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1 MCMC with Auxiliary Variables

In Gibbs sampling, we try to sample “less” variables in each time. Therefore, we only sample one variable
by conditioning on the remaining ones. However, we could do a reverser way by introducing more variables
to be sampled.

For any distribution p(z), we know that p(z) = [ p(z,u). If we want to sample from certain distribution
p(z), which is hard to sample. We then introduce the “auxiliary” variable u, which is a random variable
that do not exist in the model but are introduced into the model to facilitate sampling. We then hope the
joint distribution p(x,u) is easy to navigate, and the conditional distributions p(z|u) and p(u|z) are easy to
sample. Then sampling from p(x,u) is easier than sampling from p(z), and we can marginalize out u to get
p(z) back.

Next, we discuss two approaches, including slice sampling and Hamiltonian Monte Carlo.

1.1 Slice Sampling

Figure 1: Slice Sampling.

Assume we want to sample from P(z), and P(z) o< P(x), where we can evaluate P(z). The we define u as
the auxiliary variable, and p(u|z) is the uniform sampling between 0 and P(z). Also, we define p(z|u) as
the uniform sampling from {z/|P(z') > u}. The sample (z,u) are uniformly distributed under the area of
P(x). We can then obtain p(z) by marginalizing out u.
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Figure 2: Example of the sampling procedure of slice sampling.

The algorithm is shown as follows and Figure 1.1.

e Initialize z’.
e Sample u ~ Unif (0, p(x)).

e Sample z uniformly from {z|P(z) > u}.

1.1.1 Computational Concern

Finding the set z|]5(z) > u can be computationally expensive or unfeasible. Then bracket slice sampling can
be applied. That is we use a horizon bracket to contain 2’, then extend or shrink the bracket to search the
proper size of bracket that is z|P(z) > u.

1.1.2 Discussion

The advantages of slice sampling includes

e Without tuning parameters

e No rejection.

However, this method is still suffered from random walk as Gibbs sampling.

1.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is another auxiliary variable method, which makes use of not only the probability
distribution but the gradient of probability for sampling. Consider a Boltzmann distribution of € RY, it
can be wiritten as p(x) = Z; ' exp{—E(z)}. By introducing an independent auxiliary variable g € RY, q ~
N(0,1), the joint distribution is p(x,q) = Z;'Z, ' exp{—E(x) — q"q/2}. Then the sampling is divided
into two steps. The first step is similar to block Gibbs sampling, namely given &) sample ¢(**1). And
the second step is to update x. Since x and g are independent, p(g|x) is Gaussian and to sample from it
is simple. The update of « follows Metropolis algorithm, and more specifically, the transition is proposed
by Hamiltonian Dynamics. The following will first introduce Hamiltonian Dynamics and its properties, and
then talks about Hamiltonian Monte Carlo in details.
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Figure 3: Euler’s method and Leapfrog algorithm for approximating Hamiltonian Dynamics

1.2.1 Hamiltonian Dynamics

Given two physical quantities «,q € RY and let H (x,q) be the Hamiltonian of the system, Hamiltonian
Dynamics describes the evolution of them over time, which follows the following relationships [1]:

d.IfL' OH
dt N aqi (1)
dqi - OH

A simple example is to consider a simple harmonic motion in one dimension, where z is the position and ¢
is the momentum and let the Hamiltonian be —kz + ¢%/2m. From Egs. (1) to (2), we get:

@__ dr  q

at dt — m

From Newton’s Law, the mechanical energy (namely the Hamiltonian) of the above motion is unchanged.

And it turns out that Hamiltonian Dynamic always gaurantees that the Hamiltonian is invariant over time.

Additionally, the evolution over time is reversible in Hamiltonian Dynamics. Namely, if from x,q, the

evolution goes At time and achieves ', q’, it will take exactly the same time for the system to evolve from
!/ /

x',—q tox,—q.

By discretizing the time, Hamiltonian Dynamics can be simulated by computer. Euler’s method and Leapfrog
alogrithm are two ways to do so, and their update rules are slightly different which give different performances.
3 [1] shows the simulation of system with 2%/2 + ¢*/2 as Hamiltonian. Sometimes Euler’s method does not
converge and the accuracy is low. By contrast, Leapfrog is more stable and still satisfies reversibility. The
update rule of Leapfrog method is showed as follow:
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qi(t +¢/2) = q;(t) — (¢/2) gf;
wi(t+ ) :xi(t)+ew

(1) = ailt+¢/2) — (6/2) 5

t+e

, where € is step size. And in practice, once we fix step size and number of steps, from a starting state x, q,
Leapfrog method proposes a new state x’,q where H(x,q) is approximately equal to H(z',q’), and such
transition is reversible.

1.2.2 Algorithm and Properties of HMC

In our case, let g7q/2 = K(q) and set the Hamiltonian of the system as H(z,q) = E(z) + K(q). The
algorithm of Hamiltonian Monte Carlo (HMC) is as follow:

Step 1
Draw new sample q¢' ~ p(q|x)

Step 2
Run Leapfrog on H(x, q) with step size € for L steps
And obtain &', q", where H(xz,q') ~ H(2',q"

Step 3
Use ', q" as proposed sample, and accept with probability:

min{1,exp{H (x,q') — H(z',q")}}

Step 1 is block Gibbs sampling step, where the proposal distribution is a conditional distribution. By
constraction, p(glz) = p(q) ~ N(0,I), so it satisifies detailed balance. Step 2 and 3 are Metropolis
algorithm. The transition from x, g’ to «’,q" is defined by Hamiltonian Dynamics. Since Leapfrog method
is reversible, R(x',q"” < =,q') = R(x,—q¢ + «’,—q") = 1. If we artificially reverse the direction of q”
to —q" after running Leapfrog, we have R(x',—q" + x,q') = R(x,q’ + x’,—q"”) = 1, which stastifies
Metropolis algorithm’s condition. Using the fact that K(q) = K(—q), the acceptance rule can be simplified
as:

H(.CI}/, _q//) — H($/, q//)
H(z,—q')=H(z,q)
. p(w/a _qH) . / ’ "
comind{l, ———=} = min{l,exp{H(x,—q") — H(x',—q
(BT — min{L.exp{H(z,~¢) — H(',~q")}}
= min{]—v exp{H(:c, q/) - H(:l}l, q/,)}}
, which is exactly what checked in Step 3. Metropolis algorithm satisfies detailed balance, so HMC satisfies
detailed balance.

Ideally, Hamiltonian Dynamics has invariant H, which leads to 100% acceptance. But, in reality, Leapfrog
method may introduce some errors, so Step 3 is necessary, but the acceptance rate is very high. Fig. 4 [1]
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Figure 4: The trajectory for a two-dimensional Gaussian distribution sampled by HMC

Random-walk Metropolis Hamiltonian Monte Carlo

Figure 5: HMC vs. M-H

shows an example of sampling a 2-D Gaunssian using HMC. Unlike random walk, the trajectory gose from
lower left-hand side to upper right-hand side because of the Leapfrog step. Fig. 5 [1] is the comparison
between HMC and M-H algorithm’s results. Thanks to Hamiltonian Dynamic, sample is more likely to make
big jump across the space but still holds a high probability to be accepted.

2 Introduction to Topic Modeling

Topic Modeling is a method (ususally unsupervised) for discovery of latent or hidden structure in a corpus.
Suppose you're given a massive corpora and asked to carry out the following tasks:

e Organize the documents into thematic categories.

Describe the evolution of those categories over time.

Enable a domain expert to analyze and understand the content.

Find relationships between the categories.

Understand how authorship influences the content.

Topic modeling provides a modeling toolbox for these tasks. Although it is applied primarily to text cor-
pora, the techniques can be generalized to solve problems in other fields including computer vision and
bioinformatics.



6 17 : MCMC (cont’d) and Intro to Topic Modeling

2.1 Beta Bernoulli Model

Beta Bernoulli Model is a simple Bayesian model that can be used to model corpus in which the words are
binary random variables whose prior is modeled by the Beta distribution. Beta distribution is a conjugate
distribution that can be written as:

1
_ -1 B—1
f(@le, B) = 2 (1—2)
B(a, B)
The Beta distribution is illustrated in Figure 2.1.
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Figure 6: Beta distribution
The generative process for Beta Bernoulli model can be described as:

e draw ¢ ~ Beta(a, )
e For each word n € {1,..., N}:

draw x,, ~ Bernoulli(¢$)

2.2 Dirichlet-Multinomial Model

Similar to Beta Bernoulli Model, the Dirichlet-Multinomial Model can also model corpus but in which
the words are multinomial random variables whose prior is modeled by Dirichlet distribution. Dirichlet
distribution is a conjugate distribution that can be written as:

I _ 1 5 ap—1
p(¢la) = m kl;[l o

Where X
Hk:l [(ou)
T(Yyy ak — 1)

The Dirichlet distribution is illustrated in Figure 2.2.

B(a) =

The generative process for Dirichlet-multinomial model can be described as:

e draw ¢ ~ Dir(B)

e For each word n € {1,..., N}:
Draw z,, ~ Mult(1, ¢)
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Figure 7: Dirichlet distribution

2.3 Dirichlet-Multinomial Mixture Model

When we take one step further from the Dirichlet-multinomial model, instead of just generating words, we
also want to generate independent documents so that each document has a particular topic. The generative
process for Dirichlet-multinomial mixture model can be described as below:

e For each topic k € {1,..., K}:
draw ¢y ~ Dir(pB)

e Draw 6 ~ Dir(a)

e For each document m € {1, ..., M}:
Draw z,, ~ Mult(1,6)
For each word n € {1, ..., Np,, }, draw z,, ~ Mult(1, ¢, )

2.4 Latent Dirichlet Allocation

The problem of Dirichlet-multinomail model is that it cannot model documents which have more than one
topic. The Latent Dirichlet Allocation (LDA) is proposed to tackle this drawback of Dirichlet-multinomial
model. In LDA, for each document, there is a probability distribution over the topics. The generative process
for LDA can be described as below:

e For each topic k € {1,..., K}
draw ¢y ~ Dir(f)

e For each document m € {1, ..., M}:
Draw 6,, ~ Dir(«a)
For each word n € {1, ..., N, 1
Draw 2z, ~ Mult(1,0,,)
Draw zp,, ~ Mult(1,¢. )
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