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Gaussian process review

Definition
A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning
(f (x1), . . . , f (xN)) ∼ N (µ,K), with µi = m(xi) and
Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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Gaussian Process Inference

I Observed noisy data y = (y(x1), . . . , y(xN))T at input locations X.
I Start with the standard regression assumption: N (y(x); f (x), σ2).
I Place a Gaussian process distribution over noise free functions

f (x) ∼ GP(0, kθ). The kernel k is parametrized by θ.
I Infer p(f∗|y,X,X∗) for the noise free function f evaluated at test points

X∗.

Joint distribution[
y

f∗

]
∼ N

(
0,

[
Kθ(X,X) + σ2I Kθ(X,X∗)

Kθ(X∗,X) Kθ(X∗,X∗)

])
. (1)

Conditional predictive distribution

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) , (2)

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y , (3)

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .
(4)
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Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(5)

We can write the evidence of the model as

p(y|Mi) =

∫
p(y|f ,Mi)p(f)df , (6)

              y
All Possible Datasets

p(
y|

M
)
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Learning and Model Selection

I We can integrate away the entire Gaussian process f (x) to obtain the
marginal likelihood, as a function of kernel hyperparameters θ alone.

p(y|θ,X) =

∫
p(y|f ,X)p(f |θ,X)df . (7)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) . (8)

I An extremely powerful mechanism for kernel learning.

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t, 

f(
x)

Samples from GP Prior  

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t, 

f(
x)

Samples from GP Posterior

5 / 100



Inference and Learning

1. Learning: Optimize marginal likelihood,

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) ,

with respect to kernel hyperparameters θ.
2. Inference: Conditioned on kernel hyperparameters θ, form the

predictive distribution for test inputs X∗:

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) ,

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y ,

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .
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Learning and Model Selection

I A fully Bayesian treatment would integrate away kernel
hyperparameters θ.

p(f∗|X∗,X, y) =

∫
p(f∗|X∗,X, y,θ)p(θ|y)dθ (9)

I For example, we could specify a prior p(θ), use MCMC to take J
samples from p(θ|y) ∝ p(y|θ)p(θ), and then find

p(f∗|X∗,X, y) ≈ 1
J

J∑
i=1

p(f∗|X∗,X, y,θ(i)) , θ(i) ∼ p(θ|y) . (10)

I If we have a non-Gaussian noise model, and thus cannot integrate away
f , the strong dependencies between Gaussian process f and
hyperparameters θ make sampling extremely difficult. In my
experience, the most effective solution is to use a deterministic
approximation for the posterior p(f |y) which enables one to work with
an approximate marginal likelihood.
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Popular Kernels

Let τ = x− x′:

kSE(τ) = exp(−0.5τ 2/`2) (11)

kMA(τ) = a(1 +

√
3τ
`

) exp(−
√

3τ
`

) (12)

kRQ(τ) = (1 +
τ 2

2α `2 )−α (13)

kPE(τ) = exp(−2 sin2(π τ ω)/`2) (14)
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Worked Example: Combining Kernels, CO2 Data
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Example from Rasmussen and Williams (2006), Gaussian Processes for
Machine Learning.
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Worked Example: Combining Kernels, CO2 Data
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Worked Example: Combining Kernels, CO2 Data

I Long rising trend: k1(xp, xq) = θ2
1 exp

(
− (xp−xq)

2

2θ2
2

)
I Quasi-periodic seasonal changes: k2(xp, xq) =

kRBF(xp, xq)kPER(xp, xq) = θ2
3 exp

(
− (xp−xq)

2θ2
4
− 2 sin2(π(xp−xq))

θ2
5

)
I Multi-scale medium term irregularities:

k3(xp, xq) = θ2
6

(
1 +

(xp−xq)
2

2θ8θ2
7

)−θ8

I Correlated and i.i.d. noise: k4(xp, xq) = θ2
9 exp

(
− (xp−xq)

2

2θ2
10

)
+ θ2

11δpq

I ktotal(xp, xq) = k1(xp, xq) + k2(xp, xq) + k3(xp, xq) + k4(xp, xq)
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What is a kernel?

I Informally, k describes the similarities between pairs of data points. For
example, far away points may be considered less similar than nearby
points. Kij = 〈φ(xi),φ(xj)〉 and so tells us the overlap between the
features (basis functions) φ(xi) and φ(xj)

I We have seen that all linear basis function models f (x) = wTφ(x), with
p(w) = N (0,Σw) correspond to Gaussian processes with kernel
k(x, x′) = φ(x)TΣwφ(x′).

I We have also accumulated some experience with the RBF kernel
kRBF(x, x′) = a2 exp(− ||x−x′||2

2`2 ).
I The kernel controls the generalisation behaviour of a kernel machine.

For example, a kernel controls the support and inductive biases of a
Gaussian process – which functions are a priori likely.

I A kernel is also known as covariance function or covariance kernel in
the context of Gaussian processes.
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Candidate Kernel

k(x, x′) =

{
1 ||x− x′|| ≤ 1
0 otherwise

I Symmetric
I Provides information about proximity of points
I Exercise: Is it a valid kernel?

13 / 100



Candidate Kernel

k(x, x′) =

{
1 ||x− x′|| ≤ 1
0 otherwise

Try the points x1 = 1, x2 = 2, x3 = 3.
Compute the kernel matrix

K =

 ? ? ?
? ? ?
? ? ?

 (15)
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Candidate Kernel

k(x, x′) =

{
1 ||x− x′|| ≤ 1
0 otherwise

Try the points x1 = 1, x2 = 2, x3 = 3.
Compute the kernel matrix

K =

 1 1 0
1 1 1
0 1 1

 (16)

The eigenvalues of K are (
√

(2)− 1)−1, 1, and (1−
√

(2)). Therefore K is
not positive semidefinite.
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Representer Theorem

A decision function f (x) can be written as

f (x) = 〈w,φ(x)〉 = 〈
N∑

i=1

αiφ(xi),φ(x)〉 =

N∑
i=1

αik(xi, x) . (17)

I Representer theorem says this function exists with finitely many
coefficients αi even when φ is infinite dimensional (an infinite number
of basis functions).

I Initially viewed as a strength of kernel methods, for datasets not
exceeding e.g. ten thousand points.

I Unfortunately, the number of nonzero αi often grows linearly in the
size of the training set N.

I Example: In GP regression, the predictive mean is

E[f∗|y,X, x∗] = kT
∗(K + σ2I)−1y =

N∑
i=1

αik(xi, x∗) , (18)

where αi = (K + σ2I)−1y .
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Making new kernels from old

Suppose k1(x, x′) and k2(x, x′) are valid. Then the following covariance
functions are also valid:

k(x, x′) = g(x)k1(x, x′)g(x′) (19)
k(x, x′) = q(k1(x, x′)) (20)
k(x, x′) = exp(k1(x, x′)) (21)
k(x, x′) = k1(x, x′) + k2(x, x′) (22)
k(x, x′) = k1(x, x′)k2(x, x′) (23)
k(x, x′) = k3(φ(x),φ(x′)) (24)

k(x, x′) = xTAx′ (25)
k(x, x′) = ka(xa, x′a) + kb(xb, x′b) (26)
k(x, x′) = ka(xa, x′a)kb(xb, x′b) (27)

where g is any function, q is a polynomial with nonnegative coefficients,
φ(x) is a function from x to RM , k3 is a valid covariance function in RM , A is
a symmetric positive definite matrix, xa and xb are not necessarily disjoint
variables with x = (xa, xb)T, and ka and kb are valid kernels in their
respective spaces.
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Stationary Kernels

I A stationary kernel is invariant to translations of the input space.
Equivalently, k = k(x− x′) = k(τ).

I All distance kernels, k = k(||x− x′||) are examples of stationary
kernels.

I The RBF kernel kRBF(x, x′) = a2 exp(− ||x−x′||2
2`2 ) is a stationary kernel.

The polynomial kernel kPOL(x, x′) = (xTx + σ2
0)p is an example of a

non-stationary kernel.
I Stationarity provides a useful inductive bias.
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Bochner’s Theorem

Theorem
(Bochner) A complex-valued function k on RP is the covariance function of a
weakly stationary mean square continuous complex-valued random process
on RP if and only if it can be represented as

k(τ) =

∫
RP

e2πisTτψ(ds) , (28)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power
spectrum of k, and k and S are Fourier duals:

k(τ) =

∫
S(s)e2πisTτds , (29)

S(s) =

∫
k(τ)e−2πisTτdτ . (30)
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Review: Linear Basis Function Models

Model Specification

f (x,w) = wTφ(x) (31)
p(w) = N (0,Σw) (32)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]φ(x) = 0 (33)
cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] (34)

= φ(xi)
TE[wwT]φ(xj)− 0 (35)

= φ(xi)
TΣwφ(xj) (36)

I f (x,w) is a Gaussian process, f (x) ∼ N (m, k) with mean function
m(x) = 0 and covariance kernel k(xi, xj) = φ(xi)

TΣwφ(xj).
I The entire basis function model of Eqs. (31) and (32) is encapsulated as

a distribution over functions with kernel k(x, x′).
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Deriving the RBF Kernel

I Start with the basis model

f (x) =

J∑
i=1

wiφi(x) , (37)

wi ∼ N
(

0,
σ2

J

)
, (38)

φi(x) = exp
(
− (x− ci)

2

2`2

)
. (39)

I Equations (37)-(39) define a radial basis function regression model,
with radial basis functions centred at the points ci.

I Using our result for the kernel of a generalised linear model,

k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) . (40)
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Deriving the RBF Kernel

f (x) =

J∑
i=1

wiφi(x) , wi ∼ N
(

0,
σ2

J

)
, φi(x) = exp

(
− (x− ci)

2

2`2

)
(41)

∴ k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) (42)

I Letting ci+1 − ci = ∆c = 1
J , and J →∞, the kernel in Eq. (42)

becomes a Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x′) =

∫ c∞

c0

φc(x)φc(x′)dc (43)

I By setting c0 = −∞ and c∞ =∞, we spread the infinitely many basis
functions across the whole real line, each a distance ∆c→ 0 apart:

k(x, x′) =

∫ ∞
−∞

exp(−x− c
2`2 ) exp(−x′ − c

2`2 )dc (44)

=
√
π`σ2 exp(− (x− x′)2

2(
√

2`)2
) . (45) 22 / 100



Deriving the RBF Kernel

I It is remarkable we can work with infinitely many basis functions with
finite amounts of computation using the kernel trick – replacing inner
products of basis functions with kernels.

I The RBF kernel, also known as the Gaussian or squared exponential
kernel, is by far the most popular kernel.
kRBF(x, x′) = a2 exp(− ||x−x′||2

2`2 ).
I Recall Bochner’s theorem. If we take the Fourier transform of the RBF

kernel we recover a Gaussian spectral density,
S(s) = (2π`2)D/2 exp(−2π2`2s2) for x ∈ RD. Therefore the RBF kernel
kernel does not have much support for high frequency functions, since a
Gaussian does not have heavy tails.

I Functions drawn from a GP with an RBF kernel are infinitely
differentiable. For this reason, the RBF kernel is accused of being
overly smooth and unrealistic. Nonetheless it has nice theoretical
properties...
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The RBF Kernel
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Representer Theorem

A decision function f (x) can be written as

f (x) = 〈w,φ(x)〉 = 〈
N∑

i=1

αiφ(xi),φ(x)〉 =

N∑
i=1

αik(xi, x) . (46)

I Representer theorem says this function exists with finitely many
coefficients αi even when φ is infinite dimensional (an infinite number
of basis functions).

I Initially viewed as a strength of kernel methods, for datasets not
exceeding e.g. ten thousand points.

I Unfortunately, the number of nonzero αi often grows linearly in the
size of the training set N.

I Example: In GP regression, the predictive mean is

E[f∗|y,X, x∗] = kT
∗(K + σ2I)−1y =

N∑
i=1

αik(xi, x∗) , (47)

where αi = (K + σ2I)−1y .
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Polynomial Kernel

We have already shown that the simple linear model

f (x,w) = wTx + b , (48)

p(w) = N (0, α2I) , (49)

p(b) = N (0, β2) , (50)

corresponds to a Gaussian process with kernel

kLIN(x, x′) = α2xTx + β2 . (51)

Samples from a GP with kLIN(x, x′) will thus be straight lines.
Recall that the product of two kernels is a valid kernel. The product of two
linear kernels is a quadratic kernel, which gives rise to quadratic functions:

kQUAD(x, x′) = kLIN(x, x′)kLIN(x, x′) . (52)

For example, if β = 0, α = 1, and x ∈ R2, then kQUAD(x, x′) = φ(x)Tφ(x′)
with φ(x) = (x2

1, x
2
2,
√

2x1x2)T, where x = (x1, x2). We can generalize to the
polynomial kernel

kPOL(x, x′) = (α2xTx + β2)p . (53)
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The Rational Quadratic Kernel

I What if we want data varying at multiple scales?
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The Rational Quadratic Kernel

Try a scale mixture of RBF kernels. Let r = ||x− x′||.
I k(r) =

∫
exp(− r2

2`2 )p(`)d` .

For example, we can consider a Gamma density for p(`). Letting γ = `−2,
g(γ|α, β) ∝ γα−1 exp(−αγ/β), with β−1 = `′2, the rational quadratic (RQ)
kernel is derived as

kRQ(r) =

∫ ∞
0

kRBF(r|γ)g(γ|α, β)dγ = (1 +
r2

2α`′2
)−α . (54)

I One could derive other interesting covariance functions using different
(non-Gamma) functions for p(`).
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The Rational Quadratic Kernel

kRQ(r) = (1 +
r2

2α`2 )−α (55)

r = ||τ || = ||x− x′|| . (56)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

τ

k(
τ)

RQ kernels with Different α

 

 

α = 40

α=0.1

α=2

(a)

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Input, x

f(
x)

Sample GP−RQ Functions

(b)

29 / 100



Neural Network Kernel

I The neural network kernel (Neal, 1996) is famous for triggering
research on Gaussian processes in the machine learning community.

Consider a neural network with one hidden layer:

f (x) = b +

J∑
i=1

vih(x; ui) . (57)

I b is a bias, vi are the hidden to output weights, h is any bounded hidden
unit transfer function, ui are the input to hidden weights, and J is the
number of hidden units. Let b and vi be independent with zero mean
and variances σ2

b and σ2
v/J, respectively, and let the ui have independent

identical distributions.
Collecting all free parameters into the weight vector w,

Ew[f (x)] = 0 , (58)

cov[f (x), f (x′)] = Ew[f (x)f (x′)] = σ2
b +

1
J

J∑
i=1

σ2
vEu[hi(x; ui)hi(x′; ui)] ,

(59)

= σ2
b + σ2

vEu[h(x; u)h(x′; u)] . (60)

But for f (x) to be a GP, any collection of values f (x1), . . . , f (xN) must have a
joint Gaussian distribution. We can show this using the central limit theorem.
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Neural Network Kernel

f (x) = b +

J∑
i=1

vih(x; ui) . (61)

I Let h(x; u) = erf(u0 +
∑P

j=1 ujxj), where erf(z) = 2√
π

∫ z
0 e−t2

dt

I Choose u ∼ N (0,Σ)

Then we obtain

kNN(x, x′) =
2
π

sin(
2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)
) , (62)

where x ∈ RP and x̃ = (1, xT)T.
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Neural Network Kernel

Figure: Draws from a GP with a Neural Network Kernel with Varying σ

Rasmussen and Williams (2006)
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Gibbs Kernel

Recall the RBF kernel

kRBF(x, x′) = a2 exp(−||x− x′||2

2`2 ) . (63)

I What if we want to make the length-scale of ` input dependent, so that
the resulting function is biased to vary more quickly in parts of the
input space than in others?
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Gibbs Kernel

Recall the RBF kernel

kRBF(x, x′) = a2 exp(−||x− x′||2

2`2 ) . (64)

I What if we want to make the length-scale of ` input dependent, so that
the resulting function is biased to vary more quickly in parts of the
input space than in others?

I Just letting `→ `(x) doesn’t produce a valid kernel.
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Gibbs Kernel

kGibbs(x, x′) =

P∏
p=1

( 2lp(x)lp(x′)
l2p(x) + l2p(x′)

)1/2
exp

(
−

P∑
p=1

(xp − x′p)2

l2p(x) + l2p(x′)

)
, (65)

where xp is the pth component of x.

   (a)                                                 (b)

Rasmussen and Williams (2006)
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Periodic Kernel

I Transform the inputs through a vector-valued function:
u(x) = (cos(x), sin(x)).

I Apply the RBF kernel in u space: kRBF(x, x′)→ kRBF(u(x),u(x′)).
I Recover the periodic kernel

kPER(x, x′) = exp(−
2 sin2( x−x′

2 )

`2 ) . (66)

I Can you see anything unusual about this kernel?
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Periodic Kernel

0 2 4 6 8 10
0.85

0.9

0.95

1

1.05

Input distance, r

C
ov

ar
ia

nc
e

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Input, x
O

ut
pu

t, 
y(

x)
(b)

37 / 100



Non-Stationary Kernels

I A stationary kernel is invariant to translations of the input space:
k = k(τ), τ = x− x′.

I Intuitively, this means the properties of the function are similar across
different regions of the input domain.

I How might we make other non-stationary kernels, besides the Gibbs
kernel?
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Non-Stationary Kernels
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Non-Stationary Kernels
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Figure: Warp the inputs (in this case, x→ x2 to go from non-stationary function to a
stationary function). E.g., apply k(g(x), g(x′)) to the data, where g is a warping
function.
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Non-Stationary Kernels
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Non-Stationary Kernels

I Warp the input space: k(x, x′)→ k(g(x), g(x′)) where g is an arbitrary
warping function.

I Modulate the amplitude of the kernel. If f (x) ∼ GP(0, k(x, x′)) then
a(x)f (x) has kernel a(x)k(x, x′)a(x′), conditioned on a(x).

I What would happen if we tried w1(x)f1(x) + w2(x)f2(x) where f1 and f2
are GPs with different kernels?

I How about σ(w1(x))f1(x) + (1− σ(w1(x)))f2(x)?
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Matérn Kernel

I The RBF kernel kRBF(x, x′) = a2 exp(− ||x−x′||2
2`2 ) is criticized for being

too smooth.
I How might we create a drop-in replacement, while retaining useful

inductive biases?
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Matérn Kernel

I The RBF kernel kRBF(x, x′) = a2 exp(− ||x−x′||2
2`2 ) is criticized for being

too smooth.
I How might we create a drop-in replacement, while retaining useful

inductive biases?
I Could replace the Euclidean distance measure with an absolute distance

measure... then we recover the Ornstein-Uhlenbeck kernel:
kOU(x, x′) = exp(||x− x′||/`). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.
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Matérn Kernel

I The RBF kernel kRBF(x, x′) = a2 exp(− ||x−x′||2
2`2 ) is criticized for being

too smooth.
I How might we create a drop-in replacement, while retaining useful

inductive biases?
I Could replace the Euclidean distance measure with an absolute distance

measure... then we recover the Ornstein-Uhlenbeck kernel:
kOU(x, x′) = exp(||x− x′||/`). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.

I Recall that stationary kernels k(τ), τ = x− x′ and spectral densities are
Fourier duals of one another:

k(τ) =

∫
S(s)e2πisTτds , (67)

S(s) =

∫
k(τ)e−2πisTτdτ . (68)

If we take the Fourier transform of the RBF kernel, we recover a
Gaussian spectral density... But we can go from spectral densities to
kernels too...
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Matérn Kernel

I The RBF kernel kRBF(x, x′) = a2 exp(− ||x−x′||2
2`2 ) is criticized for being

too smooth.
I How might we create a drop-in replacement, while retaining useful

inductive biases?
I Could replace the Euclidean distance measure with an absolute distance

measure... then we recover the Ornstein-Uhlenbeck kernel:
kOU(x, x′) = exp(||x− x′||/`). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.

I Recall that stationary kernels k(τ), τ = x− x′ and spectral densities are
Fourier duals of one another:

k(τ) =

∫
S(s)e2πisTτds , (69)

S(s) =

∫
k(τ)e−2πisTτdτ . (70)

If we take the Fourier transform of the RBF kernel, we recover a
Gaussian spectral density... But we can go from spectral densities to
kernels too...

I If we use a Student-t spectral density for S(s), and take the inverse
Fourier transform, we recover the Matérn kernel.
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Matérn Kernel

I

kMatérn(x, x′) =
21−ν

Γ(ν)
(

√
2ν|x− x′|

`
)νKν(

√
2ν|x− x′|

`
) , (71)

where Kν is a modified Bessel function.
I In one dimension, and when ν + 1/2 = p, for some natural number p,

the corresponding GP is a continuous time AR(p) process.
I By setting ν = 1, we obtain the Ornstein-Uhlenbeck (OU) kernel,

kOU(x, x′) = exp(−||x− x′||
`

) . (72)

I The Matérn kernel does not have concentration of measure problems
for high dimensional inputs to the extent of the RBF (Gaussian) kernel
(Fastfood: Le, Sarlos, Smola, ICML 2013).

I The kernel gives rise to a Markovian process (and classical filtering and
smoothing algorithms can be applied).
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Matérn Kernel

OU and RBF kernels both with lengthscale ` = 10.
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Matérn Kernel

From Yunus Saatchi’s PhD thesis, Scalable Inference for Structured Gaussian
Process Models, 2011.
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Gaussian Processes

I Are Gaussian processes Bayesian nonparametric models?
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Nonparametric Kernels

I For a Gaussian process f (x) to be non-parametric, f (xi)|f−i, where f−i

is any collection of function values excluding f (xi), must be free to take
any value in R.

I For this freedom to be possible it is a necessary (but not sufficient)
condition for the kernel of the Gaussian process to be derived from an
infinite basis function expansion.

I Nonparametric kernels allow for a great amount of flexibility: the
amount of information the model can represent grows with the amount
of available data.
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Nonparametric RBF vs Finite Dimensional Analogue

I The parametric analogue to a GP with a non-parametric RBF kernel
becomes more confident in its predictions, the further away we get from
the data!

Rasmussen, MLSS Cambridge, 2009.
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Simple Random Walk

I Discrete time auto-regressive model
I

f (t) = a f (t − 1) + ε(t) , (73)
ε(t) ∼ N (0, 1) , (74)

a ∈ R , (75)
t = 1, 2, 3, 4, . . . (76)

(77)

I Is this model a Gaussian process?
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Gaussian Process Covariance Kernels

Let τ = x− x′:

kSE(τ) = exp(−0.5τ 2/`2) (78)

kMA(τ) = a(1 +

√
3τ
`

) exp(−
√

3τ
`

) (79)

kRQ(τ) = (1 +
τ 2

2α `2 )−α (80)

kPE(τ) = exp(−2 sin2(π τ ω)/`2) (81)
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CO2 Extrapolation with Standard Kernels
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Gaussian processes

“How can Gaussian processes possibly
replace neural networks? Did we throw the
baby out with the bathwater?”

David MacKay, 1998.
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More Expressive Covariance Functions

f̂i(x)

f̂1(x)

f̂q(x)

y1(x)

yj(x)

W11
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...

... ...

...

x

Gaussian Process Regression Networks. Wilson et. al, ICML 2012.
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Gaussian Process Regression Network
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Expressive Covariance Functions

I GPs in Bayesian neural network like architectures. (Salakhutdinov and
Hinton, 2008; Wilson et. al, 2012; Damianou and Lawrence, 2012).
Task specific, difficult inference, no closed form kernels.

I Compositions of kernels. (Archambeau and Bach, 2011; Durrande et.
al, 2011; Rasmussen and Williams, 2006).
In the general case, difficult to interpret, difficult inference, struggle
with over-fitting.

Can learn almost nothing about the covariance function of a stochastic
process from a single realization, if we assume that the covariance function
could be any positive definite function. Most commonly one assumes a
restriction to stationary kernels, meaning that covariances are invariant to
translations in the input space.
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Bochner’s Theorem

Theorem
(Bochner) A complex-valued function k on RP is the covariance function of a
weakly stationary mean square continuous complex-valued random process
on RP if and only if it can be represented as

k(τ) =

∫
RP

e2πisTτψ(ds) , (82)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power
spectrum of k, and k and S are Fourier duals:

k(τ) =

∫
S(s)e2πisTτds , (83)

S(s) =

∫
k(τ)e−2πisTτdτ . (84)
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Idea

k and S are Fourier duals:

k(τ) =

∫
S(s)e2πisTτds , (85)

S(s) =

∫
k(τ)e−2πisTτdτ . (86)

I If we can approximate S(s) to arbitrary accuracy, then we can
approximate any stationary kernel to arbitrary accuracy.

I We can model S(s) to arbitrary accuracy, since scale-location mixtures
of Gaussians can approximate any distribution to arbitrary accuracy.

I A scale-location mixture of Gaussians can flexibly model many
distributions, and thus many covariance kernels, even with a small
number of components.
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Kernels for Pattern Discovery

Let τ = x− x′ ∈ RP. From Bochner’s Theorem,

k(τ) =

∫
RP

S(s)e2πisTτds (87)

For simplicity, assume τ ∈ R1 and let

S(s) = [N (s;µ, σ2) +N (−s;µ, σ2)]/2 . (88)

Then

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (89)

More generally, if S(s) is a symmetrized mixture of diagonal covariance
Gaussians on Rp, with covariance matrix Mq = diag(v(1)

q , . . . , v(P)
q ), then

k(τ) =

Q∑
q=1

wqcos(2πτpµ
(p)
q )

P∏
p=1

exp{−2π2τ 2
p v(p)

q }. (90)
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GP Model for Pattern Extrapolation

I Observations y(x) ∼ N (y(x); f (x), σ2) (can easily be relaxed).
I f (x) ∼ GP(0, kSM(x, x′|θ)) (f (x) is a GP with SM

kernel).
I kSM(x, x′|θ) can approximate many different kernels with different

settings of its hyperparameters θ.
I Learning involves training these hyperparameters through maximum

marginal likelihood optimization (using BFGS)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) .

(91)
I Once hyperparameters are trained as θ̂, making predictions using

p(f∗|y,X∗, θ̂), which can be expressed in closed form.
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Results, CO2
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Results, Reconstructing Standard Covariances
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Results, Negative Covariances
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Results, Sinc Pattern

−15 −10 −5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (input)

O
bs

er
va

tio
n

(h)

−15 −10 −5 0 5 10 15

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (input)

O
b

se
rv

a
tio

n

Train

Test

MA

RQ

SE

PER

SM

(i)

0 20 40 60 80
−0.5

0

0.5

1

τ

C
or

re
la

tio
n

 

 

MA

SM

(j)

0 0.1 0.2 0.3 0.4 0.5 0.6
−150

−100

−50

0

Frequency

Lo
g 

S
pe

ct
ra

l D
en

si
ty

 

 

SM

SE

Empirical

(k)

67 / 100



Results, Airline Passengers
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Scaling up kernel machines

I Expressive kernels will be most valuable on large datasets.
I Computational bottlenecks for GPs:

I Inference: (Kθ + σ2I)−1y for n× n matrix K.
I Learning: log |Kθ + σ2I|, for marginal likelihood evaluations needed to

learn θ.

I Both inference and learning naively require O(n3) operations and
O(n2) storage (typically from computing a Cholesky decomposition of
K). Afterwards, the predictive mean and variance cost O(n) and O(n2)
per test point.
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Inference and Learning

1. Learning: Optimize marginal likelihood,

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) ,

with respect to kernel hyperparameters θ.
2. Inference: Conditioned on kernel hyperparameters θ, form the

predictive distribution for test inputs X∗:

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) ,

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y ,

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .
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Scaling up kernel machines

Three Families of Approaches

I Approximate non-parametric kernels in a finite basis ‘dual space’.
Requires O(m2n) computations and O(m) storage for m basis
functions. Examples: SSGP, Random Kitchen Sinks, Fastfood,
À la Carte.

I Inducing point based sparse approximations. Examples: SoR, FITC,
KISS-GP.

I Exploit existing structure in K to quickly (and exactly) solve linear
systems and log determinants. Examples: Toeplitz and Kronecker
methods.
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Parametric Expansions via Random Basis Functions

I Return to Bochner’s Theorem

k(τ) =

∫
S(s)e2πisTτds , (92)

S(s) =

∫
k(τ)e−2πisTτdτ . (93)

I We can treat S(s) as a probability distribution and sample from it, to
approximate the integral for k(τ)!

I It is a valid Monte Carlo procedure to sample the pairs {sj,−sj} from
S(s):

k(τ) ≈ 1
2J

J∑
j=1

[
exp(2πisT

j τ) + exp(−2πisT
j τ)
]
, sj ∼ S(s) (94)

=
1
J

J∑
j=1

cos(2πsT
j τ) (95)

I This is exactly the covariance function we get if we use a linear basis
function model with trigonometric basis functions! Use the basis
function representation with finite J for computational efficiency.
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Scaling a Gaussian process: inducing inputs

I Gaussian process f and f∗ evaluated at n training points and J testing
points.

I m� n inducing points u, p(u) = N (0,Ku,u)

I p(f∗, f) =
∫

p(f∗, f,u)du =
∫

p(f∗, f |u)p(u)du
I Assume that f and f∗ are conditionally independent given u:

p(f∗, f) ≈ q(f∗, f) =

∫
q(f∗|u)q(f |u)p(u)du (96)

I Exact conditional distributions

p(f |u) = N (Kf ,uK−1
u,uu,Kf ,f − Qf ,f ) (97)

p(f∗|u) = N (Kf∗,uK−1
u,uu,Kf∗,f∗ − Qf∗,f∗) (98)

Qa,b = Ka,uK−1
u,uKu,b (99)

I Cost for predictions reduced from O(n3) to O(m2n) where m� n.
I Different inducing approaches correspond to different additional

assumptions about q(f |u) and q(f∗|u).
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Inducing Point Methods

The inducing points act as a communication channel between the GP
evaluated at the training and test points, f and f∗:
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Subset of Regression (SoR)

The subset of regressors method uses deterministic conditional distributions
with exact means:

q(f |u) = N (KX,UK−1
U,Uu, 0) (100)

q(f∗|u) = N (KX∗,UK−1
U,Uu, 0) (101)

(102)

Integrate away u via

p(f∗, f) ≈ q(f∗, f) =

∫
q(f∗|u)q(f |u)p(u)du (103)

to obtain the joint distribution

qSoR = N

(
0,

[
QX,X QX,X∗

QX∗,X QX∗,X∗

])
. (104)

Qa,b = Ka,uK−1
u,uKu,b (105)
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Subsets of Regressors

The predictive conditional can then be derived as before:

qSoR(f∗|y) = N (µ,A) (106)

µ = QX∗,X(QX,X + σ2I)−1y (107)

A = QX∗,X∗ − QX∗,X(QX,X + σ2)−1QX,X∗ (108)

This method can be viewed as replacing the exact covariance function k with
an approximate covariance function

kSoR(xi, xj) = k(xi,U)K−1
U,Uk(U, xj) (109)

which admits fast computations.
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Subsets of Regressors

The SoR covariance matrix is

n×n︷ ︸︸ ︷
KSoR(X,X) =

n×m︷︸︸︷
KX,U

m×m︷︸︸︷
K−1

U,U

m×n︷︸︸︷
KU,X (110)

I For m < n, this is a low rank covariance matrix, corresponding to a
degenerate (finite basis) Gaussian process.

I As a result, for n large, SoR tends to underestimate uncertainty.
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FITC

FITC, the most popular inducing point method, uses the exact test
conditional, and a factorized training conditional:

qFITC(f |u) =

n∏
i=1

p(fi|u) (111)

qFITC(f∗|u) = p(f∗|u) . (112)

Integrating away u, we can derive the FITC approximate kernel as:

k̃SoR(x, z) = Kx,UK−1
U,UKU,z , (113)

k̃FITC(x, z) = k̃SoR(x, z) + δxz
(
k(x, z)− k̃SoR(x, z)

)
. (114)

FITC replaces the diagonal of the SoR approximation with the true diagonal
of k. FITC corresponds to a non-parametric GP.

78 / 100



Kronecker methods

Suppose
I If x ∈ RP, k decomposes as a product of kernels across each input

dimension: k(xi, xj) =
∏P

p=1 kp(xp
i , x

p
j ) (e.g., the RBF kernel has this

property).
I Suppose the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

Then
I K decomposes into a Kronecker product of matrices over each input

dimension K = K1 ⊗ · · · ⊗ KP.
I The eigendecomposition of K into QVQ also decomposes:

Q = Q1 ⊗ · · · ⊗ QP, V = Q1 ⊗ · · · ⊗ QP. Assuming equal cardinality
for each input dimension, we can thus eigendecompose an N × N
matrix K in O(PN3/P) operations instead of O(N3) operations.
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Kronecker methods

Suppose
I If x ∈ RP, k decomposes as a product of kernels across each input

dimension: k(xi, xj) =
∏P

p=1 kp(xp
i , x

p
j ) (e.g., the RBF kernel has this

property).
I Suppose the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

Then
I K decomposes into a Kronecker product of matrices over each input

dimension K = K1 ⊗ · · · ⊗ KP.
I The eigendecomposition of K into QVQ also decomposes:

Q = Q1 ⊗ · · · ⊗ QP, V = Q1 ⊗ · · · ⊗ QP. Assuming equal cardinality
for each input dimension, we can thus eigendecompose an N × N
matrix K in O(PN3/P) operations instead of O(N3) operations.

Then inference and learning are highly efficient:
I

(K + σ2I)−1y = (QVQT + σ2I)−1y = Q(V + σ2I)−1QTy , (115)

log |K + σ2I| = log |QVQT + σ2I| =
N∑

i=1

log(λi + σ2) , (116)

where λi are the eigenvalues of K. Saatchi (2011)
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Kronecker Methods

I We assumed that the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

I How might we relax this assumption, to use Kronecker methods if there
are gaps (missing data) in our multidimensional grid?
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Kronecker Methods

I Assume imaginary points that complete the grid
I Place infinite noise on these points so they have no effect on inference
I The relevant matrices are no longer Kronecker, but we can get around

this using pre-conditioned conjugate gradients, an iterative linear solver.
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Kronecker Methods with Missing Data

I Assuming we have a dataset of M observations which are not
necessarily on a grid, we propose to form a complete grid using W
imaginary observations, yW ∼ N (fW , ε

−1IW), ε→ 0.
I The total observation vector y = [yM, yW ]T has N = M + W entries:

y = N (f ,DN), where the noise covariance matrix
DN = diag(DM, ε

−1IW), DM = σ2IM .
I The imaginary observations yW have no corrupting effect on inference:

the moments of the resulting predictive distribution are exactly the
same as for the standard predictive distribution, namely
limε→0(KN + DN)−1y = (KM + DM)−1yM .
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Kronecker Methods with Missing Inputs

I We use preconditioned conjugate gradients to compute (KN + DN)
−1 y.

We use the preconditioning matrix C = D−1/2
N to solve

CT (KN + DN) Cz = CTy. The preconditioning matrix C speeds up
convergence by ignoring the imaginary observations yW .

I For the log complexity in the marginal likelihood (used in
hyperparameter learning),

log |KM + DM| =
M∑

i=1

log(λM
i + σ2) ≈

M∑
i=1

log(λ̃M
i + σ2) , (117)

where λ̃M
i = M

N λ
N
i for i = 1, . . . ,M.
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Spectral Mixture Product Kernel

I The spectral mixture kernel, in its standard form, does not quite have
Kronecker structure.

I Introduce a spectral mixture product kernel, which takes a product of
across input dimensions of one dimensional spectral mixture kernels.

kSMP(τ |θ) =

P∏
p=1

kSM(τp|θp) . (118)
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GPatt

I Observations y(x) ∼ N (y(x); f (x), σ2) (can easily be relaxed).
I f (x) ∼ GP(0, kSMP(x, x′|θ)) (f (x) is a GP with SMP

kernel).
I kSMP(x, x′|θ) can approximate many different kernels with different

settings of its hyperparameters θ.
I Learning involves training these hyperparameters through maximum

marginal likelihood optimization (using BFGS)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) .

(119)
I Once hyperparameters are trained as θ̂, making predictions using

p(f∗|y,X∗, θ̂), which can be expressed in closed form.
I Exploit Kronecker structure for fast exact inference and learning (and

extend Kronecker methods to allow for non-grid data). Exact inference
and learning requires O(PN

P+1
P ) operations and O(PN

2
P ) storage,

compared to O(N3) operations and O(N2) storage, for N datapoints,
and P input dimensions.
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Results
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Results: Extrapolation and Interpolation with Shadows

(a) Train (b) GPatt (c) GP-MA

(d) Train (e) GPatt (f) GP-MA
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Automatic Model Selection via Marginal Likelihood

I Simple initialisation
I The marginal likelihood shrinks weights of extraneous components to

zero through the log |K| complexity penalty.
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Results

 

 

(a) Train

 

 

(b) Test (c) Full (d) GPatt (e) SSGP (f) FITC
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More Patterns

(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail

 

 

(f) Cone
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Speed and Accuracy Stress Tests

(a) Runtime Stress Test (b) Accuracy Stress Test
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Image Inpainting
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Recovering Sophisticated Out of Class Kernels
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Video Extrapolation

I GPatt makes almost no assumptions about the correlation structures
across input dimensions: it can automatically discover both temporal
and spatial correlations!

I Top row: True frames taken from the middle of a movie. Bottom row:
Predicted sequence of frames (all are forecast together).

I 112,500 datapoints. GPatt training time is under 5 minutes.
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Land Surface Temperature Forecasting

I Train using 9 years of temperature data. First two rows are the last 12
months of training data, last two rows is a 12 month ahead forecast.
300, 000 data points, with 40% missing data (from ocean).

I Predictions using GP-SE (GP with an SE or RBF kernel), and
Kronecker Inference.
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Land Surface Temperature Forecasting

I Train using 9 years of temperature data. First two rows are the last 12
months of training data, last two rows is a 12 month ahead forecast.
300, 000 data points, with 40% missing data (from ocean).

I Predictions using GPatt. Training time < 30 minutes.
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Learned Kernels for Land Surface Temperatures
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(a) Learned GPatt Kernel for Temperatures
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(b) Learned GP-SE Kernel for Temperatures

I The learned GPatt kernel tells us interesting properties of the data. In
this case, the learned kernels are heavy tailed and quasi-periodic.
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Building Gauss-Markov Processes
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Generalising inducing point methods

Blackboard discussion
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