
10708 Graphical Models: Homework 2
Due Monday, March 18, beginning of class

Feburary 27, 2013

Instructions: There are five questions (one for extra credit) on this assignment. There is
a problem involves coding. You can program in whatever language you like, although we
suggest MATLAB. Do not attach your code to the writeup. Instead, put your code in a di-
rectory called “andrewid-HW2” and tar it into a tgz named “andrewid-HW2”. For example,
epxing-HW2.tgz. Email your tgz file ONLY to gunhee@cs.cmu.edu, seunghak@cs.cmu.edu
and kpuniyan@cs.cmu.edu. Refer to the web page for the policies regarding collaboration,
due dates, extensions, and late days.

1 Learning Gaussian Graphical Models And Ising Mod-

els [35 points]

1. Consider a p-dimensional Gaussian graphical model p ∼ N (0; Σ) defined on x =
(x1, . . . , xp). Let Ω = Σ−1 denote the precision matrix. In this problem, you will show
that Ωij = 0 iff xi is conditionally independent of xj given the remaining variables.

(a) (5 pts) Suppose that we partition x into two subsets x = (x1;x2) where x1 is
a subset of the p variables and x2 denotes the remaining variables. The joint
Gaussian is

p

([
x1

x2

] ∣∣∣0,Σ) = N
([

x1

x2

] ∣∣∣0, [Σ11 Σ12

Σ21 Σ22

])
(1)

Derive p(x1|x2). (Hint: Use the form of inverse of a block matrix in terms of
Schur complement).

(b) (4 pts) Let us denote the precision matrix in block form Ω =

[
Ω11 Ω12

Ω21 Ω22

]
. Repre-

sent var(x1|x2) in terms of Ω.
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(c) (6 pts) Using the above two results, argue that Ωij = 0 iff xi is conditionally
independent of xj given the remaining variables.

2. (5 pts) The above results motivate the Graphical Lasso (Glasso) algorithm. Suppose
that we have n multivariate normal observations of dimension p with mean 0 and
covariance Σ. Let Θ = Σ−1 and S be the sample covariance S =

∑n
i=1 x

(i)x(i)T/n. The
Glasso performs the following optimization:

Θ∗ = argmax (log det Θ− tr(SΘ)− p||Θ||1) (2)

The first two terms are the log-likelihood of Gaussian distribution, and the third term
is l1 penalty term: ||Θ||1 =

∑
|Θij|. Show that the log likelihood of the n multivariate

Gaussian distribution that we maximize is identical to log det Θ− tr(SΘ).

3. (15 pts) Implement the Meinshausen-Buhlmann algorithm and the Glasso algorithm
discussed in the class. You can use any programming languages as you want (e.g.,
Matlab, R, Python).

We generate 50 random vectors from p-dimensional multivariate normal distribution
N(0,Σ) with p = 10, and save it in Xinput.mat. Apply both MB algorithm and
Glasso to estimate its precision matrices with different λ values: λ = [0, 20, 30, 40] for
MB algorithm and λ = [0, 0.2, 0.5, 0.8] for Glasso.

Draw all the estimated precision matrices as 10×10 binary matrices using black (nonzero)
and white (zero) colors. Discuss what happens as λ increases.

[References] (1) High-dimensional graphs and variable selection with the Lasso. Mein-
shausen and Buhlmann. Ann. Statist. 2006.
(2) Sparse inverse covariance estimation with the graphical lasso. J. Friedman, T.
Hastie and R. Tibshirani. Biostat. 2008.

2 Hidden Markov Model with Mixture of Experts [30

marks]

In class, we saw the conditional mixture model, where we predict Y using a linear function
of data X, but the prediction also depends on a latent variable Z. We will now extend this
model to the case when X and Y are sequences of data. We can think of such a model
as being a recurrent version of the conditional mixture of experts, and it has been shown
to work well to learn Dynamic Audio/Visual Mapping of audio-visual data, to model EEG
rhythms etc.

Consider the model shown in figure 1, where we have a sequence of data X = (X1, ...Xp),
with “known” states Y = (Y1, ...Yp), but unknown latent variables Z = (Z1, ...Zp).
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Figure 1: HMM with experts

Xi and Yi are real-valued, but Zi takes one of K possible values. Instead of representing each
Zi as a random variable that can take K values, we represent it as a vector with K binary
variables eg. if K = 4 and Zi = 2 for some i, then we represent it as Zi = (0, 1, 0, 0).

We assume our model has the following distribution. The observed variable Yi depends on
the observed variable Xi and the hidden variable Zi as:

P (Yi|xi, zik = 1) = N (y; θTk xi, σ
2
k) (3)

That is, Yi is Gaussian with mean θTk xi and variance σ2
k. The choice of the θ parameter used

depends on which zik is 1.

To make our derivations simpler, we assume that

P (zik = 1|xi, zi−1 = j) = P (zik = 1|xi)× P (zik = 1|zi−1 = j) (4)

Note that this assumption is not true in a general Bayes Net, but has been assumed for this
problem only to allow us to get easy updates!

Then, we need to define the transition function :

P (zi = k|zi−1 = j) = ηjk (5)

And finally, the dependence of Zi on Xi:

P (zik = 1|xi) ∝ eγ
T
k xi (6)

1. What are the parameters of this system, and what dimensions are they? (e.g. θ is a
vector parameter of length K). What are the hidden variables of the system?
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2. Given n i.i.d. data points, (X(1),Y(1)), ..., (X(n),Y(n)), where each point X(j) ∈ Rp and
Y(j) ∈ Rp, write out the expected conditional log likelihood of the data, and derive its
lower bound using Jensen’s inequality.

3. Derive the update equations for the E and M steps for this model.

3 GLIMs and KL divergence [10 points]

Let f1(x), ..., fk(x) denote k features of x, and let P (x|θ) and P (x|η) denote two distributions
in the exponential family over the features. Thus, P (x|θ) = exp(

∑k
i=1 θifi(x) − A(θ)) and

P (x|η) = exp(
∑k

i=1 ηifi(x)− A(η)).

Show that the KL distance can be expressed as

KL(P (x|θ);P (x|η)) =
k∑
i=1

(θi − ηi)
∂A(θ)

∂θi
− A(θ) + A(η) (7)

4 Iterative Proportional Fitting [20 points]

In this problem, we will have insight of Iterative Proportional Fitting (IPF) by showing that
it is related to the joint probability of a graphical model.

Consider an undirected graphical model distribution,

p(x) =
1

Z

∏
C

ΨC(xC).

Given the empirical marginal, p̃(xC), IPF update rule for estimating MLE of a graphical
model is:

ΨC(xC)(t+1) = ΨC(xC)(t)
p̃(xC)

p(t)(xC)
.

Let us assume that Z is constant across iterations.

Now prove the following: The above IPF update rule implies that the joint probabilities are
updated as follows:

p(t+1)(xU) = p(t)(xU\C |xC)p̃(xC),

where U is the set of all nodes in the graph.
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5 (Extra credit) Module network learning [20 points]

[Exercise 18.22, Daphne Koller and Nir Friedman]

In this problem, we will consider the task of learning a generalized type of Bayesian networks
that involves shared structure and parameters. Let χ be a set of variables, which we assume
are all binary-valued. A module network over χ partitions the variables χ into K disjoint
clusters, for K << n = |χ|. All of the variables assigned to the same cluster have precisely
the same parents and CPD. More precisely, such a network defines:

• An assignment function A, which defines for each variable X, a cluster assignment
A(X) ∈ {C1, ..., CK}.

• For each cluster Ck(k = 1, ..., K), a graph G which defines a set of parents PaCk
=

Uk ⊂ χ and a CPD Pk(X|Uk).

The cluster network structure defines a ground Bayesian network where, for each variable X,
we have the parents Uk for k = A(X) and the CPD Pk(X|Uk). Figure 2 shows an example
of such a network.

A 

C E D B 

F G 

Cluster 1 (C1) 

Cluster 2 (C2) 

Cluster 3 (C3) 

Figure 2: An example of module network

Assume that our goal is to learn a cluster network that maximizes the BIC score given a
data set D, where we need to learn both the assignment of variables to clusters and the
graph structure.

1. (5 pts) Define an appropriate set of parameters and an appropriate notion of sufficient
statistics for this class of models, and write down a precise formula for the likelihood
function of a pair (A,G) in terms of the parameters and sufficient statistics.
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2. (15 pts) We use greedy local search to learn the structure of the cluster network.
We will use the following types of operators (each operation should remain the graph
acyclic):

• Add operators that add a parent for a cluster;

• Delete operators that delete a parent for a cluster;

• Node-Move operators ok→k′(X) that change from A(X) = k to A(X) = k′. (If
X ∈ PaCk′

, moving X to k′ is not allowed.)

As usual, we want to reduce the computational cost by caching our evaluations
of operators and reusing them from step to step.

(a) Why did we not include edge reversal in our set of operators?

(b) Describe an efficient implementation for the update associated with the Node-
Move operator.

(c) For each type of operator, specify which other operators need to be reevalu-
ated once the operator has been taken. Briefly justify your response. (Sup-
pose that we cache and update evaluations of operators and reuse them to
save the computation.)
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