational distribution, the fitted approximate posterior only
uses five of them.

To compare the variational inference algorithm to the Gibbs sampling algorithms, we
conducted a systematic set of simulation experiments in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a first-order autoregressive process, chosen so that the components are highly
dependent (ρ = 0.9). The base distribution was a zero-mean Gaussian with covariance
appropriately scaled for comparison across dimensions. The scaling parameter α was
set equal to one.

In each case, we generated 100 data points from a DP mixture of Gaussians model
of the chosen dimensionality and generated 100 additional points as held-out data. In
testing on the held-out data, we treated each point as the 101st data point in the
collection and computed its conditional probability using each algorithm’s approximate
predictive distribution.



Summary	
  of	
  DP	
  and	
  DP-­‐MM	
  
•  DP	
  has	
  many	
  different	
  representations:	
  
–  Chinese	
  Restaurant	
  Process	
  
–  Stick-­‐breaking	
  construction	
  
–  Blackwell-­‐MacQueen	
  Urn	
  Scheme	
  
–  Limit	
  of	
  finite	
  mixtures	
  
–  etc.	
  

•  These	
  representations	
  give	
  rise	
  to	
  a	
  variety	
  of	
  
inference	
  techniques	
  for	
  the	
  DP-­‐MM	
  and	
  related	
  
models	
  
–  Gibbs	
  sampler	
  (CRP)	
  
–  Gibbs	
  sampler	
  (stick-­‐breaking)	
  
–  Variational	
  inference	
  (stick-­‐breaking)	
  
–  etc.	
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(HDP-­‐MM)	
  

•  Infinite	
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•  Infinite	
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Constructing a topic model with 
infinitely many topics

� LDA: Each distribution is associated with a distribution over K
topics.

� Problem: How to choose the number of topics?
� Solution: 

� Infinitely many topics!
� Replace the Dirichlet distribution over topics with a Dirichlet process!

� Problem: We want to make sure the topics are shared
between documents

47© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Sharing topics
� In LDA, we have M independent samples from a Dirichlet

distribution.
� The weights are different, but the topics are fixed to be the 

same.
� If we replace the Dirichlet distributions with Dirichlet

processes, each atom of each Dirichlet process will pick a 
topic independently of the other topics.

48© A. Dubey,S. Williamson, E. Xing @CMU,2014-15
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Sharing topics
� Because the base measure is continuous, we have zero 

probability of picking the same topic twice.
� If we want to pick the same topic twice, we need to use a 

discrete base measure.
� For example, if we chose the base measure to be

then we would have LDA again.

� We want there to be an infinite number of topics, so we want 
an infinite, discrete base measure.

� We want the location of the topics to be random, so we want 
an infinite, discrete, random base measure.

49© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Hierarchical Dirichlet Process 
(Teh et al, 2006)

� Solution: Sample the base measure from a Dirichlet process!

50© A. Dubey,S. Williamson, E. Xing @CMU,2014-15
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Hierarchical Dirichlet process:
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Sharing topics
� Because the base measure is continuous, we have zero 

probability of picking the same topic twice.
� If we want to pick the same topic twice, we need to use a 

discrete base measure.
� For example, if we chose the base measure to be

then we would have LDA again.

� We want there to be an infinite number of topics, so we want 
an infinite, discrete base measure.

� We want the location of the topics to be random, so we want 
an infinite, discrete, random base measure.

49© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Hierarchical Dirichlet Process 
(Teh et al, 2006)

� Solution: Sample the base measure from a Dirichlet process!

50© A. Dubey,S. Williamson, E. Xing @CMU,2014-15
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HDP-PCFG

� ⇠ GEM(↵) [draw top-level symbol weights]
For each grammar symbol z 2 {1, 2, . . . }:
��

T
z ⇠ Dirichlet(↵T ) [draw rule type parameters]

��

E
z ⇠ Dirichlet(↵E) [draw emission parameters]

��

B
z ⇠ DP(↵B

, ��T ) [draw binary production parameters]

For each node i in the parse tree:
�ti ⇠ Multinomial(�T

zi
) [choose rule type]

�If ti = EMISSION:
��xi ⇠ Multinomial(�E

zi
) [emit terminal symbol]

�If ti = BINARY-PRODUCTION:
��(zL(i), zR(i)) ⇠ Multinomial(�B

zi
) [generate children symbols]

�

�

B
z

�

T
z

�

E
z

z 1
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z2

x2

z3

x3

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types �

T
z , (2) an emission distribu-

tion �

E
z over terminal symbols, and (3) a binary pro-

duction distribution �

B
z over pairs of children gram-

mar symbols. Figure 2 describes the model in detail.
Figure 3 shows the generation of the binary pro-

duction distributions �

B
z . We draw �

B
z from a DP

centered on ��T , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

� ⇠ GEM(↵)

��T

�

B
z ⇠ DP(��T )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities �.
First, � is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
��T is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ��T (c).

centrated in the upper left, just like the top-level dis-
tribution ��T .

Note that we have replaced the general
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observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.
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must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
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Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
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