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1 Introduction

1.1 Networks in real world

This lecture introduced methods for modeling networks. Gaussian graphical models and Ising models were
introduced in the lecture. These methods are popular in learning the structure of networks. In real word,
networks are important and interested to researchers. Networks come from lots of areas, such as the Jesus
network which represents relationships of characters in Jeses, social networks that represent assiciation among
users; Internet networks that represents the connection between different nodes; gene regulatory networks
and so on.

Network can also evolves through time. Figure 1 shows a network of genes in the development of an embryo.
In different time, the gene regulatory networks are different in corresponding to the activation and regulation
of different developmental genes.
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Figure 1: Evolving of Gene regulatory networks in embryo development.

In sum, in real world there are lots of networks and some may evolves through time. It is necessary to
develop some statistical methods to study them.
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1.2 Two optimal approaches for structure learning

An important question in modeling networks is to decide the structures of networks. The general idea is to
sort to ’optimal’ approaches, that is, utilize algorithms that guarantee to return a structure that maximizes
the objectives (usually likelihood). For structure learning, two approaches that is suitable for different kind
of networks have been learned:

e The Chow-Liu algorithm: this algorithm is appropriate for tree-structured graph;

e Pairwise Markov random fields: it is used for undirected graphs

2 Pairwise Markov Random Fields

The basic idea for pairwise Markov random fields is to model the edges as parameters, where if there is
connection between two nodes, then there is non-zero parameters for the pair. In other words, we use a
matrix of parameters to encode the graph structure. As is shown in Figure 2, 0;; represents the parameter
for edge (4,7). The structure of the network can be inferred through the distribution below the network.

1
p(l'l. T2,X3, 1'4) = Z CXp{Ql./El + 92.7,'2 + 03.’1}3 + 94.’1}4 +

0122129 + 0132123 + O23Tows + O342324 }

Figure 2: Relationship network and the method for structure learning

The states of nodes can be either discrete, which is called Ising /Potts model, or continuous, which is called
Gaussian graphical model, or even heterogeneous.

2.1 Ising Models

Assuming an exponential family distribution, the joint probability of a pairwise MRF, parametrised by © is
given by,

p(l‘|@) = exp Zelxz + Z eijxixj — A(@)

icV (i,4)EE
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If the variables are binary, it is straightforward to argue that the conditional probability of ) given x_j is
given by a logistic regression model. Concretely,

po(zklr_k) = logistic (2z (O _k, z_k)) .

This suggests that we could use an L; regularised logistic regression approach to learn the neighbors of zy.
The approach also extends to vector valued nodes provided we use an appropriate group lasso penalty on
elements of © that correspond to one variable.

2.2 Gaussian Graphical Model

As is mentioned above, gaussian graphical models (GGMs) are continuous form of pairwise MRFs. The basic
assumption for GGMs is that the variables in the network follows multivariate Gaussian distribution. The
distribution for GGMs is

plo ¥) = e expl 50— ) "E e = )

where p is the mean, ¥ is the covariance matrix, n is the dimension of data (number of variables).

Here we can show how to convert a GGM to the form of pairwise MRF. WLOG, let u = 0, precision matrix
Q = X!, then the above distribution can be written as:

Q['2 1
p(z1, @ |p =0,Q) = W GXP{—§ Zq”(%)? - Z%‘jxix]’}
i i<j

This is the distribution of a continuous Markov Random Field with potentials defined on each node i as
exp{—3¢ii(x;)?} and on each edge (i,j) as exp{—g;jz;z;}. Moreover, the edges in GGMs corresponds to
non-zero elements in the precision matrix.

2.3 Markov versus Correlation Network

Though in GGM, the edge information in the network is encoded in the covariance matrix, there is a distinct
difference between Markov and correlation network, which is also based on covariance matrix. In correlation
network, if ¥; ; = 0, then X; ard X are assumed to be independent. While a GGM is Markov network based
on precision matrix, if Q;; = 0, then X; and X are conditionally independent given all other variables, that
is, they have pairwise Markovity. Compared with correlation network, this kind conditional independence
or partial correlation coefficients are a more sophisticated dependence measure. Figure 3 below illustrates
the network with corresponding precision matrix.
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Figure 3: Conversion of precision matrix to the corresponding network
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(a) LASSO regression for node 1 (b) Edge selection of node 1 (¢) LASSO for all nodes

Figure 4: Neighborhood selection with LASSO

2.4 Network Learning with the LASSO (Meinshausen-Bithlmann algorithm)

In network structural learning, a common assumption is the sparsity of a network, that is, the edges are few
in the network and the parameter matrix is sparse. Sparsity assumption usually makes empirical sense, as
in lots of networks, the interaction of one node is limited to a few other nodes, such as in gene regulatory
networks, a gene interacts with small groups of other genes. On the other hand, sparse networks are now
feasible to infer in spite of high dimension of variables.

Network learning with LASSO can be used to perform neighborhood selection for the network. In this
method, for each node, LASSO regression with the objective function below is performed for all nodes to this
node (node 1), as is show in Figure 4a. 3;; is defined as the parameter for edge (¢,7), and 5 := (8i1, -, Bin)

B = argrrﬁlin”Y — XB1])? + M|B1l]h
1

where Y € R” is the vector of independent observations of T' times for node 1, X € RT*("=1) ig the matrix
of observations for all other nodes, and A is the regularization parameter that controls the sparsity of ;. By
this L; penalty, only few edges are kept for this node as is shown in Figure 4b. Then the same procedure is
repeated for all other nodes, as is shown in Figure 4c. And combining the selections for all nodes, the edge
set for the whole network is expressed as:

€= {(u,v) : max(muv‘, |Bvu|) > 0}

There are three assumptions for LASSO:

e Dependency Condition: Relevant Covariates are not overly dependent

e Incoherence Condition: Large number of irrelevant covariates cannot be too correlated with relevant
covariates

e Strong concentration bounds: Sample quantities converge to expected values quickly

If the above assumptions are met, LASSO will asymptotically recover correct subset of covariates that
relevant. In papers Meinshausen and Buhlmann 2006, and Wainwright 2009, the conclusion above were

proved. The mathematical form is: if Ay > C 10517 , then with high probability, S(3) — S(8*)
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Neighborhood selection with LASSO is intuitively simple and has theoretical guarantee. However, it it is
only suitable for iid-sampled networks. For non-iid sampled networks or time evolving networks, other kinds
of algorithms are needed.

3 Gaussian Graphical models

3.1 Variables Dependencies in GGMs

The conditional dependencies in GGMs are basis for the algorithms for network structure inference. Here
we will show the joint Gaussian distribution and related conditional distributions. If x; and x5 follows

X1 x| (pr]| |21 a2
’ )= N ’
[ e = (2] ] [ S
Obviously the marginal distributions for x; and xo are also Gaussian distributions, and the expressions are
as follows respectively.

p(x1) = N(x1/m7", V") p(x2) = N(x2/mj', V')
my" = i my" = fo
VI'=%n V3 = 3o9

The conditional distribution of x; given x5 or xa given x; are also Gaussian distributions. The expressions
of the distributions are as follows:

p(xa[x2) = N(x1|my2, Vij2) p(x2lx1) = N(x2/my|1, V1)
myy = g1 + D155, (X2 — fi2) my) = 2 + So1 57 (X1 — )
Vi =311 — 19355 Tay Vo = Yoo — DI I WP

3.1.1 The matrix inverse lemma

Here we present the trick for matrix inverse, which is useful for the prove of conditional Gaussian distribution.
For a block-partitioned matrix:

v-le

G H

First, we diagonalize M:

I —-FH'1[E F I 0] [E-FH'G 0
0 1 G H||-H'G I|~ 0 H

To simplify the expression, a value called Schur complement is defined as:
M/H=E—-FH'G
Then, we inverse the matrix, using this formula:

XYZ=W = Y l=zw'X
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L [E P!
M=\ H}

[ 1 o [(M/H)™ 0 | [T -FH!
[t M ANl T
[ /) —(M/H)"'FH!

T |-H'G(M/H)™' H™! +H1G(M/H)1FH1}
_[ET'+ET'F(M/E)'GE™! —ElF(M/E)l]
- —(M/E)"'GE™! (M/E)~

By above derivation, we have the matrix inverse lemma:

(E-FH'G)'=E '+ E'F(H-GE'F)"'GE™!

3.1.2 Conversion between covariance and the precision matrices

For covariance matrix, we do the partition for the first variable with all other variables like the following
expression.

=T

o1 03 -1

Z - = =
g1 2_1 Q

So by matrix inverse procedure above, we can get the partitioned precision matrix as:

0= qi1 —qnofs ot ] _ |:QI1 (ff}
—Q11E,f151 27171(—7"‘ Q11515?E,f1) G Q-

where q11 = oy, "

3.1.3 Single-node Conditional

Based on above section, we can write the conditional distribution of a single node i given the rest of node
as:

PXX ) =N (s + Exox, 5% x, (X = pix ), Sxxs — 2x,x . 5% xS x)
Without loss of generality, let © = 0, we have:

P(XilX_) = N(Ex,x . 2% x X, Bx.x — Sxx . 5% x Bx_.x,)

ZN(@E;}X%,CM—J
a

= N( X _is Gij—i)

—qii
From this equation, for each node we can write the following conditional auto-regression function:
T

X = _q;AX—mLﬁ, e ~ N(0, ;)
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This could be interpreted as a node can be expressed as the linear combination of all other nodes with a
Gaussian noise. And we can estimate the neighborhood for each node based on the auto-regression coefficient.
The neighborhood of node i is defined as:

Si={jj#14,0; #0}

S; defines the Markov blanket of node i, we have

p(XilXs) = p(Xi|X ;)

3.2 Some Recent Trends in Gaussian Graphical Models

One of the most classical methods for estimating structure in a GGM is due to Arther P. Dempster who
sequentially prunes the smallest elements in a precision matrix. Drton & Perlman 2007 refines this approach
by providing improved statistical tests for pruning. However, this approach has serious limitations in practice,
particularly when the covariance matrix is not invertible. Recently, there has been a flurry of activity in
Ly regularised methods for structure learning in GGMs. Meinshausen & Biihlmann 2006 estimates the
neighborhood of a variable in a Gaussian model via Lasso regression. Friedman et al. 2008 adopts a
maximum likelihood approach subject to an L penalty on the coefficients of the precision matrix. Banerjee
et al. 2008 uses a block sub-gradient algorithm for finding the precision matrix. Below, we review them in
more detail.

3.2.1 Graphical Lasso

Let the sample covariance constructed using the data be S = 13" (X, — (X))(X; — (X)). Here X =
% >, X is the sample mean. Then, the Gaussian log likelihood of the inverse covariance @ can be shown to
be equal to log det Q@ —tr(SQ). In the Graphical Lasso, we maximise this likelihood subject to an element-wise
L, norm penalty on Q. Precisely, we solve

Q = argminlog det @ — t:(5Q) ~ Q1,1

The estimated neighborhood is then the non-zero elements of Q

3.2.2 Coupled Lasso

Here, we focus on just one row and column at each step. First we write

o-[¢

At each step we solve for ¢. The difference with the MB algorithm is essentially that the resulting Lasso
problems are coupled since we solve them iteratively. This coupling is essential for stability under noise.

4 Time Varying Networks

Consider the time varying network below. At each time step we have a process which is characterised by a
network whose structure changes with time.
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Our goal is to infer the structure at each time step using just one datum (or a limited amount of data) for
each time step. However, the change in structure from one time step to another is assumed to be smooth so
we wish to use data from other time steps too when estimating structure at one step. We review a series of
methods in time varying networks.

4.1 KELLER

KELLER, for Kernel Weighted L;-regularised Logistic Regression, solves the following optimisation problem
over 0! € RP~1 to estimate the neighborhood of i at time step t,

6! = argrréifnfw(@) + All07 1

Here /,,(-) is the time weighted conditional log likelihood, ¢,,(8) = Zstl w(xs, xs) logp(xf|z®;;0). The

—is
conditional likelihood is given by a logistic regression model. The weighting w is chosen so that neighboring
time steps to ¢t have higher weight than time steps far away from ¢. For instance, if each time step corresponds

to an actual time instant ¢', the authors recommend using the following weighting scheme.

wt(s) _ KhT (t/ _ s/) .
S K (1 = )

Here, ¢/, s’ are the times corresponding to the time steps ¢, s and K}, is a smoothing kernel with bandwidth
h. The dependence of h on T is made explicit since we might want to adjust the bandwidth depending on
how regularly we observe the data. The authors also show that under certain regularity conditions on the
problem, we also have a consistent estimator for the structure at time ¢. Precisely,

~ h
P (G()\,hT,t) #+ Gt) €O <exp <—CZ3 T4 C”logp)) ,

T

where C,C" are constants. The right hand side goes to zero as we have data from more time steps, i.e. as
T increases.

4.2 TESLA

TESLA, or Temporally Smoothed Li-regularised Logistic Regression, solves the following optimisation prob-
lem for estimating time-varying networks. It optimises over the parameters of one node over all times steps
jointly. Precisely, it solves the following optimisation problem.

T

T T
0},...,07 = argmin ¥ Layg(0]) + A1 > _[I0F]11 + A2 D> 116F — 61714
=1 =1

01,...,07 v=1
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t
Here, louq(0!) = 7+ Zilvzl log p(x} ;|zl; _;,07) is the conditional log likelihood. The Z?Zl 16%|1 penalty term
encourages sparse solutions while ZiTzl |6t — ot |4 encourages smoothness across different time steps. It is
easy to see that the above problem can be cast as a constrained convex optimisation problem. However, the
authors also recommend the following alternative estimation scheme. (i) First estimate the block partition
on which the coefficient functions are constant via the following,

T P
min (Vi = XiB(t:)* + 232 > l1Bellrv-
=1 k=1

(ii) Then, estimate the coefficient functions on each block of the partition,

. - ~)2
min (Y — Xiv)™ + 21 |17/1-
i€nbd(j)

The advantage of the two step procedure is that choosing the parameters A, Ao is now easier and the opti-
misation problem is also faster. The authors show that structure estimation in TESLA using the alternative

procedure is consistent under certain regularity conditions. In contrast to KELLER, it does not need any
smoothness assumptions and can accommodate abrupt changes.

4.3 Other Graph estimation Scenarios

Recently, there has been a lot of interest in structure estimation in more complex scenarios. Some examples
include time varying Bayesian networks (Song et al. 2009), estimation with missing data (Kolar & Xing
2012)and multi-attribute data (Kolar et al. 2013)



