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1 Background Review

In this section, we will review some of mathematical concepts that will be used later in the material.

1.1 Multivariate Gaussian

The pdf of joint Gaussian distribution of x1, x2 can be written in block form as

p

([
x1
x2

]
|
[
µ
Σ

])
= N

([
x1
x2

]
;

[
µ1

µ2

]
,

(
Σ11 Σ12

Σ21 Σ22

))

The joint probability can also be written as:

p(x1, x2) =
1

(2π)N/2|E|1/2
exp
(

[(x1 − µ1)T , (x2 − µ2)T ]

[
Ω11 Ω12

Ω21 Ω22

]
[(x1 − µ1), (x2 − µ2)]T

)
where

Ω = Σ−1 =

[
Ω11 Ω12

Ω21 Ω22

]

Ω11 = Σ−111 + Σ−111 Σ12(Σ22 − ΣT
12Σ−111 Σ12)−1ΣT

12Σ−111

Ω22 = Σ−122 + Σ−122 ΣT
12(Σ11 − Σ12Σ−122 ΣT

12)−1Σ12Σ−122

Ω12 = ΩT
21 = −Σ−111 Σ12(Σ22 − ΣT

12Σ−111 Σ12)−1

We can show that p(x1, x2) can also be written as:

p(x1, x2) = N (x1;µ1,Σ11)N (x2;m2|1, V2|1)

= N (x2;µ2,Σ22)N (x1;m1|2, V1|2)

1
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where,

m1|2 = µ1 + Σ12Σ−122 (x2 − µ2),

V1|2 = Σ11 − Σ12Σ−122 Σ21

m2|1 = µ2 + ΣT
12Σ−111 (x1 − µ1),

V2|1 = Σ22 − ΣT
12Σ−111 Σ12

Now, using the above form we can write the marginal and conditional probabilities as the following:

p(x1) = N (x1|mM
1 , v

M
1 )

mM
1 = µ1

vM1 = Σ11

p(x2) = N (x2|mM
2 , v

M
2 )

mM
2 = µ2

vM2 = Σ22

p(x1|x2) = N (x1|m1|2, V1|2)

m1|2 = µ1 + Σ12Σ−122 (x2 − µ2)

V1|2 = Σ11 − Σ12Σ−122 Σ21

1.2 Matrix Inversion

It is also useful to remember the inversion of matrices written in block form. Consider such a matrix M to
be:

M =

[
E F
G H

]
Then we can write the inverse of Matrix M as

M =

[
E−1 + E−1F (M/E)−1GE−1 −E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1

]
The following matrix inversion lemma will also be used further in this material:

(E − FH−1G)−1 = E−1 + E−1F (H −GE−1F )−1GE−1

1.3 Matrix Algebra

In this section we will look at some formulae involving, traces, determinants and derivatives
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tr[A] =
∑
i

aii

The cyclical property of trace:

tr[ABC] = tr[CAB] = tr[BCA]

Derivatives involving trace:

∂tr[BA]

∂A
= BT

∂tr[xTAx]

∂A
=
∂tr[xxTA]

∂A
= xxT

Derivatives of determinants:

∂log|A|
∂A

= A−1

2 Factor Analysis

Factor analysis is a latent variable model where the latent variable is a continuous random vector. So, the
model essentially is X → Y where X is continuous, hidden and Y is continuous, observed. Geometrically, it
can be interpreted as sampling X from a Gaussian in low-dimensional subspace and then generating Y by
sampling a normal distribution conditioned on X. The following figure from slides illustrates that.

Figure 1: Illustration of Factor Analysis Model

The problem of estimating X based on Y is a dimensionality reduction problem.
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2.1 Inference

X is a p-dimensional variable, Y is a q-dimensional variable where p < q and we begin with X and Y |X.

X ∼ N (0, I)

Y |X ∼ N (µ+ ΛX,Ψ)

Since, the distributions of X and Y |X are both gaussian, the marginals, conditional and joint probabilities
are all gaussian. So, these distributions are characterized by their mean and variance. To calculate the
marginals:

Y = µ+ ΛX +W

E[Y ] = E[µ+ ΛX +W ]

= E[µ] + ΛE[X] + E[W ]

= µ+ 0 + 0

= µ

V ar[Y ] = E[(Y − µ)(Y − µ)T ]

= E[(µ+ ΛX +W − µ)(µ+ ΛX +W − µ)T ]

= E[(ΛX +W )(ΛX +W )T ]

= E[ΛXXT ΛT +WWT ]

= ΛE[XXT ]ΛT + E[WWT ]

= ΛΛT + Ψ

To write the joint distribution we also need the covariance of X and Y.

Cov[X,Y ] = E[(X − 0)(Y − µ)T ]

= E[(X)(µ+ ΛX +W − µ)T ]

= E[XXT ΛT +XWT ]

= ΛT

Simillarly, Cov[Y,X] = Λ. Therfore the joint probability can be written as:

p

([
X
Y

])
= N

([
X
Y

]
;

[
0
µ

]
,

[
I ΛT

Λ ΛΛT + Ψ

])

Applying Gaussian Conditioning formulae shown in section 1, we get the following result for the posterior
of latent variable X, given Y.

p(X|Y ) = N (X|m1|2, V1|2)
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where,

m1|2 = µ1 + Σ12Σ−122 (Y − µ2)

= ΛT (ΛΛT + Ψ)−1(Y − µ)

V1|2 = Σ11 − Σ12Σ−122 Σ21

= I − ΛT (ΛΛT + Ψ)−1Λ

Inverting (ΛΛT + Ψ) involves inverting a |y| × |y| matrix, So we use matrix lemma to replace it by
(I + ΛT Ψ−1Λ)−1.

So, the final equations for m1|2 and V1|2 are:

V1|2 = (I + ΛT Ψ−1Λ)−1

m1|2 = V1|2ΛT Ψ−1(Y − µ)

2.2 Learning

In this section, learning strategy of Factor Analysis will be discussed. In previous sections we have known
that there are three parameters to be learned:

• Loading matrix Λ

• Manifold center µ

• Variance Ψ

So we are able to formalize the problem as a log likelihood function:

[Λ∗, µ∗,Ψ∗] = argmax(Loglikelihood(Y ))

The incomplete log likelihood If we consider the incomplete data log likelihood function, which in
factor analysis is the marginal density of y, we have:

l(θ|D) = −N
2
log|ΛΛT + Ψ| − 1

2
{
∑
n

(yn − µ)T (ΛΛT + Ψ)−1(yn − µ)}

= −N
2
log|ΛΛT + Ψ| − 1

2
tr[(ΛΛT + Ψ)−1S],where S =

∑
n

(yn − µ)T (yn − µ)

Obviously, estimating µ is trivial, but parameters Λ and Ψ are still coupled non-linearly in the expression.

To decouple the parameters and obtain a simple algorithm for MLE, we consider EM algorithm in the
following part.
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EM algorithm As we have learned a few classes earlier, complete log likelihood would be the objective
function that we consider after taking the expectation. Suppose here that we have ”complete data”, which
means X and Y are both observed, it’s clear that the estimation of the distribution of X would reduce to
a Gaussian density estimation problem. So, in E step, we will try to fill in X by calculating the expected
complete log likelihood and identify the expected sufficient statistics. Then, in M step, we will reduce to
just estimating Λ and Ψ using linear regression.

E step The complete likelihood is simply a product of Gaussian distributions.

lc(θ|Dc) = −N
2
log|Ψ| − 1

2

∑
n

xTnxn −
1

2

∑
n

(yn−n)T Ψ−1(yn − Λn)

= −N
2
log|Ψ| − 1

2

∑
n

tr[xnx
T
n ]− 1

2

∑
n

tr[(yn − Λxn)(yn − Λxn)T Ψ−1]

= −N
2
log|Ψ| − N

2
tr(SΨ−1)

where we have:

S =
1

N

∑
n

(yn − Λxn)(yn − Λxn)T

Take the expectation

Q(θ|θ(t)) = −N
2
log|Ψ| − N

2
tr(〈S〉Ψ−1)

Here the conditional expectation 〈s〉 is

〈s〉 =
1

N

∑
n

〈ynyTn − ynXT
n ΛT − ΛXny

T
n + ΛXnX

T
n ΛT 〉

=
1

N

∑
n

〈ynyTn − yn〈XT
n 〉ΛT − Λ〈Xn〉yTn + Λ〈XnX

T
n 〉ΛT )

To draw a conclusion, the expected sufficient statistics that we need are actually conditional expectations
〈Xn〉 and 〈Xnx

T
n 〉. We’ve already have these expectation derived in the previous sections. Thus

〈Xn〉 = E(Xn|Yn)

〈Xnx
T
n 〉 = V ar(Xn|yn) + E(Xn|yn)E(Xn|yn)T

M step Since we have ”filled in” X in the E step by calculating sufficient statistics, we are able to
compute parameters by means of taking the derivative of expected complete log likelihood Q with respect
to parameters.
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∂

∂Ψ−1
〈lc〉 =

∂

∂Ψ−1
(−N

2
log|Ψ| − 1

2

∑
n

tr[xnx
T
n ]− 1

2

∑
n

tr[(yn − Λxn)(yn − Λxn)T Ψ−1])

=
N

2
Ψ− N

2
〈S〉

Here we have Ψt+1 = 〈s〉

∂

∂Λ
〈lc〉 =

∂

∂Λ
(−N

2
log|Ψ| − 1

2

∑
n

tr[xnx
T
n ]− 1

2

∑
n

tr[(yn − Λxn)(yn − Λxn)T Ψ−1])

= −N
2

Ψ−1
∂

∂Λ
〈S〉

= −N
2

Ψ−1
∂

∂Λ
(

1

N

∑
n

〈ynyTn − yn〈XT
n 〉ΛT − Λ〈Xn〉yTn + Λ〈XnX

T
n 〉ΛT ))

= Ψ−1
∑
n

yn〈XT
n 〉 −Ψ−1Λ

∑
n

〈XnX
T
n 〉

Here we have Λt+1 = (
∑

n yn〈XT
n 〉)(

∑
n〈XnX

T
n 〉)−1

Model Invariance and Identifiability Since Λ only appear as outer product ΛΛT , the model is invariant
to rotation and axis flips of the latent space:

(ΛQ)(ΛQ)T = Λ(QQT )ΛT = ΛΛT

This means there is no optimal solution of parameter estimations. Such models are called un-identifiable
since multiple sets of parameters would be obtained when filling in same set of parameters.

3 State Space Models

3.1 Introduction

We have just learned Factor Analysis, whose latent and observed variables are both continuous Gaussians.
If we connect multiple factor analysis models as what we do to mixture model, we can get a HMM-like
graphical model, which is called State Space Model as shown in Fig. 2

Figure 2: Graphical model for SSM
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Here we have:

xt = Axt−1 +Gwt

yt = Cxt−1 + vt

wt ∼ N(0;Q), vt N(0;R)

x0 ∼ N(0; Σ0)

3.2 Inference

There are two interesting inference problems worth mentioning in SMM model: filtering and smoothing.

Filtering is a way to perform exact inference in an Linear Dynamic System, to infer the current latent
variable based on current as well as previous observed variables. The problem of filtering is formalized as
computing P (xt|y1:t):

p(Xt = i|y1:t) = αi
t ∝ p(yt|Xt = i)

∑
j

p(Xt = i|Xt−1 = j)αj
t−1

Fig. 3 is an example graph for this problem.

Figure 3: Graphical model for SSM

Smoothing is another inference problem in which we compute the current latent variable given observables
at all time steps, which can be formalized as computing P (xt|y1:T ):

p(xt|y1:T ) = γit ∝
∑
j

αi
tP (Xj

t+1|X
j
i )γjt+1

Fig. 4 is an example graph for this problem.

Figure 4: Graphical model for SSM
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4 Kalman Filtering

4.1 Overview of derivation

Kalman filtering is an online filtering algorithm for use on state space models. It is widely used and particu-
larly efficient. Since the state space models we are dealing with all have conditional probability distributions
that are linear Gaussian, the system defines a large multivariate Gaussian.

This means that all the marginals are Gaussian, and we can represent the belief state p(X|y1:t) as a Gaussian
with mean

E[Xt|y1:t] = µt|t

and covariance

E[(Xt − µt|t)(Xt − µt|t)
T ] = Pt|t

It is common to work with the inverse of the covariance matrix, called the precision matrix. This is known
as the information form.

Kalman filter is a recursive procedure to update the belief state. it has two main phases: the predict step,
and the update step. Essentially, instead of trying to solve for p(Xt+1|y1:t+1) directly, we break it into two
parts. In the predict step, we seek to compute p(Xt+1|y1:t) from the prior belief p(Xt|y1:t) and the dynamics
model p(Xt+1|Xt). This is called the time update. In the update step, we compute our goal p(Xt+1|y1:t+1)
from the prediction p(Xt+1|y1:t), the observation yt+1, and the observation model p(yt+1|Xt+1). This is
called the measurement update.

The advantage of this process is that, since the variables are Gaussian, then everything else ends up being
Gaussian. Recall from the beginning of the notes that if we have

[
z1
z2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])

This means that, given that the marginal z1 is Gaussian, then the joint z1z2 is Gaussian, the marginal z2 is
Gaussian, and finally the conditional z2|z1 must also be Gaussian.

The Kalman filter essentially follows this process. Given p(Xt|y1:t) is Gaussian, we can get p(Xt+1|y1:t),
with xt+1 = f(xt) = Axt + w. Then from this result and the observation model yt+1 = Cxt+1 + v, we can
finally get p(Xt+1, yt+1|y1:t).

4.2 Predict Step

For the dynamical model, we have that

xt+1 = Axt +Gwt

where wt ∼ N (0;Q). We wish to find the parameters of the distribution of p(Xt+1|y1:t). Since everything
here is a Gaussian, this means we want the mean and covariance of this distribution. For one step ahead
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prediction of state:

E[Xt+1|y1:t] =E[Axt +Gwt]

=Aµt|t + 0

=x̂t+1|t

x̂t+1|t =Aµt|t

E[(Xt+1 − x̂t+1|t)(Xt+1 − x̂t+1|t)
T |y1:t] =E[(AXt +Gwt −Aµt|t)(AXt +Gwt −Aµt|t)

T |y1:t]
=E[(AXt −Aµt|t)(AXt −Aµt|t)

T |y1:t] + E[(AXt −Aµt|t)w
T
t G

T |y1:t]
E[Gwt(AXt −Aµt|t)|y1:t] + E[Gwtw

T
t G

T |y1:t]
=E[(AXt −Aµt|t)(AXt −Aµt|t)

T |y1:t] + 0 + 0 + E[Gwtw
T
t G

T |y1:t]
=AE[(Xt − µt|t)(Xt − µt|t)

T |y1:t]AT +GE[wtw
T
t |y1:t]GT

Pt+1|t = APt|tA
T +GQGT

And so the prediction for the dynamical model is the mean x̂t+1|t = Aµt|t and covariance is Pt+1|t =
APt|tA

T +GQGT .

For the observation model, have have that

yt = Cxt + vt

where vt ∼ (0;R). We now wish to find the parameters of the model of the observation. Once again, it is
Gaussian, since the prior parts are all Gaussian. For one step ahead prediction of observation:

E[Yt+1|y1:t] =E[Cxt + wt]

=Cx̂t+1|t + 0

ŷt+1|t =Cx̂t+1|t

E[(Yt+1 − ŷt+1|t)(Yt+1 − ŷt+1|t)
T |y1:t] =E[(CXt+1 + vt − Cx̂t+1|t)(CXt+1 + vt − Cx̂t+1|t)

T |y1:t]
=CE[(Xt+1 − x̂t+1|t)(Xt+1 − x̂t+1|t)

T ]CT + E[vtv
T
t ]

=CPt+1|tC
T +R

E[(Yt+1 − ŷt+1|t)(Xt+1 − x̂t+1|t)
T |y1:t] =E[(CXt+1 + vt − Cx̂t+1|t)(Xt+1 + x̂t+1|t)

T |y1:t]
=CE[(Xt+1 − x̂t+1|t)(Xt+1 − x̂t+1|t)

T ] + E[vt(Xt+1 − x̂t+1|t)]

=CPt+1|t

And so finally, for the observation variable we have mean Cx̂t+1|t and variance CPt+1|tC
T + R, as well as

covariance with state variable CPt+1|t.

4.3 Update Step

Will be continued in the next lecture


