Probabilistic Graphical Models Lecture 21: Advanced Gaussian Processes

Andrew Gordon Wilson

www.cs.cmu.edu/~andrewgw Carnegie Mellon University

April 1, 2015

Gaussian process review

Definition

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Nonparametric Regression Model

▶ Prior: $f(x) \sim \mathcal{GP}(m(x), k(x, x'))$, meaning $(f(x_1), \dots, f(x_N)) \sim \mathcal{N}(\boldsymbol{\mu}, K)$, with $\boldsymbol{\mu}_i = m(x_i)$ and $K_{ij} = \text{cov}(f(x_i), f(x_j)) = k(x_i, x_j)$.

$$\overbrace{p(f(x)|\mathcal{D})}^{\text{GP posterior}} \propto \overbrace{p(\mathcal{D}|f(x))}^{\text{Likelihood}} \overbrace{p(f(x))}^{\text{GP prior}} \overbrace{p(f(x))}^{\text{GP prior}}$$

Gaussian Process Inference

- ▶ Observed noisy data $y = (y(x_1), ..., y(x_N))^T$ at input locations X.
- ▶ Start with the standard regression assumption: $\mathcal{N}(y(x); f(x), \sigma^2)$.
- ▶ Place a Gaussian process distribution over noise free functions $f(x) \sim \mathcal{GP}(0, k_{\theta})$. The kernel k is parametrized by θ .
- ▶ Infer $p(f_*|y, X, X_*)$ for the noise free function f evaluated at test points X_* .

Joint distribution

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f_*} \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K_{\theta}(X, X) + \sigma^2 I & K_{\theta}(X, X_*) \\ K_{\theta}(X_*, X) & K_{\theta}(X_*, X_*) \end{bmatrix} \right). \tag{1}$$

Conditional predictive distribution

$$f_*|X_*,X,y,\theta \sim \mathcal{N}(\bar{f}_*,\operatorname{cov}(f_*)),$$
 (2)

$$\bar{\mathbf{f}}_* = K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1} \mathbf{y}, \qquad (3)$$

$$cov(\mathbf{f}_*) = K_{\theta}(X_*, X_*) - K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1} K_{\theta}(X, X_*).$$
(4)

Learning and Model Selection

$$p(\mathcal{M}_i|\mathbf{y}) = \frac{p(\mathbf{y}|\mathcal{M}_i)p(\mathcal{M}_i)}{p(\mathbf{y})}$$
(5)

We can write the evidence of the model as

$$p(\mathbf{y}|\mathcal{M}_i) = \int p(\mathbf{y}|\mathbf{f}, \mathcal{M}_i)p(\mathbf{f})d\mathbf{f}, \qquad (6)$$

Learning and Model Selection

▶ We can integrate away the entire Gaussian process f(x) to obtain the marginal likelihood, as a function of kernel hyperparameters θ alone.

$$p(\mathbf{y}|\boldsymbol{\theta}, X) = \int p(\mathbf{y}|\mathbf{f}, X)p(\mathbf{f}|\boldsymbol{\theta}, X)d\mathbf{f}.$$
 (7)

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \overbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}^{\text{model fit}} - \underbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}_{\text{complexity penalty}} - \underbrace{\frac{N}{2}\log(2\pi)}_{\text{complexity penalty}}.$$
(8)

► An extremely powerful mechanism for kernel learning.

Inference and Learning

1. Learning: Optimize marginal likelihood,

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \overbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}^{\mathrm{model fit}} - \underbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}_{\mathrm{complexity penalty}} - \frac{N}{2}\log(2\pi) \,,$$

with respect to kernel hyperparameters θ .

2. Inference: Conditioned on kernel hyperparameters θ , form the predictive distribution for test inputs X_* :

$$f_*|X_*, X, y, \theta \sim \mathcal{N}(\bar{f}_*, \text{cov}(f_*)),$$

$$\bar{f}_* = K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1}y,$$

$$\text{cov}(f_*) = K_{\theta}(X_*, X_*) - K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1}K_{\theta}(X, X_*).$$

Learning and Model Selection

▶ A fully Bayesian treatment would integrate away kernel hyperparameters θ .

$$p(\mathbf{f}_*|X_*,X,\mathbf{y}) = \int p(\mathbf{f}_*|X_*,X,\mathbf{y},\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta}$$
(9)

► For example, we could specify a prior $p(\theta)$, use MCMC to take J samples from $p(\theta|y) \propto p(y|\theta)p(\theta)$, and then find

$$p(\mathbf{f}_*|X_*,X,\mathbf{y}) \approx \frac{1}{J} \sum_{i=1}^{J} p(\mathbf{f}_*|X_*,X,\mathbf{y},\boldsymbol{\theta}^{(i)}), \quad \boldsymbol{\theta}^{(i)} \sim p(\boldsymbol{\theta}|\mathbf{y}).$$
 (10)

▶ If we have a non-Gaussian noise model, and thus cannot integrate away f, the strong dependencies between Gaussian process f and hyperparameters θ make sampling extremely difficult. In my experience, the most effective solution is to use a deterministic approximation for the posterior p(f|y) which enables one to work with an approximate marginal likelihood.

Popular Kernels

Let $\tau = x - x'$:

$$k_{\rm SE}(\tau) = \exp(-0.5\tau^2/\ell^2)$$
 (11)

$$k_{\text{MA}}(\tau) = a(1 + \frac{\sqrt{3}\tau}{\ell}) \exp(-\frac{\sqrt{3}\tau}{\ell})$$
 (12)

$$k_{\text{RQ}}(\tau) = (1 + \frac{\tau^2}{2 \,\alpha \,\ell^2})^{-\alpha}$$
 (13)

$$k_{\rm PE}(\tau) = \exp(-2\sin^2(\pi\,\tau\,\omega)/\ell^2) \tag{14}$$

Worked Example: Combining Kernels, CO₂ Data

Example from Rasmussen and Williams (2006), *Gaussian Processes for Machine Learning*.

Worked Example: Combining Kernels, CO₂ Data

Worked Example: Combining Kernels, CO₂ Data

- ► Long rising trend: $k_1(x_p, x_q) = \theta_1^2 \exp\left(-\frac{(x_p x_q)^2}{2\theta_2^2}\right)$
- ▶ Quasi-periodic seasonal changes: $k_2(x_p, x_q) = k_{\text{RBF}}(x_p, x_q) k_{\text{PER}}(x_p, x_q) = \theta_3^2 \exp\left(-\frac{(x_p x_q)}{2\theta_4^2} \frac{2\sin^2(\pi(x_p x_q))}{\theta_5^2}\right)$
- Multi-scale medium term irregularities: $k_3(x_p, x_q) = \theta_6^2 \left(1 + \frac{(x_p - x_q)^2}{2\theta_8 \theta_5^2}\right)^{-\theta_8}$
- ► Correlated and i.i.d. noise: $k_4(x_p, x_q) = \theta_9^2 \exp\left(-\frac{(x_p x_q)^2}{2\theta_{10}^2}\right) + \theta_{11}^2 \delta_{pq}$
- $\blacktriangleright k_{\text{total}}(x_p, x_q) = k_1(x_p, x_q) + k_2(x_p, x_q) + k_3(x_p, x_q) + k_4(x_p, x_q)$

What is a kernel?

- ▶ Informally, k describes the similarities between pairs of data points. For example, far away points may be considered less similar than nearby points. $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$ and so tells us the overlap between the features (basis functions) $\phi(x_i)$ and $\phi(x_i)$
- ▶ We have seen that all linear basis function models $f(x) = \mathbf{w}^T \phi(x)$, with $p(\mathbf{w}) = \mathcal{N}(0, \Sigma_{\mathbf{w}})$ correspond to Gaussian processes with kernel $k(x, x') = \phi(x)^T \Sigma_{\mathbf{w}} \phi(x')$.
- ▶ We have also accumulated some experience with the RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x-x'||^2}{2\ell^2})$.
- ► The kernel controls the generalisation behaviour of a kernel machine. For example, a kernel controls the support and inductive biases of a Gaussian process which functions are a priori likely.
- ► A kernel is also known as covariance function or covariance kernel in the context of Gaussian processes.

Candidate Kernel

$$k(x, x') = \begin{cases} 1 & ||x - x'|| \le 1\\ 0 & \text{otherwise} \end{cases}$$

- ► Symmetric
- ▶ Provides information about proximity of points
- ► Exercise: Is it a valid kernel?

Candidate Kernel

$$k(x, x') = \begin{cases} 1 & ||x - x'|| \le 1\\ 0 & \text{otherwise} \end{cases}$$

Try the points $x_1 = 1$, $x_2 = 2$, $x_3 = 3$. Compute the kernel matrix

$$K = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$
 (15)

Candidate Kernel

$$k(x, x') = \begin{cases} 1 & ||x - x'|| \le 1\\ 0 & \text{otherwise} \end{cases}$$

Try the points $x_1 = 1$, $x_2 = 2$, $x_3 = 3$. Compute the kernel matrix

$$K = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \tag{16}$$

The eigenvalues of K are $(\sqrt(2) - 1)^{-1}$, 1, and $(1 - \sqrt(2))$. Therefore K is not positive semidefinite.

Representer Theorem

A decision function f(x) can be written as

$$f(x) = \langle \mathbf{w}, \boldsymbol{\phi}(x) \rangle = \langle \sum_{i=1}^{N} \alpha_i \boldsymbol{\phi}(x_i), \boldsymbol{\phi}(x) \rangle = \sum_{i=1}^{N} \alpha_i k(x_i, x).$$
 (17)

- ▶ Representer theorem says this function exists with finitely many coefficients α_i even when ϕ is infinite dimensional (an infinite number of basis functions).
- ► Initially viewed as a strength of kernel methods, for datasets not exceeding e.g. ten thousand points.
- ▶ Unfortunately, the number of nonzero α_i often grows linearly in the size of the training set N.
- ► Example: In GP regression, the predictive mean is

$$\mathbb{E}[f_*|\mathbf{y}, X, x_*] = \mathbf{k}_*^{\mathrm{T}}(K + \sigma^2 I)^{-1}\mathbf{y} = \sum_{i=1}^N \alpha_i k(x_i, x_*), \qquad (18)$$

where
$$\alpha_i = (K + \sigma^2 I)^{-1} \mathbf{y}$$
.

Making new kernels from old

Suppose $k_1(x, x')$ and $k_2(x, x')$ are valid. Then the following covariance functions are also valid:

$$k(x, x') = g(x)k_1(x, x')g(x')$$
 (19)

$$k(x, x') = q(k_1(x, x'))$$
 (20)

$$k(x, x') = \exp(k_1(x, x'))$$
 (21)

$$k(x, x') = k_1(x, x') + k_2(x, x')$$
(22)

$$k(x, x') = k_1(x, x')k_2(x, x')$$
 (23)

$$k(x, x') = k_3(\phi(x), \phi(x'))$$
 (24)

$$k(x, x') = x^{\mathrm{T}} A x' \tag{25}$$

$$k(x, x') = k_a(x_a, x'_a) + k_b(x_b, x'_b)$$
(26)

$$k(x, x') = k_a(x_a, x'_a)k_b(x_b, x'_b)$$
 (27)

where g is any function, q is a polynomial with nonnegative coefficients, $\phi(x)$ is a function from x to \mathbb{R}^M , k_3 is a valid covariance function in \mathbb{R}^M , A is a symmetric positive definite matrix, x_a and x_b are not necessarily disjoint variables with $x = (x_a, x_b)^T$, and k_a and k_b are valid kernels in their respective spaces.

Stationary Kernels

- A *stationary* kernel is invariant to translations of the input space. Equivalently, $k = k(x x') = k(\tau)$.
- ► All *distance* kernels, k = k(||x x'||) are examples of stationary kernels.
- ► The RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x-x'||^2}{2\ell^2})$ is a stationary kernel. The polynomial kernel $k_{\text{POL}}(x, x') = (x^{\text{T}}x + \sigma_0^2)^p$ is an example of a non-stationary kernel.
- ► Stationarity provides a useful *inductive bias*.

Bochner's Theorem

Theorem

(Bochner) A complex-valued function k on \mathbb{R}^P is the covariance function of a weakly stationary mean square continuous complex-valued random process on \mathbb{R}^P if and only if it can be represented as

$$k(\tau) = \int_{\mathbb{R}^P} e^{2\pi i s^T \tau} \psi(\mathrm{d}s) \,, \tag{28}$$

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the *spectral density* or *power spectrum* of k, and k and S are Fourier duals:

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (29)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathsf{T}}\tau}d\tau. \tag{30}$$

Review: Linear Basis Function Models

Model Specification

$$f(x, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \phi(x) \tag{31}$$

$$p(\mathbf{w}) = \mathcal{N}(0, \Sigma_{\mathbf{w}}) \tag{32}$$

Moments of Induced Distribution over Functions

$$\mathbb{E}[f(x, \mathbf{w})] = m(x) = \mathbb{E}[\mathbf{w}^{\mathrm{T}}]\phi(x) = 0$$
(33)

$$cov(f(x_i), f(x_j)) = k(x_i, x_j) = \mathbb{E}[f(x_i)f(x_j)] - \mathbb{E}[f(x_i)]\mathbb{E}[f(x_j)]$$
(34)

$$= \phi(x_i)^{\mathrm{T}} \mathbb{E}[\mathbf{w}\mathbf{w}^{\mathrm{T}}] \phi(x_j) - 0$$
 (35)

$$= \phi(x_i)^{\mathrm{T}} \Sigma_w \phi(x_j) \tag{36}$$

- ▶ f(x, w) is a Gaussian process, $f(x) \sim \mathcal{N}(m, k)$ with mean function m(x) = 0 and covariance kernel $k(x_i, x_i) = \phi(x_i)^T \Sigma_w \phi(x_i)$.
- ▶ The entire basis function model of Eqs. (31) and (32) is encapsulated as a distribution over functions with kernel k(x, x').

Deriving the RBF Kernel

► Start with the basis model

$$f(x) = \sum_{i=1}^{J} w_i \phi_i(x) , \qquad (37)$$

$$w_i \sim \mathcal{N}\left(0, \frac{\sigma^2}{J}\right)$$
, (38)

$$\phi_i(x) = \exp\left(-\frac{(x-c_i)^2}{2\ell^2}\right). \tag{39}$$

- ▶ Equations (37)-(39) define a radial basis function regression model, with radial basis functions centred at the points c_i .
- ▶ Using our result for the kernel of a generalised linear model,

$$k(x, x') = \frac{\sigma^2}{J} \sum_{i=1}^{J} \phi_i(x) \phi_i(x').$$
 (40)

Deriving the RBF Kernel

$$f(x) = \sum_{i=1}^{J} w_i \phi_i(x) , \quad w_i \sim \mathcal{N}\left(0, \frac{\sigma^2}{J}\right) , \quad \phi_i(x) = \exp\left(-\frac{(x - c_i)^2}{2\ell^2}\right)$$
(41)

$$\therefore k(x, x') = \frac{\sigma^2}{J} \sum_{i=1}^{J} \phi_i(x) \phi_i(x')$$
 (42)

▶ Letting $c_{i+1} - c_i = \Delta c = \frac{1}{J}$, and $J \to \infty$, the kernel in Eq. (42) becomes a Riemann sum:

$$k(x,x') = \lim_{J \to \infty} \frac{\sigma^2}{J} \sum_{i=1}^{J} \phi_i(x)\phi_i(x') = \int_{c_0}^{c_\infty} \phi_c(x)\phi_c(x')dc$$
 (43)

▶ By setting $c_0 = -\infty$ and $c_\infty = \infty$, we spread the infinitely many basis functions across the whole real line, each a distance $\Delta c \to 0$ apart:

$$k(x,x') = \int_{-\infty}^{\infty} \exp(-\frac{x-c}{2\ell^2}) \exp(-\frac{x'-c}{2\ell^2}) dc$$
 (44)

$$= \sqrt{\pi}\ell\sigma^2 \exp(-\frac{(x-x')^2}{(x-x')^2}). \tag{45}$$

Deriving the RBF Kernel

- ▶ It is remarkable we can work with infinitely many basis functions with finite amounts of computation using the *kernel trick* replacing inner products of basis functions with kernels.
- ► The RBF kernel, also known as the Gaussian or squared exponential kernel, is by far the most popular kernel.

$$k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x - x'||^2}{2\ell^2}).$$

- ▶ Recall Bochner's theorem. If we take the Fourier transform of the RBF kernel we recover a Gaussian spectral density, $S(s) = (2\pi\ell^2)^{D/2} \exp(-2\pi^2\ell^2 s^2)$ for $x \in \mathbb{R}^D$. Therefore the RBF kernel kernel does not have much support for high frequency functions, since a Gaussian does not have heavy tails.
- ► Functions drawn from a GP with an RBF kernel are infinitely differentiable. For this reason, the RBF kernel is accused of being overly smooth and unrealistic. Nonetheless it has nice theoretical properties...

The RBF Kernel

Figure: SE kernels with different length-scales, as a function of $\tau = x - x'$.

Representer Theorem

A decision function f(x) can be written as

$$f(x) = \langle \mathbf{w}, \boldsymbol{\phi}(x) \rangle = \langle \sum_{i=1}^{N} \alpha_i \boldsymbol{\phi}(x_i), \boldsymbol{\phi}(x) \rangle = \sum_{i=1}^{N} \alpha_i k(x_i, x).$$
 (46)

- ▶ Representer theorem says this function exists with finitely many coefficients α_i even when ϕ is infinite dimensional (an infinite number of basis functions).
- ► Initially viewed as a strength of kernel methods, for datasets not exceeding e.g. ten thousand points.
- ▶ Unfortunately, the number of nonzero α_i often grows linearly in the size of the training set N.
- ► Example: In GP regression, the predictive mean is

$$\mathbb{E}[f_*|\mathbf{y}, X, x_*] = \mathbf{k}_*^{\mathrm{T}} (K + \sigma^2 I)^{-1} \mathbf{y} = \sum_{i=1}^N \alpha_i k(x_i, x_*), \qquad (47)$$

where
$$\alpha_i = (K + \sigma^2 I)^{-1} \mathbf{y}$$
.

Polynomial Kernel

We have already shown that the simple linear model

$$f(x,w) = \mathbf{w}^{\mathrm{T}}x + b\,, (48)$$

$$p(w) = \mathcal{N}(0, \alpha^2 I), \tag{49}$$

$$p(b) = \mathcal{N}(0, \beta^2), \tag{50}$$

corresponds to a Gaussian process with kernel

$$k_{\text{LIN}}(x, x') = \alpha^2 x^{\text{T}} x + \beta^2. \tag{51}$$

Samples from a GP with $k_{LIN}(x, x')$ will thus be straight lines.

Recall that the product of two kernels is a valid kernel. The product of two linear kernels is a quadratic kernel, which gives rise to quadratic functions:

$$k_{\text{QUAD}}(x, x') = k_{\text{LIN}}(x, x')k_{\text{LIN}}(x, x'). \tag{52}$$

For example, if $\beta = 0$, $\alpha = 1$, and $x \in \mathbb{R}^2$, then $k_{\text{QUAD}}(x, x') = \phi(x)^{\text{T}}\phi(x')$ with $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)^{\text{T}}$, where $x = (x_1, x_2)$. We can generalize to the polynomial kernel

$$k_{\text{POL}}(x, x') = (\alpha^2 x^{\text{T}} x + \beta^2)^p. \tag{53}$$

The Rational Quadratic Kernel

▶ What if we want data varying at multiple scales?

The Rational Quadratic Kernel

Try a scale mixture of RBF kernels. Let r = ||x - x'||.

$$k(r) = \int \exp(-\frac{r^2}{2\ell^2})p(\ell)d\ell.$$

For example, we can consider a Gamma density for $p(\ell)$. Letting $\gamma = \ell^{-2}$, $g(\gamma | \alpha, \beta) \propto \gamma^{\alpha - 1} \exp(-\alpha \gamma / \beta)$, with $\beta^{-1} = \ell'^2$, the rational quadratic (RQ) kernel is derived as

$$k_{\rm RQ}(r) = \int_0^\infty k_{\rm RBF}(r|\gamma)g(\gamma|\alpha,\beta)d\gamma = (1 + \frac{r^2}{2\alpha\ell'^2})^{-\alpha}.$$
 (54)

• One could derive other interesting covariance functions using different (non-Gamma) functions for $p(\ell)$.

The Rational Quadratic Kernel

$$k_{\text{RQ}}(r) = (1 + \frac{r^2}{2\alpha\ell^2})^{-\alpha}$$
 (55)
 $r = ||\tau|| = ||x - x'||$ (56)

$$r = ||\tau|| = ||x - x'||. \tag{56}$$

Neural Network Kernel

► The neural network kernel (Neal, 1996) is famous for triggering research on Gaussian processes in the machine learning community.

Consider a neural network with one hidden layer:

$$f(x) = b + \sum_{i=1}^{J} v_i h(x; \mathbf{u}_i).$$
 (57)

▶ *b* is a bias, v_i are the hidden to output weights, *h* is any bounded hidden unit transfer function, u_i are the input to hidden weights, and *J* is the number of hidden units. Let *b* and v_i be independent with zero mean and variances σ_b^2 and σ_v^2/J , respectively, and let the u_i have independent identical distributions.

Collecting all free parameters into the weight vector \mathbf{w} ,

$$\mathbb{E}_{\mathbf{w}}[f(x)] = 0, \tag{58}$$

$$\operatorname{cov}[f(x), f(x')] = \mathbb{E}_{\mathbf{w}}[f(x)f(x')] = \sigma_b^2 + \frac{1}{J} \sum_{i=1}^{J} \sigma_v^2 \mathbb{E}_{\mathbf{u}}[h_i(x; \mathbf{u}_i) h_i(x'; \mathbf{u}_i)],$$
(59)

$$= \sigma_b^2 + \sigma_v^2 \mathbb{E}_{\boldsymbol{u}}[h(x;\boldsymbol{u})h(x';\boldsymbol{u})]. \tag{60}$$

Neural Network Kernel

$$f(x) = b + \sum_{i=1}^{J} v_i h(x; \mathbf{u}_i).$$
 (61)

- ► Let $h(x; \mathbf{u}) = \operatorname{erf}(u_0 + \sum_{j=1}^{P} u_j x_j)$, where $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$
- ▶ Choose $\boldsymbol{u} \sim \mathcal{N}(0, \Sigma)$

Then we obtain

$$k_{\rm NN}(x,x') = \frac{2}{\pi} \sin\left(\frac{2\tilde{x}^{\rm T} \Sigma \tilde{x}'}{\sqrt{(1+2\tilde{x}^{\rm T} \Sigma \tilde{x})(1+2\tilde{x}'^{\rm T} \Sigma \tilde{x}')}}\right),\tag{62}$$

where $x \in \mathbb{R}^P$ and $\tilde{x} = (1, x^T)^T$.

Neural Network Kernel

Figure: Draws from a GP with a Neural Network Kernel with Varying σ

Rasmussen and Williams (2006)

Gibbs Kernel

Recall the RBF kernel

$$k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x - x'||^2}{2\ell^2}).$$
 (63)

▶ What if we want to make the length-scale of ℓ input dependent, so that the resulting function is biased to vary more quickly in parts of the input space than in others?

Gibbs Kernel

Recall the RBF kernel

$$k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x - x'||^2}{2\ell^2}).$$
 (64)

- ▶ What if we want to make the length-scale of ℓ input dependent, so that the resulting function is biased to vary more quickly in parts of the input space than in others?
- ▶ Just letting $\ell \to \ell(x)$ doesn't produce a valid kernel.

Gibbs Kernel

$$k_{\text{Gibbs}}(x, x') = \prod_{p=1}^{P} \left(\frac{2l_p(x)l_p(x')}{l_p^2(x) + l_p^2(x')} \right)^{1/2} \exp\left(-\sum_{p=1}^{P} \frac{(x_p - x_p')^2}{l_p^2(x) + l_p^2(x')} \right), \quad (65)$$

where x_p is the p^{th} component of x.

Rasmussen and Williams (2006)

Periodic Kernel

- Transform the inputs through a vector-valued function: $u(x) = (\cos(x), \sin(x))$.
- ▶ Apply the RBF kernel in \boldsymbol{u} space: $k_{\text{RBF}}(x, x') \rightarrow k_{\text{RBF}}(\boldsymbol{u}(x), \boldsymbol{u}(x'))$.
- ► Recover the periodic kernel

$$k_{\text{PER}}(x, x') = \exp\left(-\frac{2\sin^2(\frac{x - x'}{2})}{\ell^2}\right).$$
 (66)

► Can you see anything unusual about this kernel?

Periodic Kernel

- A stationary kernel is invariant to translations of the input space: $k = k(\tau), \tau = x x'$.
- ► Intuitively, this means the properties of the function are similar across different regions of the input domain.
- ► How might we make other non-stationary kernels, besides the Gibbs kernel?

Figure: Non-stationary function

Figure: Warp the inputs (in this case, $x \to x^2$ to go from non-stationary function to a stationary function). E.g., apply k(g(x), g(x')) to the data, where g is a warping function.

- ▶ Warp the input space: $k(x, x') \rightarrow k(g(x), g(x'))$ where g is an arbitrary warping function.
- ▶ Modulate the amplitude of the kernel. If $f(x) \sim \mathcal{GP}(0, k(x, x'))$ then a(x)f(x) has kernel a(x)k(x, x')a(x'), conditioned on a(x).
- ▶ What would happen if we tried $w_1(x)f_1(x) + w_2(x)f_2(x)$ where f_1 and f_2 are GPs with different kernels?
- ► How about $\sigma(w_1(x))f_1(x) + (1 \sigma(w_1(x)))f_2(x)$?

- ► The RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x x'||^2}{2\ell^2})$ is criticized for being too smooth.
- ► How might we create a drop-in replacement, while retaining useful inductive biases?

- ► The RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x-x'||^2}{2\ell^2})$ is criticized for being too smooth.
- How might we create a drop-in replacement, while retaining useful inductive biases?
- ▶ Could replace the Euclidean distance measure with an absolute distance measure... then we recover the Ornstein-Uhlenbeck kernel: $k_{\text{OU}}(x, x') = \exp(||x x'||/\ell)$. The velocity of a particle undergoing brownian motion is described by a GP with the OU kernel.

- ► The RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x-x'||^2}{2\ell^2})$ is criticized for being too smooth.
- How might we create a drop-in replacement, while retaining useful inductive biases?
- ▶ Could replace the Euclidean distance measure with an absolute distance measure... then we recover the Ornstein-Uhlenbeck kernel: $k_{\text{OU}}(x, x') = \exp(||x x'||/\ell)$. The velocity of a particle undergoing brownian motion is described by a GP with the OU kernel.
- ▶ Recall that stationary kernels $k(\tau)$, $\tau = x x'$ and spectral densities are Fourier duals of one another:

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (67)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathsf{T}}\tau}d\tau. \tag{68}$$

If we take the Fourier transform of the RBF kernel, we recover a Gaussian spectral density... But we can go from spectral densities to kernels too...

- ► The RBF kernel $k_{\text{RBF}}(x, x') = a^2 \exp(-\frac{||x x'||^2}{2\ell^2})$ is criticized for being too smooth.
- How might we create a drop-in replacement, while retaining useful inductive biases?
- ▶ Could replace the Euclidean distance measure with an absolute distance measure... then we recover the Ornstein-Uhlenbeck kernel: $k_{\text{OU}}(x, x') = \exp(||x x'||/\ell)$. The velocity of a particle undergoing brownian motion is described by a GP with the OU kernel.
- ▶ Recall that stationary kernels $k(\tau)$, $\tau = x x'$ and spectral densities are Fourier duals of one another:

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (69)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathsf{T}}\tau}d\tau. \tag{70}$$

If we take the Fourier transform of the RBF kernel, we recover a Gaussian spectral density... But we can go from spectral densities to kernels too...

▶ If we use a Student-t spectral density for S(s), and take the inverse Fourier transform, we recover the *Matérn* kernel.

 $k_{\text{Matérn}}(x, x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}|x - x'|}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}|x - x'|}{\ell}\right), \tag{71}$

where K_{ν} is a modified Bessel function.

- ▶ In one dimension, and when $\nu + 1/2 = p$, for some natural number p, the corresponding GP is a continuous time AR(p) process.
- ▶ By setting $\nu = 1$, we obtain the *Ornstein-Uhlenbeck* (OU) kernel,

$$k_{\text{OU}}(x, x') = \exp(-\frac{||x - x'||}{\ell}).$$
 (72)

- ► The Matérn kernel does not have *concentration of measure* problems for high dimensional inputs to the extent of the RBF (Gaussian) kernel (Fastfood: Le, Sarlos, Smola, ICML 2013).
- ▶ The kernel gives rise to a Markovian process (and classical filtering and smoothing algorithms can be applied).

OU and RBF kernels both with lengthscale $\ell = 10$.

From Yunus Saatchi's PhD thesis, Scalable Inference for Structured Gaussian Process Models, 2011.

Gaussian Processes

► Are Gaussian processes Bayesian nonparametric models?

Nonparametric Kernels

- ► For a Gaussian process f(x) to be non-parametric, $f(x_i)|f_{-i}$, where f_{-i} is any collection of function values excluding $f(x_i)$, must be free to take any value in \mathbb{R} .
- ► For this freedom to be possible it is a necessary (but not sufficient) condition for the kernel of the Gaussian process to be derived from an infinite basis function expansion.
- ▶ Nonparametric kernels allow for a great amount of flexibility: the amount of information the model can represent grows with the amount of available data.

Nonparametric RBF vs Finite Dimensional Analogue

► The parametric analogue to a GP with a non-parametric RBF kernel becomes *more* confident in its predictions, the further away we get from the data!

Rasmussen, MLSS Cambridge, 2009.

Simple Random Walk

▶ Discrete time auto-regressive model

$$f(t) = a f(t-1) + \epsilon(t), \qquad (73)$$

$$\epsilon(t) \sim \mathcal{N}(0,1) \,, \tag{74}$$

$$a \in \mathbb{R}$$
, (75)

$$t = 1, 2, 3, 4, \dots (76)$$

(77)

▶ Is this model a Gaussian process?

Gaussian Process Covariance Kernels

Let
$$\tau = x - x'$$
:

$$k_{\rm SE}(\tau) = \exp(-0.5\tau^2/\ell^2)$$
 (78)

$$k_{\text{MA}}(\tau) = a(1 + \frac{\sqrt{3}\tau}{\ell}) \exp(-\frac{\sqrt{3}\tau}{\ell})$$
 (79)

$$k_{\text{RQ}}(\tau) = (1 + \frac{\tau^2}{2\alpha\ell^2})^{-\alpha}$$
 (80)

$$k_{\rm PE}(\tau) = \exp(-2\sin^2(\pi\,\tau\,\omega)/\ell^2) \tag{81}$$

CO₂ Extrapolation with Standard Kernels

Gaussian processes

"How can Gaussian processes possibly replace neural networks? Did we throw the baby out with the bathwater?"

David MacKay, 1998.

More Expressive Covariance Functions

Gaussian Process Regression Networks. Wilson et. al, ICML 2012.

Gaussian Process Regression Network

Expressive Covariance Functions

- ► GPs in Bayesian neural network like architectures. (Salakhutdinov and Hinton, 2008; Wilson et. al, 2012; Damianou and Lawrence, 2012). Task specific, difficult inference, no closed form kernels.
- ► Compositions of kernels. (Archambeau and Bach, 2011; Durrande et. al, 2011; Rasmussen and Williams, 2006).

 In the general case, difficult to interpret, difficult inference, struggle with over-fitting.

Can learn almost nothing about the covariance function of a stochastic process from a single realization, if we assume that the covariance function could be *any* positive definite function. Most commonly one assumes a restriction to *stationary* kernels, meaning that covariances are invariant to translations in the input space.

Bochner's Theorem

Theorem

(Bochner) A complex-valued function k on \mathbb{R}^P is the covariance function of a weakly stationary mean square continuous complex-valued random process on \mathbb{R}^P if and only if it can be represented as

$$k(\tau) = \int_{\mathbb{R}^P} e^{2\pi i s^T \tau} \psi(\mathrm{d}s) , \qquad (82)$$

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the *spectral density* or *power spectrum* of k, and k and S are Fourier duals:

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (83)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathrm{T}}\tau}d\tau. \tag{84}$$

Idea

k and S are Fourier duals:

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (85)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathsf{T}}\tau}d\tau. \tag{86}$$

- ▶ If we can approximate S(s) to arbitrary accuracy, then we can approximate any stationary kernel to arbitrary accuracy.
- ▶ We can model S(s) to arbitrary accuracy, since scale-location mixtures of Gaussians can approximate any distribution to arbitrary accuracy.
- A scale-location mixture of Gaussians can flexibly model many distributions, and thus many covariance kernels, even with a small number of components.

Kernels for Pattern Discovery

Let $\tau = x - x' \in \mathbb{R}^P$. From Bochner's Theorem,

$$k(\tau) = \int_{\mathbb{R}^P} S(s)e^{2\pi i s^{\mathsf{T}}\tau} ds \tag{87}$$

For simplicity, assume $\tau \in \mathbb{R}^1$ and let

$$S(s) = [\mathcal{N}(s; \mu, \sigma^2) + \mathcal{N}(-s; \mu, \sigma^2)]/2.$$
 (88)

Then

$$k(\tau) = \exp\{-2\pi^2 \tau^2 \sigma^2\} \cos(2\pi\tau\mu). \tag{89}$$

More generally, if S(s) is a symmetrized mixture of diagonal covariance Gaussians on \mathbb{R}^p , with covariance matrix $\mathbf{M}_q = \operatorname{diag}(v_q^{(1)}, \dots, v_q^{(P)})$, then

$$k(\tau) = \sum_{q=1}^{Q} w_q \cos(2\pi \tau_p \mu_q^{(p)}) \prod_{p=1}^{P} \exp\{-2\pi^2 \tau_p^2 \nu_q^{(p)}\}.$$
 (90)

GP Model for Pattern Extrapolation

- ▶ Observations $y(x) \sim \mathcal{N}(y(x); f(x), \sigma^2)$ (can easily be relaxed).
- ► $f(x) \sim \mathcal{GP}(0, k_{\text{SM}}(x, x'|\boldsymbol{\theta}))$ (f(x) is a GP with SM kernel).
- ▶ $k_{\text{SM}}(x, x'|\theta)$ can approximate many different kernels with different settings of its hyperparameters θ .
- Learning involves training these hyperparameters through maximum marginal likelihood optimization (using BFGS)

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \underbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}_{\text{model fit}} - \underbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}_{\text{complexity penalty}} - \frac{N}{2}\log(2\pi).$$
(91)

• Once hyperparameters are trained as $\hat{\theta}$, making predictions using $p(f_*|y, X_*, \hat{\theta})$, which can be expressed in closed form.

Results, CO₂

Results, Reconstructing Standard Covariances

Results, Negative Covariances

Results, Sinc Pattern

Results, Airline Passengers

Scaling up kernel machines

- ▶ Expressive kernels will be most valuable on large datasets.
- ► Computational bottlenecks for GPs:
 - Inference: $(K_{\theta} + \sigma^2 I)^{-1} y$ for $n \times n$ matrix K.
 - ► Learning: $\log |K_{\theta} + \sigma^2 I|$, for marginal likelihood evaluations needed to learn θ .
- ▶ Both inference and learning naively require $\mathcal{O}(n^3)$ operations and $\mathcal{O}(n^2)$ storage (typically from computing a Cholesky decomposition of K). Afterwards, the predictive mean and variance cost $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ per test point.

Inference and Learning

1. Learning: Optimize marginal likelihood,

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \overbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}^{\mathrm{model fit}} - \underbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}_{\mathrm{complexity penalty}} - \frac{N}{2}\log(2\pi) \,,$$

with respect to kernel hyperparameters θ .

2. Inference: Conditioned on kernel hyperparameters θ , form the predictive distribution for test inputs X_* :

$$f_*|X_*, X, y, \theta \sim \mathcal{N}(\bar{f}_*, \text{cov}(f_*)),$$

$$\bar{f}_* = K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1}y,$$

$$\text{cov}(f_*) = K_{\theta}(X_*, X_*) - K_{\theta}(X_*, X)[K_{\theta}(X, X) + \sigma^2 I]^{-1}K_{\theta}(X, X_*).$$

Scaling up kernel machines

Three Families of Approaches

- Approximate non-parametric kernels in a finite basis 'dual space'. Requires $\mathcal{O}(m^2n)$ computations and $\mathcal{O}(m)$ storage for m basis functions. Examples: SSGP, Random Kitchen Sinks, Fastfood, À la Carte.
- Inducing point based sparse approximations. Examples: SoR, FITC, KISS-GP.
- ► Exploit existing structure in *K* to quickly (and exactly) solve linear systems and log determinants. Examples: Toeplitz and Kronecker methods.

Parametric Expansions via Random Basis Functions

Return to Bochner's Theorem

$$k(\tau) = \int S(s)e^{2\pi i s^{\mathsf{T}} \tau} ds, \qquad (92)$$

$$S(s) = \int k(\tau)e^{-2\pi i s^{\mathsf{T}}\tau}d\tau. \tag{93}$$

- ▶ We can treat S(s) as a probability distribution and sample from it, to approximate the integral for $k(\tau)$!
- ▶ It is a valid Monte Carlo procedure to sample the pairs $\{s_j, -s_j\}$ from S(s):

$$k(\tau) \approx \frac{1}{2J} \sum_{j=1}^{J} \left[\exp(2\pi i s_j^{\mathsf{T}} \tau) + \exp(-2\pi i s_j^{\mathsf{T}} \tau) \right] , \qquad s_j \sim S(s) \quad (94)$$

$$= \frac{1}{J} \sum_{i=1}^{J} \cos(2\pi s_{j}^{\mathrm{T}} \tau)$$
 (95)

▶ This is exactly the covariance function we get if we use a linear basis function model with trigonometric basis functions! Use the basis function representation with finite *J* for computational efficiency.

Scaling a Gaussian process: inducing inputs

- ▶ Gaussian process f and f_* evaluated at n training points and J testing points.
- ▶ $m \ll n$ inducing points $u, p(u) = \mathcal{N}(0, K_{u,u})$
- $p(f_*,f) = \int p(f_*,f,u)du = \int p(f_*,f|u)p(u)du$
- Assume that f and f_* are conditionally independent given u:

$$p(\mathbf{f}_*,\mathbf{f}) \approx q(\mathbf{f}_*,\mathbf{f}) = \int q(\mathbf{f}_*|\mathbf{u})q(\mathbf{f}|\mathbf{u})p(\mathbf{u})d\mathbf{u}$$
(96)

Exact conditional distributions

$$p(f|u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, K_{f,f} - Q_{f,f})$$
(97)

$$p(f_*|\mathbf{u}) = \mathcal{N}(K_{f_*,\mathbf{u}}K_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{u}, K_{f_*,f_*} - Q_{f_*,f_*})$$
(98)

$$Q_{a,b} = K_{a,u} K_{u,u}^{-1} K_{u,b} (99)$$

- ▶ Cost for predictions reduced from $\mathcal{O}(n^3)$ to $\mathcal{O}(m^2n)$ where $m \ll n$.
- ▶ Different inducing approaches correspond to different additional assumptions about $q(f|\mathbf{u})$ and $q(f_*|\mathbf{u})$.

Inducing Point Methods

The inducing points act as a communication channel between the GP evaluated at the training and test points, f and f_* :

Subset of Regression (SoR)

The subset of regressors method uses deterministic conditional distributions with exact means:

$$q(\mathbf{f}|\mathbf{u}) = \mathcal{N}(K_{X,U}K_{U,U}^{-1}\mathbf{u}, \mathbf{0})$$
(100)

$$q(\mathbf{f}_*|\mathbf{u}) = \mathcal{N}(K_{X_*,U}K_{U,U}^{-1}\mathbf{u}, \mathbf{0})$$
(101)

(102)

Integrate away u via

$$p(\mathbf{f}_*,\mathbf{f}) \approx q(\mathbf{f}_*,\mathbf{f}) = \int q(\mathbf{f}_*|\mathbf{u})q(\mathbf{f}|\mathbf{u})p(\mathbf{u})d\mathbf{u}$$
(103)

to obtain the joint distribution

$$q_{\text{SoR}} = \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} Q_{X,X} & Q_{X,X_*} \\ Q_{X_*,X} & Q_{X_*,X_*} \end{bmatrix}\right). \tag{104}$$

$$Q_{a,b} = K_{a,u} K_{u,u}^{-1} K_{u,b} (105)$$

Subsets of Regressors

The predictive conditional can then be derived as before:

$$q_{SoR}(f_*|\mathbf{y}) = \mathcal{N}(\boldsymbol{\mu}, A) \tag{106}$$

$$\mu = Q_{X_*,X}(Q_{X,X} + \sigma^2 I)^{-1} \mathbf{y}$$
(107)

$$A = Q_{X_*,X_*} - Q_{X_*,X}(Q_{X,X} + \sigma^2)^{-1}Q_{X,X_*}$$
 (108)

This method can be viewed as replacing the exact covariance function k with an approximate covariance function

$$k_{\text{SoR}}(x_i, x_j) = k(x_i, U) K_{U,U}^{-1} k(U, x_j)$$
 (109)

which admits fast computations.

Subsets of Regressors

The SoR covariance matrix is

$$\widetilde{K_{\text{SoR}}(X,X)} = \widetilde{K_{X,U}} \underbrace{K_{U,U}^{m \times m}}_{K_{U,U}} K_{U,X}^{m \times n} \tag{110}$$

- ▶ For *m* < *n*, this is a low rank covariance matrix, corresponding to a degenerate (finite basis) Gaussian process.
- ► As a result, for *n* large, SoR tends to underestimate uncertainty.

FITC

FITC, the most popular inducing point method, uses the exact test conditional, and a factorized training conditional:

$$q_{\text{FITC}}(\boldsymbol{f}|\boldsymbol{u}) = \prod_{i=1}^{n} p(f_i|\boldsymbol{u})$$
(111)

$$q_{\text{FITC}}(\mathbf{f}_*|\mathbf{u}) = p(\mathbf{f}_*|\mathbf{u}). \tag{112}$$

Integrating away u, we can derive the FITC approximate kernel as:

$$\tilde{k}_{SoR}(x,z) = K_{x,U} K_{U,U}^{-1} K_{U,z}, \qquad (113)$$

$$\tilde{k}_{\text{FITC}}(x,z) = \tilde{k}_{\text{SoR}}(x,z) + \delta_{xz} \left(k(x,z) - \tilde{k}_{\text{SoR}}(x,z) \right) . \tag{114}$$

FITC replaces the diagonal of the SoR approximation with the true diagonal of *k*. FITC corresponds to a non-parametric GP.

Kronecker methods

Suppose

- ▶ If $x \in \mathbb{R}^P$, k decomposes as a product of kernels across each input dimension: $k(x_i, x_j) = \prod_{p=1}^P k^p(x_i^p, x_j^p)$ (e.g., the RBF kernel has this property).
- ▶ Suppose the inputs $x \in \mathcal{X}$ are on a multidimensional grid $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_P \subset \mathbb{R}^P$.

Then

- ▶ *K* decomposes into a Kronecker product of matrices over each input dimension $K = K^1 \otimes \cdots \otimes K^P$.
- ▶ The eigendecomposition of K into QVQ also decomposes: $Q = Q^1 \otimes \cdots \otimes Q^P$, $V = Q^1 \otimes \cdots \otimes Q^P$. Assuming equal cardinality for each input dimension, we can thus eigendecompose an $N \times N$ matrix K in $\mathcal{O}(PN^{3/P})$ operations instead of $\mathcal{O}(N^3)$ operations.

Kronecker methods

Suppose

- ▶ If $x \in \mathbb{R}^P$, k decomposes as a product of kernels across each input dimension: $k(x_i, x_j) = \prod_{p=1}^P k^p(x_i^p, x_j^p)$ (e.g., the RBF kernel has this property).
- Suppose the inputs $x \in \mathcal{X}$ are on a multidimensional grid $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_P \subset \mathbb{R}^P$.

Then

- ▶ *K* decomposes into a Kronecker product of matrices over each input dimension $K = K^1 \otimes \cdots \otimes K^P$.
- ▶ The eigendecomposition of K into QVQ also decomposes: $Q = Q^1 \otimes \cdots \otimes Q^P$, $V = Q^1 \otimes \cdots \otimes Q^P$. Assuming equal cardinality for each input dimension, we can thus eigendecompose an $N \times N$ matrix K in $\mathcal{O}(PN^{3/P})$ operations instead of $\mathcal{O}(N^3)$ operations.

Then inference and learning are highly efficient:

•

$$(K + \sigma^2 I)^{-1} \mathbf{y} = (QVQ^{\mathsf{T}} + \sigma^2 I)^{-1} \mathbf{y} = Q(V + \sigma^2 I)^{-1} Q^{\mathsf{T}} \mathbf{y},$$
 (115)

$$\log |K + \sigma^2 I| = \log |QVQ^{\mathsf{T}} + \sigma^2 I| = \sum_{i=1}^{N} \log(\lambda_i + \sigma^2), \quad (116)$$

Kronecker Methods

- ▶ We assumed that the inputs $x \in \mathcal{X}$ are on a multidimensional grid $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_P \subset \mathbb{R}^P$.
- ► How might we relax this assumption, to use Kronecker methods if there are gaps (missing data) in our multidimensional grid?

Kronecker Methods

- ▶ Assume imaginary points that complete the grid
- ▶ Place infinite noise on these points so they have no effect on inference
- ► The relevant matrices are no longer Kronecker, but we can get around this using pre-conditioned conjugate gradients, an iterative linear solver.

Kronecker Methods with Missing Data

- Assuming we have a dataset of M observations which are not necessarily on a grid, we propose to form a complete grid using W imaginary observations, $\mathbf{y}_W \sim \mathcal{N}(\mathbf{f}_W, \epsilon^{-1}I_W), \epsilon \to 0$.
- ► The total observation vector $\mathbf{y} = [\mathbf{y}_M, \mathbf{y}_W]^T$ has N = M + W entries: $\mathbf{y} = \mathcal{N}(\mathbf{f}, D_N)$, where the noise covariance matrix $D_N = \operatorname{diag}(D_M, \epsilon^{-1}I_W)$, $D_M = \sigma^2I_M$.
- ► The imaginary observations y_W have *no corrupting effect* on inference: the moments of the resulting predictive distribution are exactly the same as for the standard predictive distribution, namely $\lim_{\epsilon \to 0} (K_N + D_N)^{-1} y = (K_M + D_M)^{-1} y_M$.

Kronecker Methods with Missing Inputs

- We use preconditioned conjugate gradients to compute $(K_N + D_N)^{-1} y$. We use the preconditioning matrix $C = D_N^{-1/2}$ to solve $C^T(K_N + D_N) Cz = C^T y$. The preconditioning matrix C speeds up convergence by ignoring the imaginary observations y_W .
- ► For the log complexity in the marginal likelihood (used in hyperparameter learning),

$$\log |K_M + D_M| = \sum_{i=1}^{M} \log(\lambda_i^M + \sigma^2) \approx \sum_{i=1}^{M} \log(\tilde{\lambda}_i^M + \sigma^2), \quad (117)$$

where
$$\tilde{\lambda}_i^M = \frac{M}{N} \lambda_i^N$$
 for $i = 1, \dots, M$.

Spectral Mixture Product Kernel

- The spectral mixture kernel, in its standard form, does not quite have Kronecker structure.
- ► Introduce a *spectral mixture product kernel*, which takes a product of across input dimensions of one dimensional spectral mixture kernels.

$$k_{\text{SMP}}(\tau|\boldsymbol{\theta}) = \prod_{p=1}^{P} k_{\text{SM}}(\tau_p|\boldsymbol{\theta}_p).$$
 (118)

GPatt

- Observations $y(x) \sim \mathcal{N}(y(x); f(x), \sigma^2)$ (can easily be relaxed).
- ► $f(x) \sim \mathcal{GP}(0, k_{\text{SMP}}(x, x'|\theta))$ (f(x) is a GP with SMP kernel).
- ▶ $k_{\text{SMP}}(x, x'|\theta)$ can approximate many different kernels with different settings of its hyperparameters θ .
- ► *Learning* involves training these hyperparameters through maximum marginal likelihood optimization (using BFGS)

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \underbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}_{\text{model fit}} - \underbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}_{\text{complexity penalty}} - \frac{N}{2}\log(2\pi).$$
(119)

- Once hyperparameters are trained as $\hat{\theta}$, making predictions using $p(f_*|y, X_*, \hat{\theta})$, which can be expressed in closed form.
- Exploit Kronecker structure for fast exact inference and learning (and extend Kronecker methods to allow for non-grid data). *Exact* inference and learning requires $\mathcal{O}(PN^{\frac{P+1}{P}})$ operations and $\mathcal{O}(PN^{\frac{2}{p}})$ storage, compared to $\mathcal{O}(N^3)$ operations and $\mathcal{O}(N^2)$ storage, for N datapoints, and P input dimensions.

Results

Results: Extrapolation and Interpolation with Shadows

Automatic Model Selection via Marginal Likelihood

- Simple initialisation
- ▶ The marginal likelihood shrinks weights of extraneous components to zero through the $\log |K|$ complexity penalty.

Results

More Patterns

Speed and Accuracy Stress Tests

Image Inpainting

Recovering Sophisticated Out of Class Kernels

Video Extrapolation

- GPatt makes almost no assumptions about the correlation structures across input dimensions: it can automatically discover both temporal and spatial correlations!
- ► Top row: True frames taken from the middle of a movie. Bottom row: Predicted sequence of frames (all are forecast together).
- ▶ 112,500 datapoints. GPatt training time is under 5 minutes.

Land Surface Temperature Forecasting

- ► Train using 9 years of temperature data. First two rows are the last 12 months of training data, last two rows is a 12 month ahead forecast. 300,000 data points, with 40% missing data (from ocean).
- Predictions using GP-SE (GP with an SE or RBF kernel), and Kronecker Inference.

Land Surface Temperature Forecasting

- ► Train using 9 years of temperature data. First two rows are the last 12 months of training data, last two rows is a 12 month ahead forecast. 300,000 data points, with 40% missing data (from ocean).
- ▶ Predictions using GPatt. Training time < 30 minutes.

Learned Kernels for Land Surface Temperatures

► The learned GPatt kernel tells us interesting properties of the data. In this case, the learned kernels are heavy tailed and quasi-periodic.

Building Gauss-Markov Processes

Generalising inducing point methods

Blackboard discussion