
10708 Graphical Models: Homework 4
Due Monday, April 22, beginning of class

April 3, 2013

Instructions: There are four questions on this assignment. There is a problem involves
coding. You can program in whatever language you like, although we suggest MATLAB. Do
not attach your code to the writeup. Instead, put your code in a directory called “andrewid-
HW4” and tar it into a tgz named “andrewid-HW4”. For example, epxing-HW4.tgz. Email
your tgz file ONLY to gunhee@cs.cmu.edu, seunghak@cs.cmu.edu and kpuniyan@cs.cmu.edu.
Refer to the web page for the policies regarding collaboration, due dates, extensions, and
late days.

1 Hilbert Space Embeddings [30 points]

We discussed in class that Hilbert Space Embeddings are attractive because certain proba-
bility “rules” also hold for the analogous RKHS operators. In class we discussed the RKHS
version of the sum rule. It is highly recommended you fully understand the proof of the
RKHS sum rule (in Lecture 20) before doing this question.

Let A, B, and C be random variables. In this question you will prove that if C ⊥ A|B
then

CCA = CC|BCB|ACAA

This is the RKHS analog to P[C,A] =
∑

B P[C|B]P[B|A]P[A] if C ⊥ A|B.

We will assume that all three random variables A, B, C are embedded in RKHS F . The
corresponding feature functions for F will be indexed by φ. Thus, just to clarify nota-
tions/definitions:
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CCA = ECA[φC ⊗ φA] RKHS analog of P [C,A]

CCB = ECB[φC ⊗ φB] RKHS analog of P [C,B]

CBA = EBA[φB ⊗ φA] RKHS analog of P [B,A]

CAA = EAA[φA ⊗ φA] RKHS analog of P [A,A]

CBB = EBB[φB ⊗ φB] RKHS analog of P [B,B]

CC|B = CCBC−1BB RKHS analog of P [C|B]

CC|A = CCAC−1AA RKHS analog of P [C|A]

1. First you will prove that CBA = CB|ACAA (the RKHS analog of P[B,A] = P[B|A]P[A].

(a) Write the rule P [B,A] = P[B|A]P[A] in matrix form.

(b) Prove that P[B,A] = P[B|A]P[A] using expectations and δ indicator vectors (as
done on Lecture 20 Slide 17 for the sum rule).

(c) Now prove the RKHS version: CBA = CB|ACAA
2. Now you will prove that if C ⊥ A|B, then CCA = CC|BCBA (the RKHS analog of

P[C,A] =
∑

B P[C|B]P[B,A].

(a) Write the rule P [C,A] =
∑

B P[C|B]P[B,A] in matrix form.

(b) Prove that P [C,A] =
∑

B P[C|B]P[B,A] using expectations and δ indicator vec-
tors (as done on Lecture 20 Slide 17 for the sum rule). Indicate in your proof in
what step you have used the conditional independence assumption.

(c) Now prove the RKHS version: CCA = CC|BCBA. Indicate in your proof in what
step you have used the conditional independence assumption.

2 Expectation of Dirichlet distribution [15 points]

The Dirichlet distribution is a continuous distribution on the K-simplex, {θ = (θ1, . . . , θK),
such that θi ≥ 0 for i = 1, . . . , K, and

∑K
i=1 θi = 1}:

p(θ|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

θαi−1
i

where αi > 0 are parameters. Compute the followings with full derivation steps. (Giving
only final answers will get no point).

1. (5 pts) E[θk].

2. (5 pts) Cov[θjθk].
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3. (5 pts) E[log θk]. (Hint : First show that the Dirichlet distribution is in the exponential
family, and take a first derivative of the cumulant function. You can use the digamma
function ψ(θk) = ∂

∂θk
log Γ(θk)).

3 Posterior of Dirichlet Process [15 points]

1. (5pt) A multinomial distribution with a vector θ = (θ1, . . . , θK), where θi ≥ 0 for
i = 1, . . . , K, and

∑K
i=1 θi = 1, is represented as follows.

p(x) =
n!∏K
i=1 xi!

K∏
i=1

θxii .

Show that Dirichlet distribution θ ∼ Dir(α) (given in problem 1) is a conjugate prior
of p(x|θ) ∼Multi(θ).

2. (10pt) Let H be a distribution over Θ and α is a positive real number. For any
finite measurable partition A1, . . . , Ar of Θ, G is called a Dirichlet process with base
distribution H and concentration parameter α, denoted by G ∼ DP (α,H), if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)).

Suppose we have observed values X1, . . . , Xn from G, and let ns = #{i : Xi ∈ As}
be the number of observed values in As. If we have DP (α,H) as prior, derive the
posterior G|X1, . . . , Xn.

4 Structured Sparsity [40 points]

In this problem, we will implement sparse group lasso which optimizes the following:

min
β1,...,βP

1

2

N∑
i=1

(
yi −

P∑
j=1

xjiβj

)2

+ λ1

P∑
j=1

|βj|+ λ2

L∑
l=1

√∑
j∈gl

β2
j . (1)

Here input data is X which is N by P matrix, where N is the number of samples, and P
is the number of features, and output data is y = [y1, . . . , yN ]T which is N by 1 vector. We
denote row index by subscript and column index by superscript. For example, xji represents
the element of X at the i-th row and j-th column. Similarly, yi represents the i-th sample
in y.

In problem (1), to enforce group structured sparsity, we have λ2
∑L

l=1

√∑
j∈gl β

2
j , where L is

the number of feature groups and gl represents the l-th feature group. For example, given 9
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Figure 1: A example of groups of features denoted by g1 = {1, 2, 3}, g2 = {4, 5, 6}, and g3 =
{7, 8, 9}.

input variables, we may have three groups of features G = {g1, g2, g3}, where g1 = {1, 2, 3},
g2 = {4, 5, 6}, and g3 = {7, 8, 9} (Note: gl includes feature indices for the l-th group; and
there is no overlap between different groups. See Figure 1).

Let us derive a block coordinate descent algorithm to optimize the problem 1, and then
implement it.

1. (5pt) First, derive an optimality condition when βj = 0 ∀j ∈ gl fixing all the other
coefficients. [Hint: Use subgradient of the objective in (1) with respect to βgl .]

2. (5pt) If the optimality condition you just derived in (1) is satisfied, we can set βj =
0 ∀j ∈ gl. Now, suppose that the optimality condition you derived in (1) is NOT
satisfied. Derive an optimality condition when βj = 0 (i.e., j-th element in gl is zero).
[Hint: Use subgradient of the objective in (1) with respect to βj.]

3. (5pt) If the optimality condition you just derived in (2) is satisfied, we can set βj = 0.
Now, suppose that the optimality condition you derived in (2) is NOT satisfied. Show
your solution to find the value of βj when βj 6= 0 (i.e., j-th element in gl is non-zero).

Now you are ready to implement block coordinate descent algorithm to solve problem (1).
Implement sparse group lasso using block coordinate descent algorithm. Then run your code
on the data downloaded from the class website. (It includes X for input, y for output, G
for the groups of feature indices, and readme.txt.)

4. (10pt) Run your code with λ1 = λ2 = [0.1, 0.01, 0.001, 0.0001], and then draw a plot
for the number of non-zero coefficients against λ1 parameters. (In your plot, X-axis
represents λ1 parameters, and Y-axis represents the number of non-zero coefficients,
that is |{j : βj 6= 0 ∀j}|.

5. (10pt) Report objective function values in (1) you achieved with λ1 = λ2 = [0.1, 0.01, 0.001, 0.0001].

6. (5pt) Report the number of groups having non-zero coefficients when λ1 = λ2 =
0.001. Discuss about structured sparsity which are induced by your sparse group lasso
implementation.
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