
10708 Graphical Models: Homework 1
Due Monday, February 25, beginning of class

Feburary 8, 2013

Instructions: There are five questions on this assignment. There is a problem involves
coding. You can program in whatever language you like, although we suggest MATLAB. Do
not attach your code to the writeup. Instead, put your code in a directory called “andrewid-
HW1” and tar it into a tgz named “andrewid-HW1”. For example, epxing-HW1.tgz. Email
your tgz file ONLY to gunhee@cs.cmu.edu, seunghak@cs.cmu.edu and kpuniyan@cs.cmu.edu.
Refer to the web page for the policies regarding collaboration, due dates, extensions, and
late days.

1 Conditional Independencies

1.1 Independence Properties [10 points]

Prove or disprove (by providing a counter-example) each of the following properties of inde-
pendence:

1. (X ⊥ Y,W |Z) implies (X ⊥ Y |Z).

2. (X ⊥ Y,W |Z) implies (X,W ⊥ Y |Z).

3. (X ⊥ Y,W |Z) and (Y ⊥ W |Z) imply (X,W ⊥ Y |Z).

1.2 Conditional Probability Distribution [5 points]

Provide an example of a distribution P (X1, X2, X3) where for each i 6= j, we have that
(Xi ⊥ Xj) ∈ I(P ), but we also have that ({X1, X2} ⊥ X3) /∈ I(P ).
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Figure 1: Bayes Net for Q1

1.3 Bayes Nets [5 points]

With reference to figure 1, for each of the following assertions of (conditional) independence,
state if they are True or False with justication.

1. X1 ⊥ X9

2. X10 ⊥ X7|X9

3. X2 ⊥ X4|X5

4. X2 ⊥ X8|X5

5. X5 ⊥ X10|X7

6. X5 ⊥ X10|X8

7. X1 ⊥ X9|X7

2 I-equivalence [20 points]

Let G1 and G2 be two graphs over X . In this question we will explore when G1 and G2 are
I-equivalent.

1. Prove that two network structures G1 and G2 are I-equivalent if the following two
conditions hold:

(a) The two graphs have the same set of trails, and

(b) A trail is active in G1 iff it is active in G2.

(Hint: Use the notion of d-separation.)
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2. Prove that if G1 and G2 have the same skeleton and the same set of v-structures then
they are I-equivalent.(Hint: use the result from part 1)

3. Can part 2 be extended to an if and only if statement? If so, prove the other direction.
If not, provide an example of two I-equivalent graphs G1 and G2 that have the same
skeleton, but different v-structures.

Your answers to the above questions should convince you that same v-structures, although
sufficient, are not necessary for I-equivalence. In the following parts, you will provide a
condition that precisely relates I-equivalence and similarity of network structures. We begin
with a few definitions you will need:

Definition 1 (Minimal Active Trail) Consider an active trail T = X1, X2, . . . , Xm. We
call this active trail minimal if no subset of the nodes in T forms an active trail between
X1 and Xm. In other words, T is minimal if no other active trail between X1 and Xm

“shortcuts” any of the nodes in T .

Definition 2 (Triangle) Consider a trail T = X1, X2, . . . , Xm. We call any three consec-
utive nodes in the trail a triangle if their undirected skeleton is fully connected (i.e., forms a
3-clique). In other words, Xi−1, Xi, Xi+1 form a triangle if we have Xi−1 
 Xi 
 Xi+1 and
Xi−1 
 Xi+1.

4. Prove that the only possible triangle in a minimal active trail is one where Xi−1 ←
Xi → Xi+1, with an edge between Xi−1 and Xi+1, and where either Xi−1 or Xi+1 is
the center of a v-structure in the trail. (Hint: prove by cases.)

5. Consider two networks G1 and G2 that have the same skeleton and same immoralities.
Prove, using the notion of minimal active trail, that G1 and G2 imply precisely the same
conditional independence assumptions, i.e., that if X and Y are d-separated given Z in
G1, then X and Y are also d-separated given Z in G2. (Hint: prove by contradiction.)

6. Finally, prove that two networks G1 and G2 that induce the same conditional indepen-
dence assumptions must have the same skeleton and the same immoralities. (Hint:
prove by contradiction.)

3 Variable Elimination [ 30 points]

3.1 Example [14 pts]

Once upon a time, your friendly neighbourhood TA was intent on world domination, but
now just wants to graduate. Her first step, obviously, was to build a graphical model, as
shown in Figure 2. The variables being: Graduate (G), which depends on papers (P) and
proposal (R). As we know, papers and theorems (T) are both generated by drinking lots of
coffee (C). And all grad students are dependent on free coffee provided by the university (U),
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Figure 2: Plans to graduate network

which also allows our favorite coffee shop (D). All the variables are binary valued {T, F}.
The CPT parameters are:

P (U = T ) = 0.1 (1)

P (D = T |U = T ) = 0.6, P (D = T |U = F ) = 0.5 (2)

P (C = T |U = T,D = T ) = 0.7, P (C = T |U = T,D = F ) = 0.5

P (C = T |U = F,D = T ) = 0.6, P (C = T |U = F,D = F ) = 0.05 (3)

P (P = T |C = T ) = 0.8, P (P = T |C = F ) = 0.6 (4)

P (T = T |C = T ) = 0.7, P (T = T |C = F ) = 0.6 (5)

P (R = T |P = T ) = 0.7, P (R = T |P = F ) = 0.1 (6)

P (G = T |P = T,R = T ) = 0.9, P (G = T |P = T,R = F ) = 0.3

P (G = T |P = F,R = T ) = 0.5, P (G = T |P = F,R = F ) = 0.1 (7)

Help your friendly TA make some urgent inferences about her graduation plans; but make
sure you’re not baited by her nemesis: Exponential Computational Complexity.
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1. How likely is the TA to graduate if her coffee supply runs out? P (G = T |C = F ) = ?

2. How likely is the TA to graduate if Tazzo is open all the time? P (G = T |D = T ) = ?

3. Should we even be worried about her coffee supply running out? P (C = T ) = ?

4. If she is writing theorems, does this mean she will also publish? P (P = T |T = T ) = ?

Additionally, report the ordering used and the factors produced after eliminating each vari-
able for the first query [P (G = T |C = F )].

3.2 Variable Elimination in Clique Trees [12 pts]

Consider a chain graphical model with the structure X1 − X2 − · · · − Xn, where each Xi

takes on one of d possible assignments. You can form the following clique tree for this GM:
C1−C2−· · ·−Cn−1, where Scope[Ci] = {Xi, Xi + 1}. You can assume that this clique tree
has already been calibrated. Using this clique tree, we can directly obtain P (Xi, Xi + 1).
Your goal in this question is to compute P (Xi, Xj), for any j > i.

1. Briefly, describe how variable elimination can be used to compute P (Xi, Xj), for some
j > i, in linear time, given the calibrated clique tree.

2. What is the running time of the algorithm in part one ? if you wanted to compute
P (Xi, Xj) for all n choose 2 choices of i and j?

3. Consider a particular chain X1−X2−X3−X4. Show that by caching P (X1, X3), you
can compute P (X1, X4) more efficiently than directly applying variable elimination as
described in part 3.2.1.

4. Using the intuition in part three, design a dynamic programming algorithm (caching
partial results) which computes P (Xi, Xj) for all n choose 2 choices of i and j in time
asymptotically much lower than the complexity you described in part 3.2.2. What is
the asymptotic running time of your algorithm?

3.3 Chains or trees [4 pts]

Discuss whether true or false: the complexity of variable elimination is the same in graphical
models that are chains or trees.

4 Belief Propagation [20 points]

Two graduate students in CMU have gotten into an argument over the weather. One thinks
summer is over and Autumn has already come, while the other thinks it is still summer.
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In Pittsburgh, there are four seasons – Spring (S), Summer (M), Autumn (A), and Winter
(W). Given the season the previous day, the season on a day is conditionally independent
of the season on all previous days. The weather is either Hot (H), Rainy (R) or Freezing
(F). Given the season on any given day, the weather that day is independent of all other
variables.

More formally, if we let Ci denote the season on the i-th day (taking values S, M, A, W) and
Oi denote the observed weather pattern (one of H, R, F). We have ∀j < i− 1, Ci ⊥ Cj|Ci−1

and ∀X,Oi ⊥ X|Ci where X is any random variable other than Ci, Oi.

1. (3 pts) Draw a graphical model over C1 . . . CN , O1 . . . ON that satisfies the conditional
independencies listed above.

2. (7 pts) Implement sum-product and max-product algorithms in R or MATLAB for
this graphical model.

3. (10 pts) We has made 20 observation of the weather over the last few months (i.e.,
O1 . . . ON): {R,F, F,H, F,H,H,H,H,H,H,H,H,R,H,H,H,R,H,H}.

Some of the values for the conditional probability table (CPT) are as follows.

P (C1):
S M A W
0.15 0.6 0.2 0.05

P (Ct+1 = j|Ct = i) for all t ≥ 1 (i:row, j:column)

S M A W
S 0.8 0.17 0.02 0.01
M 0.1 0.7 0.19 0.01
A 0.02 0.05 0.7 0.23
W 0.2 0.01 0.04 0.7

P (Ot = j|Ct = i)

H R F
S 0.4 0.3 0.3
M 0.5 0.45 0.05
A 0.3 0.4 0.3
W 0.0001 0.2499 0.75

For inference, apply both sum-product and max-product algorithms to the following
problems. Submit all of your codes (zipped as ’hw1 bp.zip’) and report the results.

(a) Compute the probability of (S, M, A, W) for each of all 20 observations (e.g.,
∀t, P (Ct = M |O1 . . . ON)). Save the result of (4 × 20) probability matrix as
’gamma.txt, and draw it into a figure as ’gamma.png’ (x-axis: 20 time steps,
y-axis: probability). Submit the ’gamma.txt’ and ’ ’gamma.png’.

(b) Determine the most likely sequence of C1 . . . CN that generated this observed
sequence.
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Figure 3: Correctness of Max-product

5 Correctness of Max-Product [10 points]

Show that max-product algorithm is not correct for a simple loopy graph in Fig.3. (hint :
Use the similar technique discussed in class).
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