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For this section, we will extend the concept of traditional graphical models from modeling dependencies of
a distribution or minimizing the loss function on graphs to modeling constraints.

1 Genetic Basis of Diseases

A single nucleotide polymorphism, often abbreviated to SNP, is a variation in a single nucleotide that
occurs at a specific position in the genome1. Genetic Association Hypothesis testing aims at finding which
SNP’s are causal (or associated) vis-a-vis a hereditary disease. In other words, we hope to find out the
mapping between genotype and phenotype. Until now, most popular approaches for genetic and molecular
analysis of diseases are mainly based on classical statistical techniques, such as the linkage analysis of selected
markers; quantitative trait locus (QTL) mapping conducted over one phenotype and one marker genotype at
a time, which are then corrected for multiple hypothesis testing. Primitive data mining methods include the
clustering of gene expressions and the high-level descriptive analysis of molecular networks. Such approaches
yield crude, usually qualitative characterizations of the study subjects.

However, many complex disease syndromes, such as asthma, consist of a large number of highly related,
rather than independent, clinical or molecular phenotypes. This raises a new technical challenge in identifying
genetic variations associated simultaneously with correlated traits.

In this lecture, we will see several methods to analyze the multi-correspondence mapping between multiple
SNP’s and (multiple) symptoms phenotypes.

2 Basics

2.1 Sparse Learning

Assume we now have a linear model,

y = Xβ + ε (1)

where X ∈ RN×J is the input matrix, y ∈ RN×1 is the output matrix, ε ∼ N (0, σ2IN×N ) is an error term
of length N with zero mean and a constant variance.

Then the lasso can be formulated as:

arg min f(β) =
1

2
‖y −Xβ‖22 + λ‖β‖1 (2)

1https://en.wikipedia.org/wiki/Single-nucleotide polymorphism
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where ‖β‖1 =
∑J
j=1 |βj | is defined to be the sum of all the absolute values of elements in β.

Figure 1 provides a geometric view of lasso.

Figure 1 Geometric view of lasso. left : `1 regularization (lasso); right : `2 regularization (ridge regression).
Image taken from [Hastie et al., 2009].

2.2 Multi-Task Learning

The basic linear model for multi-task regression can be written as:

yk = Xβk + εk,∀k = 1, 2, ...,K (3)

where X = [x1, ...,xJ ] ∈ RN×J denotes the input matrix, Y = [y1, ...,yK ] ∈ RN×K denotes the output
matrix, βk = [β1k, ..., βJk] ∈ RJ is a regression parameter term of length J for the k-th output, and εk is an
error term of length N with zero mean and a constant variance.

Denote B as a combination of all βk, which is

B = (β1, ...,βK) =


β11 β12 ... β1K
β21 β22 ... β2K

...
...

. . .
...

βJ1 βJ2 ... βJK

 (4)

We can use lasso to solve the equation 3, which is to solve the following optimization problem:

B̂lasso = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
k

|βjk| (5)

where λ is a tuning parameter that controls the level of sparsity. A larger λ would lead to a sparser solution.

In multi-task learning, the goal is to select input variables that are relevant to at least one task. Thus,
an `1/`2 penalty has been proposed. Here `2 penalty comes from taking the `2 norm of the regression
coefficients βj for all outputs for each input j, and `1 penalty comes from taking sum of the above J `2
norms, which could encourage sparsity across input variables. The `1/`2 penalized multi-task regression is
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defined as follows:

B̂`1/`2 = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

‖βj‖2 (6)

Here `1 part enforces sparsity, and `2 part combines information across tasks. As all of the elements of βj

would take non-zero values if the j-th input is selected, the estimation B̂`1/`2 is sparse only across inputs
but not across outputs.

2.3 Structure Association

Specific to the genetic basis of diseases example, we can formulate it as a regression problem. That is,
given multivariate input X (the SNPs) and multivariate output Y (the phenotypes), we hope to identify the
association B between X and Y. This matrix B encodes the structure and strength of the association, e.g.
the parameter βjk represents the association strength between SNP j and trait k.

Here the output covariates Y can be a graph connecting the phenotypes, a tree structure connecting genes
etc. We will mainly consider three types of structure association.

• Association to a graph-structured phenome: Graph-guided fused lasso [Kim and Xing, 2009]

• Association to a tree-structured phenome: Tree-guided group lasso [Kim and Xing, 2010]

• Association between a subnetwork of genome and a subnetwork of phenome: Two-graph guided multi-
task lasso [Chen et al., 2012]

3 Structure Association I: Graph-guided Fused lasso

3.1 Motivation

To capture correlated genome associations to a Quantitative Trait Network (QTN), we employ a multivariate
linear regression model as the basic model for trait responses given inputs of genome variations such as SNPs,
with the addition of a sparsity-biasing regularizer to encourage selection of truly relevant SNPs in the presence
of many irrelevant ones. In order to estimate the association strengths jointly for multiple correlated traits
while maintaining sparsity, we introduce another penalty term called graph-guided fusion penalty into the
lasso framework.

This novel penalty makes use of the complex correlation pattern among the traits represented as a QTN,
and encourages the traits which appear highly correlated in the QTN to be influenced by a common set of
genetic markers. Thus, the GFlasso estimate of the regression coefficients reveals joint associations of each
SNP with the correlated traits in the entire subnetwork as well as associations with each individual trait.

Figure 2 provides a visualization about two different choices of the fusion scheme, which leads to two variants
of GFlasso: Graph-constrained Fused lasso (GcFlasso) and Graph-weighted Fused lasso (GwFlasso) .



4 25 : Graphical induced structured input/output models

Figure 2 Illustrations for association analysis with multiple quantitative traits using various regression
methods. left : original lasso; middle: Graph-constrained Fused lasso (GcFlasso); right : Graph-weighted
Fused lasso (GwFlasso). Image taken from [Kim and Xing, 2009].

3.2 Model I: Graph-constrained Fused lasso

As shown in the middle subfigure of Figure 2, GcFlasso model considers the graph structure without edge-
weights. Formally, GcFlasso can be formulated as:

B̂GC = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
k

∑
j

|βjk|︸ ︷︷ ︸
lasso penalty

+γ
∑

(m,l)∈E

∑
j

|βjm − sign(rml)βjl|︸ ︷︷ ︸
Graph-constrained fusion penalty

(7)

where E is the set of edges. Here the last term (which we refer to as a fusion penalty or a total variation
cost) encourages (but does not strictly enforce) βjm and sign(rml)βjl to take the same value by shrinking
the difference between them toward zero. γ is a tuning parameter and a larger value for γ leads to a greater
fusion effect, or in other words, a sparser result.

3.3 Model II: Graph-weighted Fused lasso

As shown in the right subfigure of Figure 2, GwFlasso model not only considers the graph structure, but
also considers the edge weights. Formally, GwFlasso can be formulated as:

B̂GW = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
k

∑
j

|βjk|︸ ︷︷ ︸
lasso penalty

+γ
∑

(m,l)∈E

f(rml)
∑
j

|βjm − sign(rml)βjl|︸ ︷︷ ︸
Graph-weighted fusion penalty

(8)

The GwFlasso method weights each term in the fusion penalty in equation 8 by the amount of correlation
between the two traits being fused, so that the amount of correlation controls the amount of fusion for each
edge. More generally, GwFlasso weights each term in the fusion penalty with a monotonically increasing
function of the absolute values of correlations, and finds an estimate of the regression coefficients.
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3.4 Optimization Problem

The optimization problem in equation 7 and equation 8 are convex and thus can be formulated as a quadratic
programming problem. There are several existing tools for solving the quadratic programming problem. But
there are some issues:

• These approaches do not scale in terms of computation time to a large problem involving hundreds or
thousands of traits, as is the case in a typical multiple-trait association study;

• Difficulty arises in directly optimizing equation 7 and equation 8, as they are non-smooth function of
the `1 norm.

Here, take GwFlasso as an example, we may reformulate it into an equivalent form that only involves smooth
functions, which is:

min
βk,djk,djml

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
jk

β2
jk

djk
+ γ

∑
(m,l)∈E

f(rml)
2
∑
j

(βjm − sign(rml)βjl)
2

djml

subject to
∑
j,k

djk = 1

∑
(m,l)∈E

∑
j

djml = 1

djk ≥ 0 ∀j, k
djml ≥ 0 ∀j, (m, l) ∈ E

(9)

We can solve the above problem by coordinate-descent algorithm, that is we iteratively update βk, djk and
djml, until there is little improvement in the value of the objective function. By taking derivatives with
respect to a specific variable and set it to be zero while keeping other variables fixed, we could get the
following update rules:

βjk =

∑
i xij

(
yjk −

∑
j′ 6=j xij′βj′k

)
+ γ

(∑
(k,l)∈E

f(rkl)
2sign(rkl)βjl

djkl
+
∑

(m,k)∈E
f(rmk)

2sign(rmk)βjm

djmk

)
∑
i x

2
ij + λ

djk
+ γ

∑
(k,l)∈E

f(rkl)2

djkl
+ γ

∑
(m,k)∈E

f(rmk)2

djmk

(10)

djk =
|βjk|∑
j′,a |βj′a|

(11)

djml =
f(rml)|βjm − sign(rmlβjl)|∑

(a,b)∈E
∑
j′ f(rab)|βj′a − sign(rab)βj′b|

(12)

4 Structure Association II: Tree-guided Group lasso

4.1 Motivation

In a univariate-output regression setting, sparse regression methods that extend lasso have been proposed
to allow the recovered relevant inputs to reflect the underlying structural information among the inputs.
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Group lasso achieved this by applying an `1 norm of the lasso penalty over groups of inputs, while using an
`2 norm for the input variables within each group. This `1/`2 norm for group lasso has been extended to a
more general setting to encode prior knowledge on various sparsity patterns, where the key idea is to allow
the groups to have an overlap.

However, the overlapping groups in their regularization methods can cause an imbalance among different
outputs, because the regression coefficients for an output that appears in a large number of groups are more
heavily penalized than for other outputs with memberships to fewer groups. Thus, a tree-guided lasso for
multi-task regression with structured sparsity has been proposed.

Considering tree-guided lasso has several advantages, such as:

• A tree structure would naturally represent a hierarchical structure;

• Compared to a graph with O(|V |2) edges, a tree has only O(|V |) edges, which makes it scalable to a
very large number of phenotypes.

4.2 Examples of Constructing Penalties with Tree Structure

The `1-penalized regression assumes that all outputs in the problem share the common set of relevant input
variables. But that is not always the case in practice. Here we consider a simple case of two genes. As shown
in Figure 3, low height from nodes to their parents leads to a tight correlation and we need to select them
jointly, while high height leads to a weak correlation and we need to select them separately.

Figure 3 Two genes example for tree-structured penalty construction.

Based on the above intuition, we can revise the original `1 penalty to fit this tree structure. One possible
way to formulate penalty is as follows:

penalty = λ
∑
j

h (|βj1|+ |β
j
2|)︸ ︷︷ ︸

`1 regularization

+(1− h)

√
(βj1)2 + (βj2)2︸ ︷︷ ︸
`2 regularization

 (13)

Here, `1 penalty means selecting βjks for two nodes separately while `2 penalty means selecting them jointly.
h is the tuning parameter that can control the level of balance.
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Figure 4 General tree for tree-structured penalty construction.

For a general tree as shown in Figure 4, the penalty can be formulated as:

B̂Tree = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

h2 (|C1|+ |βj2|)︸ ︷︷ ︸
separate selection

+(1− h2)

√
(βj1)2 + (βj2)2 + (βj3)2︸ ︷︷ ︸

joint selection


(14)

where C1 can be recursively extended as:

C1 = h1(|βj1|+ |β
j
2|) + (1− h1)

√
(βj1)2 + (βj2)2 (15)

4.3 Definition

Now we could formally formulate tree-guided group lasso.

Given the tree T over the outputs, we generalize the `1/`2 regularization to a tree regularization as follows.
We expand the `2 part of the `1/`2 penalty into a group-lasso penalty, where the group is defined based on
tree T . In this tree T , each node v ∈ V is associated with group Gv, whose members consist of all of the
output variables (or leaf nodes) in the subtree rooted at node v. Given these groups of outputs that arise
from tree T , tree-guided group lasso can be written as follows:

B̂
Tree

= arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
v∈V

wv‖βjGv
‖2 (16)

where βjGv
is a vector of regression coefficients. Each group of regression coefficients βjGv

is weighted with
wv that reflects the strength of correlation within the group.

In order to define the weights of wv, we first associate each internal node v of the tree T with two quantities
sv and gv that satisfy the condition sv + gv = 1. Here the sv represents the weight for selecting the output
variables associated with each of the children of node v separately, and the gv represents the weight for
selecting them jointly.

Section 4.2 has given out an example of constructing tree-structured penalty. Here we give out a formal
formulation. Given an arbitrary tree T , by recursively applying the similar operation starting from the root
node towards the leaf nodes, we could get as follows:

∑
j

∑
v∈V

wv‖βjGv
‖2 = λ

∑
j

Wj(vroot) (17)
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where

Wj(v) =

{
sv ·

∑
c∈Children(v) |Wj(c)|+ gv · ‖βjGv

‖2 if v is an internal node,∑
m∈Gv

|βjm| if v is a leaf node.
(18)

4.4 Parameter Estimation

We use an alternative formulation in order to estimate the regression coefficients in tree-guided group lasso.

B̂Tree = arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ

∑
j

∑
v∈V

wv‖βjGv
‖2

2

︸ ︷︷ ︸
relaxation needed on this term

(19)

As `1/`2 norm is a non-smooth function, we need to make some relaxation using the fact that the variational
formulation of a mixed-norm regularization is equivalent to a weighted `2 regularization, which is:

∑
j

∑
v∈V

wv‖βjGv
‖2

2

≤
∑
j

∑
v∈V

w2
v‖β

j
Gv
‖22

dj,v
(20)

where
∑
j

∑
v dj,v = 1, dj,v ≥ 0,∀j, v, and the equality holds for

dj,v =
wv‖βj,v‖2∑

j

∑
v∈V wv‖βj,v‖2

(21)

Thus, the optimization problem listed in equation 19 can be rewritten as:

min
∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
v∈V

w2
v‖β

j
Gv
‖22

dj,v

subject to
∑
j

∑
v

dj,v = 1,

dj,v ≥ 0,∀j, v

(22)

Here, additional variables dj,v are introduced for smoothing. We solve the problem in equation 22 by
optimizing β and dj,v alternatively over iterations until convergence. For each iteration, we first fix the
values for βk, and update dj,v, where the update equations for dj,v are given in equation 21. Then, we treat
dj,v as constant, and optimize for βk. It would lear to a closed-form solution, which is:

βk = (XTX + λD)−1XTyk (23)

where D is a J × J diagonal matrix with
∑
v∈V w

2
v/dj,v in the j-th element along the diagonal.
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5 Structure Association III: Two-graph Guided Multi-task lasso

5.1 Motivation

Two-graph guided multi-task lasso tries to answer the question that how multiple genetic variants in a
biological process or pathway, by forming a subnetwork, jointly affect a subnetwork of multiple correlated
traits. It is motivated by graph structures in both genome and phenome and tries to take advantage of the
two side information simultaneously.

Figure 5 gives out a illustration of two-graph guided multi-task lasso. Here we can see that two traits
connected in trait network are coupled though paths between the two nodes; and two SNPs connected in
genome network are coupled through paths between the two nodes.

Figure 5 Illustration of two-graph guided multi-task lasso.

5.2 Parameter Estimation

The two-graph guided multi-task lasso is defined as:

B̂
TCML

= arg min
∑
k

(yk −Xβk)T (yk −Xβk) + λ‖B‖1 + γ1 pen1(E1,B)︸ ︷︷ ︸
Trait network

+γ2 pen2(E2,B)︸ ︷︷ ︸
Genome network

(24)

where pen1 and pen2 are two penalty functions measuring the discrepancy between the prior label and
feature graphs and the association pattern. Specifically, they can be defined as:

pen1(E1,B) =
∑

em,l∈E1

w(em,l)

J∑
j=1

|βjm − sign(rm,l)βjl|

pen2(E2,B) =
∑

ef,g∈E2

w(ef,g)

K∑
k=1

|βfk − sign(rf,g)βgk|

(25)

where w(em,l) and w(ef,g) are the weights assigned to the edge em,l in graph E1 and E2, respectively. rm,l
and rf,g are the correlations between ym and yl, yf and yg, respectively.

It is easy to see that the objective function in equation 24 is non-differentiable. Thus, its optimization
is achieved by transforming it to a series of smooth functions that can be efficiently minimized by the
coordinate-descent algorithm. Detailed update rules can be found in [Chen et al., 2012].
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