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Definition

A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

Nonparametric Regression Model

» Prior: f(x) ~ GP(m(x), k(x,x’)), meaning
(f(xl)v s ’f(xN)) ~ N(Il‘v K)’ with Hi = m(xi) and
Kij = cov(f(xi),f(x})) = k(xi, x;).

GP posterior Likelihood ~ GP prior
—~

—— —
p(f(x)|D) o< p(DIf (x)) p(f(x))

Gaussian process sample prior functions Gaussian process sample posterior functions
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Gaussian Process Inference

» Observed noisy datay = (y(x1),...,y(xy))T at input locations X.
» Start with the standard regression assumption: N (y(x);f(x), o2).

KQ(X7X)+UZI K@(XaX*)
Ko(Xi,X)  Kp(Xi, X)

» Place a Gaussian process distribution over noise free functions
f(x) ~ GP(0,ky). The kernel k is parametrized by 6.
» Infer p(f.|y, X, X.) for the noise free function f evaluated at test points
X
Joint distribution
y
[ ] ~N <0, ) . 1)
Sx
Conditional predictive distribution
filX. X, y,0 ~ N(f., cov(£.)) 2
fe = Ko(Xo, X)[Ko (X, X) +0°1) "y, 3)
COV(f*) = KQ(X*,X*) - K@(X*7X)[K9(X7X) + 021}71K9(X,X*) .
“
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p(Mily) = ”WZ—&”(M )

We can write the evidence of the model as

pOyIM;) = / POl MOp(F)f ©)

~—

Complex Model Jr Data
—— Simple Model 3 —— Simple
~——— Appropriate Model , Complex
~——— Appropriate

plyIm)

Output, f(x)

y ~ - -2 0 2
All Possible Datasets Input, x

() (b)
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Learning and Model Selection

» We can integrate away the entire Gaussian process f(x) to obtain the
marginal likelihood, as a function of kernel hyperparameters 6 alone.

P(y16,X) = / POV X)p(f10.X)df ™

model fit complexity penalty

1 _ 1 N
logp(y[0.X) = —in(Ko +o’)ly— 5 log Ko + 0?1 —5 log(2m). (8)
» An extremely powerful mechanism for kernel learning.

Samples from GP Prior Samples from GP Posterior

Output, f(x)
Output, f(x)
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1. Learning: Optimize marginal likelihood,

model fit complexity penalty

,

1 1 N
logp(y|0,X) = —EyT(Kg + 021) ly — > log |Ke + 021| -7 log(27),

with respect to kernel hyperparameters 6.

2. Inference: Conditioned on kernel hyperparameters 6, form the
predictive distribution for test inputs X,:

f*|X*7Xaya 9 ~ N(f‘*,COV(j‘*)) 9
fe = Ko(X., X)[Ko(X, X) + °1] "y,
cov(f.) = Ko(X., X..) — Ko(Xo, X)[Ko (X, X) + 017 'Kp(X, X.,) .

6/100



Learning and Model Selection

» A fully Bayesian treatment would integrate away kernel
hyperparameters 6.

p(flXe Xoy) = / p(f.|X.. X,y, O)p(01y)d0 ©)

» For example, we could specify a prior p(8), use MCMC to take J
samples from p(8|y) x p(y|0)p(80), and then find

J
IZ . .

i=1

» If we have a non-Gaussian noise model, and thus cannot integrate away
[, the strong dependencies between Gaussian process f and
hyperparameters @ make sampling extremely difficult. In my
experience, the most effective solution is to use a deterministic
approximation for the posterior p(f|y) which enables one to work with
an approximate marginal likelihood.
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Lett =x—x":

ksg(T) = exp(—0.572/0%) (11)

kva(T) = a(1 + g)exp(—g) (12)
2

keo(r) = (14 5773)™" (13

kpg(7) = exp(—2sin’ (7 7w)/?) (14)
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Example from Rasmussen and Williams (2006), Gaussian Processes for
Machine Learning.
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2
» Long rising trend: k; (x,,x,) = 67 exp (—%)

> Quasi-periodic seasonal changes: k»(x,,x,) =

— in? m —
krgr (X, %g ) kpER (X, Xg) = 9% exp (_ (xpze;q) _ 2sin’( 9(5;,, xq))>
Multi-scale medium term irregularities:
6
ko) = 03 (1+ L)

20563
» Correlated and i.i.d. noise: k4(x,,x,) = 03 exp (—(—x’%&ﬁ) + 03,0pq

Ktotal (Xp, Xq) = ki (2, X4) + k2 (%, X%4) + k3 (xp, X4) + ka(xp, X4)
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What is a kernel?

» Informally, k describes the similarities between pairs of data points. For
example, far away points may be considered less similar than nearby
points. K;; = (¢(x;), ¢(x;)) and so tells us the overlap between the
features (basis functions) ¢(x;) and ¢(x;)

» We have seen that all linear basis function models f(x) = wT¢(x), with
p(w) = N(0,3,) correspond to Gaussian processes with kernel
k(x,x') = dp(x)TE,0(x').

» We have also accumulated some experience with the RBF kernel
krpr(x,x') = a? exp(—%).

» The kernel controls the generalisation behaviour of a kernel machine.
For example, a kernel controls the support and inductive biases of a
Gaussian process — which functions are a priori likely.

» A kernel is also known as covariance function or covariance kernel in
the context of Gaussian processes.
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0 otherwise

1 —X|| <1
k(xvx,):{ [l — || <

» Symmetric
» Provides information about proximity of points
» Exercise: Is it a valid kernel?
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k(x,x')={1 =<1

0 otherwise

Try the points x; = 1, x, =2, x3 = 3.
Compute the kernel matrix

? 7 7
K=|7 77 (15)
707 7
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0 otherwise

1 —X|| <1
k(x’x,):{ [l = ]| <

Try the points x; = 1, x, = 2, x3 = 3.
Compute the kernel matrix

110
K=1|111 (16)
01 1

The eigenvalues of K are (1/(2) — 1)7!, 1, and (1 — 1/(2)). Therefore K is
not positive semidefinite.
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Representer Theorem

A decision function f(x) can be written as
N N
) =(w,0(x) = O i), p(x) = > aik(xi,x). a7
i=1 i=1

» Representer theorem says this function exists with finitely many
coefficients «; even when ¢ is infinite dimensional (an infinite number
of basis functions).

» Initially viewed as a strength of kernel methods, for datasets not
exceeding e.g. ten thousand points.

» Unfortunately, the number of nonzero «; often grows linearly in the
size of the training set N.

» Example: In GP regression, the predictive mean is
N
Elfly, X,x.] = kL(K +0°1) "'y = > aik(xi, x.) , (18)
i=1

where a; = (K 4+ 0%1)~ 'y .
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Making new kernels from old

Suppose k (x,x") and k,(x, x') are valid. Then the following covariance
functions are also valid:

k(x,x") = g(x)ki (x,x")g(x") (19)
k(x,x") = q(ki(x,x)) (20)
k(x,x") = exp(ki (x,x)) 1)
k(x,x') = ki (x,x7) + ka (x, ') (22)
k(x, x") = ky (x, x")ka (x, x") (23)
k(x,x") = ks ((x), p(x')) (24)
k(x,x') = x"Ax' (25)
k(xvx/) kq (xa’ a) Jrkh(xbvxb) (26)
k(x, x') = kq(xq, x5 ki (x5, X3,) 27

where g is any function, ¢ is a polynomial with nonnegative coefficients,
¢(x) is a function from x to R, k; is a valid covariance function in R¥, A is
a symmetric positive definite matrix, x, and x; are not necessarily disjoint
variables with x = (x,,x;)", and k, and k;, are valid kernels in their
respective spaces.
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» A stationary kernel is invariant to translations of the input space.
Equivalently, k = k(x — x’) = k(7).

» All distance kernels, k = k(||x — x’||) are examples of stationary
kernels.

» The RBF kernel kgpp(x, ') = a” exp(— “ “ ) is a stationary kernel.
The polynomial kernel kpor (x,x') = (xTx + 03)P is an example of a
non-stationary kernel.

» Stationarity provides a useful inductive bias.
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Theorem

(Bochner) A complex-valued function k on R is the covariance function of a
weakly stationary mean square continuous complex-valued random process
on R? if and only if it can be represented as

k(r) = / ™ T (ds) (28)
RP
where 1 is a positive finite measure.

If ¢ has a density S(s), then S is called the spectral density or power
spectrum of k, and k and S are Fourier duals:

k(T) = / S(s)e¥™' 7 ds | (29)

S(s) = / k(r)e 2™ dr . (30)

19/100



Review: Linear Basis Function Models
Model Specification

flx,w) =wo(x) 31)
p(w) =N(0,%,) (32)

Moments of Induced Distribution over Functions

E[f (x, w)]

m(x) = Ew"]¢(x) = 0 (33)

cov(f(xi),f (7)) = k(xi, %) = E[f (xi)f ()] — E[f () |E[f(x))]  (34)
= ¢(x)) 'Eww"]¢p(x;) — 0 (35)
:d)( ) Ewd)(xj) (36)

> f(x,w) is a Gaussian process, f(x) ~ N (m, k) with mean function
m(x) = 0 and covariance kernel k(x;, x;) = ¢(x;) TS, (x;).

» The entire basis function model of Eqs. (31) and (32) is encapsulated as
a distribution over functions with kernel k(x, x").



» Start with the basis model

J
) = wii(x), 37
i=1
wi ~N<0,072> ; (38)
_ o2
¢i(x) = exp <_ (x 2gzct) ) : (39)

» Equations (37)-(39) define a radial basis function regression model,
with radial basis functions centred at the points c;.

» Using our result for the kernel of a generalised linear model,

2 J
kxx') = 23 dilx)o(x). (40)
i=1
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2 J
¥) = 23 a0l “2)
i=1

» Letting ¢;11 — ¢; = Ac = 4, and J — oo, the kernel in Eq. (42)
becomes a Riemann sum:

k(xx)—hm—Z@ )i(x / Ge(x)pe(x)dc  (43)

» By setting ¢p = —o0 and Coo = 00, we spread the infinitely many basis
functions across the whole real line, each a distance Ac — 0 apart:

by = [~ ent-S e S5 e @

o \2
= \/%&72 exp(—%) . (45) 22/100



Deriving the RBF Kernel

» It is remarkable we can work with infinitely many basis functions with
finite amounts of computation using the kernel trick — replacing inner
products of basis functions with kernels.

» The RBF kernel, also known as the Gaussian or squared exponential

kernel, is by far the most popular kernel.
7112

krgr(x,x') = a* exp(—%).

» Recall Bochner’s theorem. If we take the Fourier transform of the RBF
kernel we recover a Gaussian spectral density,
S(s) = (2m?)P/? exp(—2m2¢%s?) for x € RP. Therefore the RBF kernel
kernel does not have much support for high frequency functions, since a
Gaussian does not have heavy tails.

» Functions drawn from a GP with an RBF kernel are infinitely
differentiable. For this reason, the RBF kernel is accused of being
overly smooth and unrealistic. Nonetheless it has nice theoretical
properties...
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SE kernels with Different Length—scales
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Figure: SE kernels with different length-scales, as a function of 7 = x — x’.
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Representer Theorem

A decision function f(x) can be written as
N N
) =(w,0(x) = O i), p(x) = > aik(xi,x). (46)
i=1 i=1

» Representer theorem says this function exists with finitely many
coefficients «; even when ¢ is infinite dimensional (an infinite number
of basis functions).

» Initially viewed as a strength of kernel methods, for datasets not
exceeding e.g. ten thousand points.

» Unfortunately, the number of nonzero «; often grows linearly in the
size of the training set N.

» Example: In GP regression, the predictive mean is
N
Elfly, X,x.] = kL(K +0°1) "'y = > aik(xi, x.) , (47)
i=1

where a; = (K 4+ 0%1)~ 'y .
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Polynomial Kernel

We have already shown that the simple linear model

flx,w) =wlx +b, (48)
p(w) = N(0,0%I), (49)
p(b) =N(0, ), (50)
corresponds to a Gaussian process with kernel
ki (x, %) = ox"x 4 2. (51)

Samples from a GP with kp n(x, x") will thus be straight lines.
Recall that the product of two kernels is a valid kernel. The product of two
linear kernels is a quadratic kernel, which gives rise to quadratic functions:

kquap (x, x") = ki (x, %" Ykpin (x, x7) (52)

For example, if 5 = 0, & = 1, and x € R?, then kquap (x,x) = ¢(x)Tep(x')
with ¢(x) = (2, x3, v2x1x2)T, where x = (x;,x,). We can generalize to the
polynomial kernel

keov (x,x') = (a’x"x+ 7). (53)
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» What if we want data varying at multiple scales?
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Try a scale mixture of RBF kernels. Let r = ||x — x’||.

> k(r) = fexp(—z%)p(f)dé.
For example, we can consider a Gamma density for p(£). Letting v = £72,
g(v|a, B) ox v*~Lexp(—ay/B), with =1 = ¢'2, the rational quadratic (RQ)
kernel is derived as

%) 2
kro(r) = /0 keor(rl)g(1la, B)dy = (14 555) 7 (54)

» One could derive other interesting covariance functions using different
(non-Gamma) functions for p(¢).
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2
r
kro(r) = (14 =—)~¢ 55
ro(r) = (1+ 573 (55)
r=Irll = Ik =]l (56)
RQ kernels with Different a Sample GP-RQ Functions
14 25
12 —a =40 2
—0a=0.1
15
1 —a=2
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Neural Network Kernel

» The neural network kernel (Neal, 1996) is famous for triggering
research on Gaussian processes in the machine learning community.

Consider a neural network with one hidden layer:
J
x)=b+ Z vih(x;u;) . (57

» b is a bias, v; are the hidden to output weights, % is any bounded hidden
unit transfer function, u; are the input to hidden weights, and J is the
number of hidden units. Let b and v; be independent with zero mean
and variances a,f and af /J, respectively, and let the u; have independent
identical distributions.

Collecting all free parameters into the weight vector w,

Ey[f(x)] =0, (58)
cov[f(x),f(¥)] = Eulf(x)f ()] = o} + Zo% w5 )]

(59)
= 07 + By [h(x;u)h(x s u)] . (60)
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J
@) =b+) vih(x;u). (61)
i=1

> Let h(x;u) = erf(ug + >0, upx;), where erf(z) = % IS e~ dt
» Choose u ~ N(0,X)
Then we obtain
2XTY¥
VI +275%) (1 + H/sz)) '

ko (3, ) = %sin( 62)

where x € R and ¥ = (1,x7)T.
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output, f(x)

Figure: Draws from a GP with a Neural Network Kernel with Varying o

Rasmussen and Williams (2006)
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Recall the RBF kernel
=X

) (63)

krer (x,2') = a* exp(

» What if we want to make the length-scale of ¢ input dependent, so that
the resulting function is biased to vary more quickly in parts of the
input space than in others?
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Recall the RBF kernel

=P

2
202 )

kRBF(x, x') =a 6Xp( (64)

» What if we want to make the length-scale of £ input dependent, so that
the resulting function is biased to vary more quickly in parts of the
input space than in others?

» Just letting £ — ¢(x) doesn’t produce a valid kernel.
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v

Transform the inputs through a vector-valued function:
u(x) = (cos(x), sin(x)).

v

Apply the RBF kernel in u space: krpp(x,x’) — krpr(u(x),u(x’)).

v

Recover the periodic kernel

2 sinz(x_zx' )

kpgr (x,x") = exp(—

v

Can you see anything unusual about this kernel?
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» A stationary kernel is invariant to translations of the input space:
k=k(r),r=x—x.

» Intuitively, this means the properties of the function are similar across
different regions of the input domain.

» How might we make other non-stationary kernels, besides the Gibbs
kernel?
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Figure: Non-stationary function
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5 10 15 20 25

(b)

Figure: Warp the inputs (in this case, x — x° to go from non-stationary function to a
stationary function). E.g., apply k(g(x), g(x")) to the data, where g is a warping
function.
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» Warp the input space: k(x,x’) — k(g(x), g(x")) where g is an arbitrary
warping function.

» Modulate the amplitude of the kernel. If f(x) ~ GP(0, k(x,x")) then
a(x)f (x) has kernel a(x)k(x, x')a(x'), conditioned on a(x).

» What would happen if we tried wy (x)f; (x) + wa(x)f2(x) where fi and f>
are GPs with different kernels?

» How about o (w; (x))fi(x) + (1 — a(wi(x)))fa(x)?
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» The RBF kernel kgpp(x,x’) = a” exp(— ”x;;zlllz) is criticized for being
too smooth.

» How might we create a drop-in replacement, while retaining useful
inductive biases?
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I

» The RBF kernel kgpr(x, ') = a* exp(——l Ix;gle
too smooth.

) is criticized for being

» How might we create a drop-in replacement, while retaining useful
inductive biases?

» Could replace the Euclidean distance measure with an absolute distance
measure... then we recover the Ornstein-Uhlenbeck kernel:
kou(x,x’) = exp(||x — x’||/£). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.
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Matérn Kernel

>

>

The RBF kernel krpr(x, x') = a* exp(—%) is criticized for being
too smooth.

How might we create a drop-in replacement, while retaining useful
inductive biases?

Could replace the Euclidean distance measure with an absolute distance
measure... then we recover the Ornstein-Uhlenbeck kernel:

kou(x,x") = exp(||x — x’||/£). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.

Recall that stationary kernels k(7), 7 = x — x” and spectral densities are
Fourier duals of one another:

k(r) = / S(s)e2™ 7 ds | (67)
S(s) = / k(T)e ' T dr . (68)
If we take the Fourier transform of the RBF kernel, we recover a

Gaussian spectral density... But we can go from spectral densities to
kernels too...
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Matérn Kernel

>

>

The RBF kernel kgpg(x, x') = a® exp(— ”X;;;/HZ) is criticized for being
too smooth. ‘

How might we create a drop-in replacement, while retaining useful
inductive biases?

Could replace the Euclidean distance measure with an absolute distance
measure... then we recover the Ornstein-Uhlenbeck kernel:

kou(x,x’) = exp(||x — x’||/£). The velocity of a particle undergoing
brownian motion is described by a GP with the OU kernel.

Recall that stationary kernels k(7), 7 = x — x’ and spectral densities are
Fourier duals of one another:
k(r) = / S(s)e>™ T ds , (69)
S(s) = / k(T)e ' T qr . (70)

If we take the Fourier transform of the RBF kernel, we recover a
Gaussian spectral density... But we can go from spectral densities to
kernels too...

If we use a Student-7 spectral density for S(s), and take the inverse
Fourier transform, we recover the Matérn kernel.
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Matérn Kernel

2171/ \/27|X _ x/|
1"(1/)( L

where K, is a modified Bessel function.

)VKV( ) ) (71)

kMatérn (x7 xl) =

V2vu)x — X/|
14

» In one dimension, and when v + 1/2 = p, for some natural number p,
the corresponding GP is a continuous time AR(p) process.

» By setting v = 1, we obtain the Ornstein-Uhlenbeck (OU) kernel,

[l — x|

) (72)

kou(x,x") = exp(—

» The Matérn kernel does not have concentration of measure problems
for high dimensional inputs to the extent of the RBF (Gaussian) kernel
(Fastfood: Le, Sarlos, Smola, ICML 2013).

» The kernel gives rise to a Markovian process (and classical filtering and
smoothing algorithms can be applied).
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OU and RBF kernels both with lengthscale ¢ = 10.
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From Yunus Saatchi’s PhD thesis, Scalable Inference for Structured Gaussian
Process Models, 2011.
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» Are Gaussian processes Bayesian nonparametric models?
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Nonparametric Kernels

» For a Gaussian process f(x) to be non-parametric, f (x;)|f—;, where f_;
is any collection of function values excluding f(x;), must be free to take
any value in R.

» For this freedom to be possible it is a necessary (but not sufficient)
condition for the kernel of the Gaussian process to be derived from an
infinite basis function expansion.

» Nonparametric kernels allow for a great amount of flexibility: the
amount of information the model can represent grows with the amount
of available data.
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» The parametric analogue to a GP with a non-parametric RBF kernel
becomes more confident in its predictions, the further away we get from

the data!
1 c T T T T T T T T T -
/N
/ \
05 PN g
\
// ? 0\
7/ \
0 \ _ -
—05 C 1 1 1 1 L 1 L 1 .
-10 -8 -6 -4 -2 0 2 4 6 8 10

Rasmussen, MLSS Cambridge, 2009.
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» Discrete time auto-regressive model

>
[y =af(t—1)+€@), (73)
e(t) ~ N(0,1), (74)
a€R, (75)
t=1,2,3,4,... (76)
(77)

» Is this model a Gaussian process?
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LetT =x—x':

ksg(T) = exp(—0.572/0%) (78)

kva(T) = a(1 + g)exp(—g) (79)
2

keo(r) = (14 5773)™" (80)

kpe () = exp(—2sin® (7 7 w)/¢%) 81)
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Gaussian processes

“How can Gaussian processes possibly
replace neural networks? Did we throw the
baby out with the bathwater?”

David MacKay, 1998.
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Gaussian Process Regression Networks. Wilson et. al, ICML 2012.
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Gaussian Process Regression Network

latitude

longitude
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Expressive Covariance Functions

» GPs in Bayesian neural network like architectures. (Salakhutdinov and
Hinton, 2008; Wilson et. al, 2012; Damianou and Lawrence, 2012).
Task specific, difficult inference, no closed form kernels.

» Compositions of kernels. (Archambeau and Bach, 2011; Durrande et.
al, 2011; Rasmussen and Williams, 2006).
In the general case, difficult to interpret, difficult inference, struggle
with over-fitting.

Can learn almost nothing about the covariance function of a stochastic
process from a single realization, if we assume that the covariance function
could be any positive definite function. Most commonly one assumes a
restriction to stationary kernels, meaning that covariances are invariant to
translations in the input space.
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Theorem

(Bochner) A complex-valued function k on R is the covariance function of a
weakly stationary mean square continuous complex-valued random process
on R? if and only if it can be represented as

k(r) = / ™ T (ds) (82)
RP
where 1 is a positive finite measure.

If ¢ has a density S(s), then S is called the spectral density or power
spectrum of k, and k and S are Fourier duals:

k(r) = / S(s)e¥™' 7 ds | (83)

S(s) = / k(r)e 2™ Tdr . (84)
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Idea

k and S are Fourier duals:
k(t) = / S(s)e2™ 7 ds | (85)

S(s) = / k(r)e ' T qr . (86)

» If we can approximate S(s) to arbitrary accuracy, then we can
approximate any stationary kernel to arbitrary accuracy.

» We can model S(s) to arbitrary accuracy, since scale-location mixtures
of Gaussians can approximate any distribution to arbitrary accuracy.

» A scale-location mixture of Gaussians can flexibly model many
distributions, and thus many covariance kernels, even with a small
number of components.
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Let 7 = x — x’ € R”. From Bochner’s Theorem,

k(7) = / S(s)e2™" 7 ds 87)
]RP
For simplicity, assume 7 € R! and let
S(s) = [N (s; p, 02) + N (=s; 1, 02)] /2. (88)
Then
k(1) = exp{—2n*7%0*} cos(2mTp) . (89)
More generally, if S(s) is a symmetrized mixture of diagonal covariance
Gaussians on R”, with covariance matrix M, = diag(v,sl), . ,vf,P) ), then
0 P
k(r) =Y “wycos(2rr,ul)) [ [ exp{ 277 v} (90)

q=1 p=1
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GP Model for Pattern Extrapolation

» Observations y(x) ~ N (y(x);f(x), %) (can easily be relaxed).

> f(x) ~ GP(0, ksm(x,x'|0)) (f(x) is a GP with SM
kernel).

> ksm(x,x’'|@) can approximate many different kernels with different

settings of its hyperparameters 6.

Learning involves training these hyperparameters through maximum
marginal likelihood optimization (using BFGS)

model fit complexity penalty

logp(y|0,X) = —%yT(Kg + o)y - % log|Kg + 01| —g log(27) .

oD
Once hyperparameters are trained as 0, making predictions using
p(fily, X«, 8), which can be expressed in closed form.
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Scaling up kernel machines

» Expressive kernels will be most valuable on large datasets.
» Computational bottlenecks for GPs:

> Inference: (Ko 4 o*I)~'y for n x n matrix K.
» Learning: log |Kg + 1|, for marginal likelihood evaluations needed to
learn 6.

» Both inference and learning naively require O(n?) operations and
O(n?) storage (typically from computing a Cholesky decomposition of
K). Afterwards, the predictive mean and variance cost O(n) and O(n?)
per test point.
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1. Learning: Optimize marginal likelihood,

model fit complexity penalty

~

1 1 N
logp(y|0,X) = —EyT(Kg + 021) ly — > log |Ke + 021| -7 log(27),

with respect to kernel hyperparameters 6.

2. Inference: Conditioned on kernel hyperparameters 6, form the
predictive distribution for test inputs X,:

f*|X*7Xaya 9 ~ N(f‘*,COV(j‘*)) 9
fe = Ko(X., X)[Ko(X, X) + °1] "y,
cov(f.) = Ko(X., X..) — Ko(Xo, X)[Ko (X, X) + 017 'Kp(X, X.,) .
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Scaling up kernel machines

Three Families of Approaches

» Approximate non-parametric kernels in a finite basis ‘dual space’.
Requires O(m*n) computations and O(m) storage for m basis
functions. Examples: SSGP, Random Kitchen Sinks, Fastfood,

A la Carte.

» Inducing point based sparse approximations. Examples: SoR, FITC,
KISS-GP.

» Exploit existing structure in K to quickly (and exactly) solve linear
systems and log determinants. Examples: Toeplitz and Kronecker
methods.
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Parametric Expansions via Random Basis Functions

» Return to Bochner’s Theorem

k(r) = /S(s)ez’mTTds, (92)

S(s) = / k(T)e ' Tqr . (93)

» We can treat S(s) as a probability distribution and sample from it, to
approximate the integral for k(7)!
» Itis a valid Monte Carlo procedure to sample the pairs {s;, —s;} from

S(s):

~

1

o [exp(2mis; T) + exp(—2mis 7)] | s;~ S(s) (94)
j=1

L

=7 Zcos 27rs T) (95)
j=1

» This is exactly the covariance function we get if we use a linear basis
function model with trigonometric basis functions! Use the basis
function representation with finite J for computational efficiency.
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Scaling a Gaussian process: inducing inputs

>

Gaussian process f and f,. evaluated at n training points and J testing
points.

» m < n inducing points u, p(u) = N (0, Ky )
> p(fef) = [ p(fe.fu)du = [ p(f..flu)p(u)du

» Assume that f and f, are conditionally independent given u:

pFurk) ~ alfu f) = / 4(f. [w)q(Flu)p(u)du (96)

Exact conditional distributions
p(flu) = N (KruKy yu, Kr.p — Or ) 97)
p(filu) = N'(Kp, Ky, Kr g, — Op. ) (98)
Qa,b = Ka,uKu_,;Ku,b (99)

» Cost for predictions reduced from O(n?) to O(m?n) where m < n.

» Different inducing approaches correspond to different additional

assumptions about ¢(f|u) and g(f.|u).
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The inducing points act as a communication channel between the GP
evaluated at the training and test points, f and f:

ZANNEZANN

=] —y e+ =] —fy o o s -
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The subset of regressors method uses deterministic conditional distributions
with exact means:

q(flu) = N (Ky uKy yu,0) (100)
q(f.lu) = N (Kx. uKy yu,0) (101)
(102)
Integrate away u via
PUS) = alff) = [ ot )aflp(u)dn (103)
to obtain the joint distribution
Ox, Ox x,
dsor = N (0, A (104)
Ox.x QOx.x.

Qap = KauKyyKup (105)
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The predictive conditional can then be derived as before:

gsor (fly) = N (p,A) (106)
= 0x. x(Oxx + 0"y (107)
A= 0x. x. — Ox. x(Qxx + %) ' Oxx. (108)

This method can be viewed as replacing the exact covariance function k with
an approximate covariance function

ksor (X1, X;) = k(x;, U)Ky yk(U, x;) (109)

which admits fast computations.
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The SoR covariance matrix is

nxn nxm XM
—_— =
Ksor (X, X) = Kx,u Ky y Kv x (110)

» For m < n, this is a low rank covariance matrix, corresponding to a
degenerate (finite basis) Gaussian process.

» As aresult, for n large, SoR tends to underestimate uncertainty.
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FITC, the most popular inducing point method, uses the exact test
conditional, and a factorized training conditional:

grrre (flu) = | [ p(filu) (111)
i=1
grrre (felu) = p(filu) . (112)

Integrating away u, we can derive the FITC approximate kernel as:

ksor (x,2) = Kv.uKy yKu.: (113)
]}FITC(xa Z) = IN{SOR(xa Z) + 0y (k(xa Z) - ]ESOR(X7 Z)) . (114)

FITC replaces the diagonal of the SoR approximation with the true diagonal
of k. FITC corresponds to a non-parametric GP.
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Kronecker methods

Suppose
» If x € R”, k decomposes as a product of kernels across each input
dimension: k(x;,x;) = H,f:1 K (x;,7) (e.g., the RBF kernel has this
property).
» Suppose the inputs x € X are on a multidimensional grid
X =X X---XXPCRP.
Then
» K decomposes into a Kronecker product of matrices over each input
dimension K = K' ® - -- @ K*.
» The eigendecomposition of K into QVQ also decomposes:
0=0'®---@0°,V=0'®- - ® QF. Assuming equal cardinality
for each input dimension, we can thus eigendecompose an N x N
matrix K in O(PN>3/?) operations instead of O(N?) operations.
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Kronecker methods

Suppose
» If x € RP, k decomposes as a product of kernels across each input
dimension: k(x;, x;) = ]_[;:1 kP (x],x7) (e.g., the RBF kernel has this
property).
» Suppose the inputs x € X’ are on a multidimensional grid
X=X x--xXp CRF
Then
» K decomposes into a Kronecker product of matrices over each input
dimension K =K' ® --- @ K”.
» The eigendecomposition of K into QVQ also decomposes:
0=0'®---®0°,V=0"®: - -®QF. Assuming equal cardinality
for each input dimension, we can thus eigendecompose an N x N
matrix K in O(PN3/?) operations instead of O(N?) operations.
Then inference and learning are highly efficient:
>

(K+0’ D)~y =(QvQ" + o’ )"y =0(V+o°)"'Qy, (115)

N
log |[K + 01| = log|QVQ" + 01| =) "log(\i +07),  (116)
i=1
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> We assumed that the inputs x € X’ are on a multidimensional grid
X =X X"'XXPCRP.

» How might we relax this assumption, to use Kronecker methods if there
are gaps (missing data) in our multidimensional grid?
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» Assume imaginary points that complete the grid
» Place infinite noise on these points so they have no effect on inference

» The relevant matrices are no longer Kronecker, but we can get around
this using pre-conditioned conjugate gradients, an iterative linear solver.
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Kronecker Methods with Missing Data

» Assuming we have a dataset of M observations which are not
necessarily on a grid, we propose to form a complete grid using W
imaginary observations, yw ~ N (fi, e’llw), e — 0.

» The total observation vectory = [yy, yw|T has N = M + W entries:

y = N(f, Dy), where the noise covariance matrix
Dy = diag(DM, €7llw), Dy = O'ZIM.

» The imaginary observations yw have no corrupting effect on inference:
the moments of the resulting predictive distribution are exactly the
same as for the standard predictive distribution, namely
limeo(Ky + D)~y = (Ku + Dy) "'y
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Kronecker Methods with Missing Inputs

» We use preconditioned conjugate gradients to compute (Ky + DN)_1 y.

We use the preconditioning matrix C = D;l/ ? to solve
C" (Ky + Dy) Cz = C"y. The preconditioning matrix C speeds up
convergence by ignoring the imaginary observations yy.

» For the log complexity in the marginal likelihood (used in
hyperparameter learning),

M M
log [Ky + Du| = log(\Y +07) = Y log(AY +07),  (117)
i=1 i=1

where X = M \N fori=1,..., M.
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» The spectral mixture kernel, in its standard form, does not quite have
Kronecker structure.

» Introduce a spectral mixture product kernel, which takes a product of
across input dimensions of one dimensional spectral mixture kernels.

kswp (7]6) = HkSM 7,06,) . (118)
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GPatt

v

Observations y(x) ~ N (y(x);f(x), %) (can easily be relaxed).
f(x) ~ GP(0, ksmp(x,x'|0)) (f(x) is a GP with SMP
kernel).

ksmp(x, x'|@) can approximate many different kernels with different

settings of its hyperparameters 6.
Learning involves training these hyperparameters through maximum
marginal likelihood optimization (using BFGS)

model fit complexity penalty

logp(y|0,X) = —%yT(Ke + o)y - % log|Kg + oI —g log(27) .
(119)
Once hyperparameters are trained as 0, making predictions using
p(fily, X, é) which can be expressed in closed form.
Exploit Kronecker structure for fast exact inference and learning (and
extend Kronecker methods to allow for non-grid data). Exact inference
and learning requires O(PN #) operations and O(PN#) storage,
compared to O(N?) operations and O(N?) storage, for N datapoints,
and P input dimensions.
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(b) Test

(e) SSGP (f) FITC (g) GP-SE (h) GP-MA
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Results: Extrapolation and Interpolation with Shadows

(a) Train

(d) Train (e) GPatt
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2 —o Learned
A —o |nitial

» Simple initialisation

» The marginal likelihood shrinks weights of extraneous components to
zero through the log |K| complexity penalty.

89/100



(a) Train (b) Test (c) Full (d) GPatt (e) SSGP (f) FITC

(2) GP-SE  (h) GP-MA (i) GP-RQ (i) GPatt Initialisation

e -’

(k) Train (1) GPatt (m) GP-MA (n) Train (0) GPatt (p) GP-MA
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More Patterns

(b) Tread plate (c) Pores

(a) Rubber mat

(f) Cone

(e) Chain mail

(d) Wood
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Image Inpainting
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» GPatt makes almost no assumptions about the correlation structures
across input dimensions: it can automatically discover both temporal
and spatial correlations!

» Top row: True frames taken from the middle of a movie. Bottom row:
Predicted sequence of frames (all are forecast together).

» 112,500 datapoints. GPatt training time is under 5 minutes.
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Land Surface Temperature Forecasting

» Train using 9 years of temperature data. First two rows are the last 12
months of training data, last two rows is a 12 month ahead forecast.
300, 000 data points, with 40% missing data (from ocean).

» Predictions using GP-SE (GP with an SE or RBF kernel), and
Kronecker Inference.

R 5 5 et k-
N o e Lt
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Land Surface Temperature Forecasting

» Train using 9 years of temperature data. First two rows are the last 12
months of training data, last two rows is a 12 month ahead forecast.
300, 000 data points, with 40% missing data (from ocean).

» Predictions using GPatt. Training time < 30 minutes.
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Learned Kernels for Land Surface Temperatures
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(a) Learned GPatt Kernel for Temperatures
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(b) Learned GP-SE Kernel for Temperatures

» The learned GPatt kernel tells us interesting properties of the data. In
this case, the learned kernels are heavy tailed and quasi-periodic.
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