
10-708: Probabilistic Graphical Models, Spring 2015

10 : Gaussian graphical models and Ising models: modeling networks

Lecturer: Eric P. Xing Scribes: Min Hyung Lee, Yan Xia

1 Overview

There are two ways of exploring a network. The first is a global approach, in which a statistical model
is fit on the whole graph. For instance, one can observe that the degree of each node follow a power law
distribution, or explore how clusters or cliques form in the network. This approach is not really a graphical
model approach, and is not useful in the actionable point of view. The graphical model approach or the
microscopic approach tend to be directed to the individuals. This lecture is mainly on two things: learning
the graph structure of a model, specifically a Gaussian graphical model, and learning how they evolve through
time.

2 Structural Learning for Completely Observed Graphical Models

2.1 Gaussian Graphical Models

Before exploring ways of learning the structure of a Gaussian graphical model (GGM), we first look at some
nice properties that they have. GGM is based on the multivariate Gaussian distribution, which has the
following density function.

p(x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

Here, without loss of generality, we assume µ = 0 and define Σ−1 = Q = [qij]. Then the pdf is as follows:

p(x|µ = 0, Q) =
|Q|1/2

(2π)n/2
exp

{
−1

2

∑
i

qii(xi)
2 −

∑
i<j

qijxixj

}

Now we can look at the distribution as a form of a Markov Random Field (MRF), where the potential for
minimal cliques (edges and vertices) are ψi(xi) = exp{− 1

2qii(xi)
2}, ψij(xi, xj) = exp{qijxixj}. It can now

be observed that the qij have a one to one correspondence with the topology of the graph i.e. qij = 0 if and
only if there is no edge between node i and node j. Thus, as shown in Figure 1, the precision matrix can be
easily converted to a MRF. Moreover, by the pairwise markov assumtion of the MRF, the following property
holds.

qij = 0⇔ (i, j) /∈ E ⇔ Xi ⊥ Xj |X−i,j

1

2 10 : Gaussian graphical models and Ising models: modeling networks

Figure 1: Converting precision matrix to Markov random field

(a) Markov random field (b) Correlation network

Figure 2: Contrasting Markov random field and correlation netork

In contrast to the GGM, the correlation network, which is based on the covariance matrix, was often used
in the past to learn the interdependencies of random variables. In this network, there is an edge between
node i and node j if and only if Σi,j 6= 0, which the two random variables are dependent. However, consider
the markov random field in Figure 2a. It can easily be observed that nodes A, B, and C are conditionally
independent given X. The correlation network in Figure 2b does not show this fact, since nodes A, B, and
C are dependent without observing X. In fact, the correlation network shows no interesting fact about the
relationship between the models. Thus, we focus on GGM.

2.2 Learning Gaussian Graphical Models (GGM)

2.2.1 Neighborhood selection algorithm (Meinshausen-Bühlmann algorithm)

Learning a GGM corresponds to estimating the precision matrix Q. The most intuitive solution would be to
invert the empirical covariance matrix, but when n < d, the empirical covariance matrix is underdetermined
and cannot be inverted. Nevertheless, we can still estimate Q by imposing sparsity (regularization), since
we know that most of its entries are 0.

As such, we can construct a neighborhood selection algorithm with LASSO regularization as follows, in which
for each node, we predict among all other nodes, which ones are neighbors. For a node i, define weights βij
between node i and node j, as in Figure 3a. We can construct a L1 regularized linear regression to learn the
weights as follows:

β̂i = arg min
βi

||Y −Xβi||2 + λ||βi||1

10 : Gaussian graphical models and Ising models: modeling networks 3

(a) Definition of weights of node 1 (b) Learned weights of node 1

Figure 3: Constructing GGM using linear regression

L1 regularization compared to L2 regularization enforces sparsity in the weights, setting most βs to 0.
Specifically, if the problem satisfies three conditions: dependency, incoherence, and strong concentration
bounds conditions, LASSO will asymptotically recover the correct subset of weights that are relevant. As
such, we can consider only the βij that are larger than 0, to select the neighbors of node i, as shown in
Figure 3a. Combining the estimated results of all nodes, the total edge set can be constructed as follows:

ε̂ = {(u, v) : |β̂uv| > 0 or |β̂vu| > 0}

Although the process seems to be a heuristic way of finding the edges, it can be proved that the process is

consistent. Formally, if λ > C
√

log p
S , then with high probability, S(β̂)→ S(β∗).

Now we prove that the graph constructed by the neighborhood selection algorithm have the properties of a
normal MRF. By using the matrix inverse lemma, we can formulate the conditional probability of a node
given all other nodes as follows:

p(Xi|X−i) = N(µi + Σi,−iΣ
−1
−i,−i(X−i − µ−i),Σii − Σi,−iΣ

−1
−i,−iΣ−i,i)

Assuming µ = 0, the above can be simplified as follows:

p(Xi|X−i) = N(
q>i
−qii

X−i, qi|−i)

qi = Qi,−i

From this formulation, the auto-regression function can be constructed as follows:

Xi =
q>i
−qii

X−i + ε, ε ∼ N(0, q)

Now, define βi =
q>i
−qii and we obtain the linear regressor used in the neighborhood selection process. Thus,

by setting βij = 0, we set the corresponding qij to 0.

Define the neighborhood of node i as follows:

Si = {j : j 6= i, βij 6= 0}

4 10 : Gaussian graphical models and Ising models: modeling networks

Figure 4: L1-regularized maximum likelihood learning

Since p(Xi|X−1) = N(
q>i
−qiiX−i, qi|−i) = N(βiX−i, ε), p(Xi|X−1) = p(Xi|xSi

). Thus, the neighborhood Si
defines the Markov blanket of node i.

2.2.2 Graph LASSO algorithm (Block optimization method)

Graph LASSO algorithm seeks to directly maximize the log likelihood. This algorithm takes the sample
covariance matrix S as input, where

Si,j =
1

N

N∑
n=1

x
(n)
i x

(n)
j

and outputs the sparse precision matrix Q that maximize the log likelihood.

Q? = arg max
Q

ln|Q| − tr(SQ)︸ ︷︷ ︸
Log likelihood

− ρ‖Q‖1︸ ︷︷ ︸
Regularizer


Q is a sparse matrix that can be thought of as an inverse of S, which is not directly invertible. The trace
term can be expanded to:

tr(SQ) =
∑
i,j

xixjqij +
∑
i

qiix
2
i

and it can be shown that the log likelihood term

ln|Q| − tr(SQ) = ln

N∏
i=1

N
(
x(i) | 0, Q−1

)

This optimization problem can be solved by coordinate ascent. As shown in Figure 4, in each iteration we
focuses only on one row/column (blue vectors), keeping the others constant (gray block). The optimization
for blue vectors can be shown to be LASSO (L1-regularized quadratic programming). This algorithm is more
accurate than the MB algorithm, and the main difference of this algorithm is that the LASSO problem are
coupled, and this coupling is essential for stability under noise.

There is an interesting analogy between Gaussian Graphical Model and Ising Model. The Ising model can
be thought of as a discrete analogue of the Gaussian graphical model.

P (x | Θ) = exp

∑
i∈V

θiixi +
∑

(i,j)∈E

θijxixj −A(Θ)



10 : Gaussian graphical models and Ising models: modeling networks 5

Figure 5: Example: learning the relationship among senators over time

It can be shown that the pseudo-conditional likelihood for node k is given by a logistic regression model.

Pθ(xk | x−k) = logit(2xk〈θ−k, x−k〉)

This provides a way of learning the Ising model. Other methods introduced in this lecture will not apply
here because the term A(Θ) is unknown and needs to be solved as well.

3 Evolving Networks

This lecture also discussed briefly on the algorithms for learning dynamic, time-varying networks. Many real
world problems requires the modeling of dynamic networks that are rewiring over time. For example, using
the senate voting records dataset, which contains the vote records of 100 senators on 542 bills, we wish to
discover how the relationship between senators changes over time (Figure 5). In these problems, both the
data-generating process and latent relational structure change over time in these networks. The challenge for
this type of problem is the unavailability of serial snapshots of the time-varying networks, because at each
time point the number of examples are usually very small. Two algorithms were introduced in the lecture
to learn the time-varying networks.

1. Kernel Weighted L1-regularized logistic regression(KELLER) tries to solve the data scarcity at indi-
vidual time points using the following estimation:

θ̂ti = arg min
θti

lw(θti) + λ1‖θti‖1 ∀t

where

lw(θti) =

T∑
t′=1

w(xt
′
, xt) logP (xt

′

i | xt
′

−i, θ
t
i)

This problem is relatively easy to solve, because it is essentially a LASSO problem. Also, this formula-
tion tries to solve the data scarcity problem by giving the examples at different time points weights, and
using all of them in the estimation. The weights for each example is generated using kernel functions,
which captures similarity between the data at a time of interest and all other time points. This way,
we can estimate the time-specific networks one by one, based on “virtual iid” samples.

Specifically, we can apply Ising model to the dataset, and the conditional likelihood follows a logistic
regression model.

Pθ(x
t
i | xt−i) = logit(2xti〈θt−i, xt−i〉)

This way, the structure of the network can be learned using neigborhood selection: S(xi) = {j | θi,j 6= 0}.
Thus, the overall algorithm for time-specific graph regression are as follows:

6 10 : Gaussian graphical models and Ising models: modeling networks

Estimate at t? ∈ [0, 1]

min
θ

{
−
∑
t∈T n

wt(t
?)γ(θi;x

t) + λ1‖θti‖1

}

where

γ(θi;x
t) = logP (xt

′

i | xt
′

−i

wt(t
?) =

Khn
(t− t?)∑

t′∈T n Khn(t− t?)

KELLER is structural consistent assuming four conditions, namely dependency condtion, incoherence
condition, smoothness condition and bounded kernel condition. With some additional assumptions, it
can be shown that

P(Ĝ(λ1, hn, t?) 6= Gt
?

) = O
(

exp

(
−Cnhn

s3n
+ C ′ log p

))
→ 0

2. Temporally Smoothed L1-regularized logistic regression (TESLA) tries to force the structure at near
time points to be similar. It enforces this constraint by including total variance penalties.

θ̂1i , . . . , θ̂
T
i = arg min

θ1i ,...,θ
T
i

T∑
t=1

lavg(θ
t
i)

+ λ1

T∑
t=1

‖θt−i‖1

+ λ2

T∑
t=1

‖θti − θt−1i ‖1

