Course Description


Date Lecture Scribe Topics Readings Handouts
Mon 14th Jan Lecture 1 (Eric): Introduction to Graphical Models; Directed GM: Bayesian Networks
Slides
Required:
Scribe Template
Module 1: Representation
Wed 16th Jan Lecture 2 (Eric): Undirected GM: Markov Random Fields
Slides
  • Chunlei Liu (andrew id:chl56)
  • Ahmed Hefny (ahefny)
  • Scribe Notes
Required:
  • Koller and Friedman: Chpt 3 (The Bayesian Network Representation)
  • Koller and Friedman: Chpt 4 (Undirected Graphical Models)
Optional:
Mon 21st Jan No class
Wed 23rd Jan Lecture 3 (Eric): A unified view of BN and MRF
Slides
Required:
  • Koller and Friedman: Chpt 4.5
Optional:
Module 2: Basic Inference and Learning Methods
Mon 28th Jan Lecture 4 (Eric): Exact Inference (1): Variable Elimination
Slides
  • Georg Schonherr (gschoenh)
  • Micol Marchetti-Bowick (mmarchet)
  • Scribe Notes
Required:
  • Koller and Friedman, Chpt 9.1, 9.2, 9.3, 9.4

Wed 30th Jan Lecture 5 (Eric): Exact Inference (2): Belief Propagation
Slides
  • Da-Cheng Juan (djuan)
  • Jinliang Wei (jinlianw)
  • Scribe Notes
Required:
  • Koller and Friedman Chpt. 10.1, 10.2, 10.3
Optional:
  • A useful tutorial is here.

Mon 4th Feb Lecture 6 (Eric): Generalized Linear Models and sufficient statistics Slides
  • Thom Popovici (dpopovic)
  • Huan-Kai Peng (huankaip)
  • Scribe Notes
Required:
  • Koller and Friedman: Chpt 17.2, 17.3, 17.4 (Particularly 17.4.4: MAP Estimation)
Optional:
Wed 6th Feb Lecture 7 (Eric): Learning (1): Fully observed BN
Slides
  • Milad Memarzadeh (mmemarza)
  • Shen, Xiaolong (xiaolons)
  • Scribe Notes
Required:
  • Koller and Friedman: Chpt 17.1, 17.3
Optional:
Mon 11th Feb Lecture 8 (Eric): Learning (2): Fully observed MRF
Annotated Slides
  • Rishi Chandy (rishic)
  • AJ Sedgewick (asedgewi)
  • Scribe Notes
Required:
  • Jordan: Chpt 9, 20
Optional:
Wed 13th Feb Lecture 9 (Eric): Learning (3): EM algorithm Slides
  • Mrinmaya Sachan (mrinmays)
  • Phani Gadde (pgadde)
  • Viswanathan, Sripradha (sripradv)
  • Scribe Notes
Required:
  • Koller and Friedman: Chpt. 19.1, 19.2.2, 19.2.3
Optional:
Module 3 : Case Studies I: Popular Graphical Models
Mon 18th Feb Lecture 10 (Eric): Gaussian graphical models and Ising models: modeling networks
Slides
Required: Highly Recommended: Optional:
Wed 20th Feb Lecture 11 (Eric): Factor Analysis and State-Space Models Slides Required: Highly Recommended: Optional:
Mon 25th Feb Lecture 12 (Gunhee): Conditional Random Fields
Case study: image segmentation in computer vision Slides
  • Salim Akhter Chowdhury (sachowdh)
  • Jingwei Zhang (jingweiz)
  • Scribe Notes
Required: Highly Recommended: Optional:
Module 4 : Approximate Inference
Wed 27th Feb Lecture 13 (Eric): Variational Inference: Loopy Belief Propagation and Mean Field Approximation
Slides
  • Peter F. Schulam (pschulam)
  • William Y. Wang (yww)
  • Scribe Notes
Required: Highly Recommended: Optional:
Mon 4th Mar Lecture 14 (Eric/Chong): Variational Inference: Mean Field Approximation
Case study: learning topic models Slides
Required: Highly Recommended:
Wed 6th Mar Lecture 15 (Junming): Theory of variational inference: inner and outer approximation
Slides
Required:
Mon 11th Mar No class
Wed 13th Mar No class
Mon 18th Mar Lecture 16 (Eric): Monte Carlo Methods
Slides
  • Willie Neiswanger (wdn)
  • Xiaohua Yan (xiaohuay)
  • Scribe Notes
Required: Optional:
Wed 20th Mar Lecture 17 (Qirong): Markov Chain Monte Carlo
Case study: learning topic models
Slides
  • Dougal Sutherland (dsutherl)
  • Keerthiram Murugesan (kmuruges)
  • Zhang, Ada June (ajzhang)
  • Scribe Notes
Required: Optional:
Mon 25th Mar Lecture 18 (Qirong): Advanced topics in MCMC
Slides
  • Dougal Sutherland (dsutherl)
  • Keerthiram Murugesan (kmuruges)
  • Zhang, Ada June (ajzhang)
  • Scribe Notes
Required:
Module 5 : Kernel Graphical Models and Spectral Methods
Wed 27th Mar Lecture 19 (Ankur): Hilbert Space Embeddings of Distributions
Slides
  • Chenyan Xiong (cx)
  • Dena Marie Asta (dasta)
  • Xu, Felix (juefeix)
  • Scribe Notes
Required: Optional:
Mon 1th Apr Lecture 20 (Ankur): Kernel Graphical Models Slides
  • Gupta, Anika (anikag)
  • Lan, Zhen-Zhong (lanzhzh)
  • Scribe Notes
Required: Optional:
Wed 3rd Apr Lecture 21 (Ankur): Spectral Algorithms for Graphical Models
Case Study: Sentence Parsing in Natural Languages
Slides
  • Kenton Murray (andrew id: kwmurray)
  • Shashank (shashans)
  • Scribe Notes
Required: Optional:
Module 6 : Nonparemetric Bayesian Models and "Infinite" Models
Mon 8th Apr Lecture 22 (Sinead): Dirichlet Process
Slides
  • Abhimanu Kumar (abhimank)
  • Victor Chahuneau (vchahune)
  • Rory Donovan (donovanr)
  • Scribe Notes

Required: Optional:
Wed 10th Apr Lecture 23 (Sinead): Indian Buffet Process
Slides
Required:
Mon 15th Apr Lecture 24 (Sinead/Eric): Hierarchical Dirichlet Process
Case Study: Genetic Inference of the World Population
Slides 1 Slides 2
  • Zaid Sheikh (zsheikh)
  • Alex Michael Beutel (abeutel)
  • Scribe Notes
Required:
Module 7 : Structured Sparsity
Wed 17th Apr Lecture 25 (Eric): Graphical induced structured input/output models
Case Study: Disease Association Analysis Slides
  • Meghana Kshirsagar (mkshirsa)
  • Yiwen Chen (yiwenche)
  • Scribe Notes
Required: Optional:
Wed 22nd Apr Lecture 26 (Seunghak): Convex Optimization Slides
  • Sashank J Reddi (sjakkamr)
  • Chen, Yun-Nung (yvchen)
Required: Highly Recommended:
Mon 24th Apr Lecture 27 (Eric): Structured Sparse Additive Models Slides
  • Wei Dai (wdai)
  • Cong Lu (congl)
  • Wang, Guanyu (guanyuw)
  • Scribe Notes
Required: Highly Recommended:
Module 8 : Posterior Regularization and Max-Margin GM:
Mon 29th Apr Lecture 28 (Eric): Posterior Regularization and The Maximum Entropy Discrimination Principle Slides
  • Cheng, Andrew (ac1)
  • Downey, Carlton MacDonald (cmdowney)
  • Scribe Notes
Required:
Wed 1st May Lecture 29 (Eric): Maximum margin GM Slides
Case Study: discriminative topic models for text and image
  • Fahrenkopf, Max A (mfahrenk)
  • Gong, Yu (ygong1)
Required:
Mon 6th May Class presentation
Completed Projects
NSH 1305 from 9AM to 1PM
 

© 2009 Eric Xing @ School of Computer Science, Carnegie Mellon University
[validate xhtml]