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Probability and MLE



(brief) Intro to probability



Basic notations

® Random variable
- referring to an element / event whose status is unknown:
A = “it will rain tomorrow”
® Domain (usually denoted by Q)
- The set of values a random variable can take:
- “A = The stock market will go up this year”: Binary
- “A = Number of Steelers wins in 2019": Discrete

- “"A = % change in Google stock in 2019 Continuous



Axioms of probability (Kolmogorov’s axioms)

A variety of useful facts can be derived from just three axioms:
1.0<P(A)<1

2. P(true) =1, P(false) =0

3. P(AuU B) =P(A) + P(B) — P(A " B)

There have been several
other attempts to provide a
foundation for probability
theory. Kolmogorov's axioms
are the most widely used.



Priors

Degree of belief
INn an event In the
absence of any
other information

NO rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8



Conditional probability

® P(A=1]|B =1): The fraction of cases where A is true if B is true

P(A = 0.2)

P(A|B = 0.5)

_—1




Conditional probability

® |In some cases, given knowledge of one or
more random variables we can improve upon
our prior belief of another random variable

® For example:
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/4

p(didn’t sleep in movie | liked movie) = 3/4

Slept Liked
1 0
0 1
1 1
1 0
0 0
1 0
0 1
0 1




Joint distributions

® The probability that a set of random variables will take a
specific value is their joint distribution.

® Notation: P(A A B) or P(A,B)

® Example: P(liked movie, slept)




Joint distribution (cont)

Evaluation of classes
P(class size > 20) = 0.6

P(summer) = 0.4

30 R 2
P(class size > 20, summer) = ? e R 1
12 S 2
8 S 3
56 R 1
24 S 2
10 S 3
23 R 3
9 R 2

45 R 1



Joint distribution (cont)

Evaluation of classes
P(class size > 20) = 0.6

P(summer) = 0.4

30 R 5

P(class size > 20, summer) = 0.1 70 R 1
12 S 5

8 S 3

56 R 1

24 S 5

10 S 3

23 R 3

9 R 5

45 R 1



Joint distribution (cont)

P(eval=1) =0.3 30 R 2
P(class size > 20, eval =1) = 0.3 70 R 1
12 S 2
8 S 3
56 R 1
24 S 2
10 S 3
23 R 3
9 R 2

45 R 1



Joint distribution (cont)

Evaluation of classes

P(eval=1) =0.3 30 R 2
P(class size > 20, eval =1) = 0.3 70 R 1
12 S 2
8 S 3
56 R 1
24 S 2
10 S 3
23 R 3
9 R 2

45 R 1



Chalin rule

® The joint distribution can be specified in terms of conditional probability:
P(A,B) = P(A|B)*P(B)

® Together with BQygs rule (whieh is actually derived from it) this is one of the most
powerful rules in grsabilistic reaspning




Bayes rule

® One of the most important rules for this class.
® Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)
® Thus,

Thomas Bayes was
an English
clergyman who set
out his theory of
probability in 1764.



Bayes rule (cont)

Often 1t would be useful to derive the rule a bit further:

P(BIA)P(A) _ P(B]A)P(A)
P(B) ) P(BIAP(A)

/:(B,Azl) P(B,A=0)

This results from:

T ol

P(AB)=




Bayes Rule for Continuous Distribtuions

® Standard form:

f(ylz) f(z)
f(y)

flzly) =

® Replacing the bottom:

f(ylz)f(z)
fylz)f(z)dz




AIDS test (Bayes rule)

Data

* Approximately 0.1% are infected

= Test detects all infections

* Test reports positive for 1% healthy people




AIDS test (Bayes rule)

Data

* Approximately 0.1% are infected

= Test detects all infections

* Test reports positive for 1% healthy people

Probability of having AIDS If test IS positive: '



AIDS test (Bayes rule)

Data

* Approximately 0.1% are infected

= Test detects all infections

* Test reports positive for 1% healthy people

Probability of having AIDS If test IS positive: '
P(t=1a=1)P(a=1)
P(t=1)
B P(t=1la=1)Pla=1)
~ P(l=1ja=1)Pla=1)+P{=1a=0)P(a=0)

Pla=1t=1)=

- 1-0.001 0001
©1-00014001-0999 Only 9%!...




Continuous distributions



Statistical Models

e Statistical models attempt to characterize properties of the
population of interest

e For example, we might believe that repeated measurements follow a
normal (Gaussian) distribution with some mean u and variance o2, x ™

N(u, o%)

where

and ©=(u, 0?) defines the parameters (mean and variance) of the
model.



How much do grad students sleep?

® | ets try to estimate the distribution of the time students spend sleeping (outside
class).



Possible statistics

e X
Sleep time
eMean of X:
E{X}
7.03
e Variance of X:
Var{X} = E{(X-E{X})"2}
3.05

Frequency

Hours



The Parameters of Our Model

0.45

e A statistical model is a collection

0.4

of distributions; the parameters .
specify individual distributions x ~ o3

N(u, o?)

0.2+

* We need to adjust the parameters .

5_

so that the resulting 0.1
distribution fits the data well  oos

0
4




The Parameters of Our Model

0.45

o A statistical model is a collection .|
of distributions; the parameters o3

0.3

specify individual distributions x ~
N(u, o°)

e \We need to adjust the parameters s

0.25F

0.2f

so that the resulting 041}
distribution fits the data well  °%

0 1
-4 -2 0 2 4



Covariance: Sleep vs. GPA

eCo-Variance of X1, X2:
Covariance{X1,X2} =
E{(X1-E{X1})(X2-E{X2})}
=(0.88

GPA

Sleep hours



Probability Density Function

® Discrete distributions

.III-- ;
1 2 3 4 5 6

® Continuous: Cumulative Density Function (CDF): F(a)

) Plx <a) = /_; f(r)dr




Cumulative Density Functions

® Total probability P(ﬂ) _ /m f(:t:)d:ﬂ —1
® Probability Density Function (PDF) d
F(z) = f(2)

® Properties:

Pla<z<b)= fh " f(z)dz = F(b) — F(a)

lim F(z)=0

F(X)
lim F(z)=1 ——
T—00 .

F(a) > F(b) Va > b



Density estimation: The Bayesian way



Your first consulting job

® A billionaire from the suburbs of Seattle asks you a question:

— He says: | have a coin, if | flip it, what’s the probability it will fall with the head
up?
— You say: Please flip it a few times:

— You say: The probabillity is: 3/5 because... frequency of heads in all flips
— He says: But can | put money on this estimate?
—You say: ummm.... Maybe not.

— Not enough flips (less than sample complexity)



What about prior knowledge?

Billionaire says: Wait, | know that the coin is “close” to 50-50. What can
you do for me now?

You say: | can learn it the Bayesian way...

Rather than estimating a single 0, we obtain a distribution over possible
values of 6

Before data After data

P(6)

P8 D)

50-50 0 0t P



Bayesian Learning

* Use Bayes rule:

P#|D) =

* Or equivalently:

P D) x P(D|6)P(h)

posterior likelihood prior

32



Prior distribution

® From where do we get the prior?
- Represents expert knowledge (philosophical approach)

- Simple posterior form (engineer’s approach)

® Uninformative priors:

- Uniform distribution

® Conjugate priors:
- Closed-form representation of posterior

- P(q) and P(g|D) have the same algebraic form as a function of \theta



Conjugate Prior

® P(q) and P(g|D) have the same form as a function of theta

Eg. 1 Coin flip problem

Likelihood given Bernoulli model:
P(D|0) =0%H(1-0)"T
If prior is Beta distribution,
9Pu—1(1 — p)Pr—1
poy =" 120
B(8g, fr)

Then posterior is Beta distribution

~ B@t&(ﬁH, ﬁT)

P(0|D) ~ Beta(Sy + ap, bt + or)



Beta distribution

Beta(8y, B7) More concentrated as values of 3, B; increase

Beta(1,1) 6 Beta(2,2)
14—I 14!
0.8 12
5 5 1
Q06 ol
g g 08
0 0
D 04 D06
04}
0.2
0.2
0 | | | I 0 | | I |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
parameter value parameter value
Beta(3,2) 5 Beta(30,20)
15 . 5
4,
S s
a 1 o}
g g3
0 0
o o
2,
0.5
1 L
0 : ‘ ! : O | .
0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 0.8 1

parameter value parameter value



Beta conjugate prior

P(6) ~ Beta(By, Br) P(0|D) ~ Beta(Sy + ap, b7 + ar)

o Betal(2,2) Beta(3,2) 5 Beta(30,20)
14
15/ f J
12
w A 4
§e) '1_6 .._5
o
g 08 g | g3
@ g5/ @ a
2,
04 0.5
0.2+ 1
0 I I I I 0 i ) | | 0 | .
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08
parameter value parameter value parameter value

Asn=oao,+ o,
Increases

As we get more samples, effect of prior is “washed out”



Conjugate Prior

® P(0) and P(0|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2) . A
Likelihood is ~ Multinomial(® = {6, 6,, ..., 6) . ‘e
' L4
— %122 Q%
P(D|0) = 671652...6,

If prior is Dirichlet distribution,

P(§) = %171. @ " Dirichlet(8y,..., )

Then posterior is Dirichlet distribution

-1

P(0|D) ~ Dirichlet(81 + a1,..., 8k + o)

For Multinomial, conjugate prior is Dirichlet distribution.



Posterior Distribution

® The approach seen so far is what is known as a Bayesian approach
® Prior information encoded as a distribution over possible values of parameter

® Using the Bayes rule, you get an updated posterior distribution over parameters,
which you provide with flourish to the Billionaire

® But the billionaire is not impressed

- Distribution? | just asked for one number: is it 3/5, 1/2, what is it?

How do we go from a distribution over parameters, to a single estimate of the
true parameters?



Maximum A Posteriori Estimation

Choose 0 that maximizes a posterior probability

Orf ap arg mgax P(6 | D)

= arg m@ax P(D | 6)P(0)

Beta(30,20)

MAP estimate of probability of head:

Beta pdf
IR

P(6|D) ~ Beta(By + ag, bt + ar)

0 0.2 04 0.6 0.8
parameter value

(/9\ _ OéH'|‘ﬁH— 1 Mode of Beta
MAP oy + By +ap+ B — 2 distribution




Density estimation: Learning



Density Estimation

® A Density Estimator learns a mapping from a set of attributes to a Probability

Input data for a
variable or a set of
variables

> Density
» Estimator

- Probability




Density estimation

® Estimate the distribution (or conditional distribution) of a random variable
® Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year

- Continuous

height, weight, temp.,



When do we need to estimate densities?

® Density estimators are critical ingredients in several of the ML algorithms we will
discuss

® |n some cases these are combined with other inference types for more involved
algorithms (i.e. EM) while in others they are part of a more general process
(learning in BNs and HMMS)



Density estimation

® Binary and discrete variables:

Easy: Just count!

® Continuous variables:

Harder (but just a bit): Fit a
model



Learning a density estimator for discrete
variables

» (x. = 1) = #records in which x, = u

total number of records

A trivial learning algorithm!

But why is this true?



Maximum Likelihood Principle

We can define the likelihood of the data given the model as follows:

f’(dataset \M):f’(xl/\xz.../\xn \M):Hf’(xk | M)

\ e

M is our model (usually a
collection of parameters)
For example M is

- The probability of ‘head’ for a coin flip
- The probabilities of observing 1,2,3,4 and 5 for a dice

- eftc.



Maximum Likelihood Principle

n
P(dataset | M) = P(x,AX,...Ax, | M)=] | P(x, | M)
k=1
® Qur goal is to determine the values for the parameters in M

e \We can do this by maximizing the probability of generating the observed samples
e For example, let ® be the probabilities for a coin flip
e Then
L(x, ..,.x, | O)=p(x, | O)...p(x, | O)
e The observations (different flips) are assumed to be independent
 For such a coin flip with P(H)=q the best assignment for &, is
argmax, = #H/#samples

e Why?



Maximum Likelihood Principle: Binary
variables

e For a binary random variable A with P(A=1)=q
argmax, = #1/#samples

e Why?

Data likelihood:  P(PIM)=g"(1-q)"

We would like to find: ~ &9MaXq*(1—-a)"

Omitting terms that do /

not depend on g




Maximum Likelihood Principle

Data likelihood: P(D|M)=q™(1-q)™
We would like to find:  argmax,q™(1-q)™

%, N n N, — n n Ny =
g4 A" =na" -0 —a"n,(-q)"

i:O:>
oq
ng" @-9)= -q"n,1-q)* " =0=
q" " (1-9)="(n,A-q)—qgn,)=0=
nl(l_CI)_qnz =0=
n,=nq+n,q=
_ r]1
n1+n2




LLog Probabilities

When working with products, probabilities of entire datasets often get too
small. A possible solution is to use the log of probabilities, often termed
‘log likelihood’

logls(dataset M) = logHIS(xk M) = Zlogf’(xk | M)

\ k=1 —1

Maximizing this likelihood function is the
same as maximizing P(dataset | M)

0— . . B T L
Log values i AR R SRS
betweenOand1 ~| 7 . i
i In some cases moving to log space would also
! make computation easier (for example,
- removing the exponents)
I

) l l
0 0.2 04 06 08 1




Density estimation

® Binary and discrete variables:

Easy: Just count!

® Continuous variables: \ But what if we

only have very few

/ samples?
Harder (but just a bit): Fit a

model



Maximum Likelihood Principle

e We can fit statistical models by maximizing the probability of
generating the observed samples:

L(x, ...,x,| O)=p(x;| O)...p(x, | O)
(the samples are assumed to be independent)

e [n the Gaussian case we simply set the mean and the variance to the
sample mean and the sample variance:

—_ 1 — 19 —2
pH=L2X o= D)



MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of
observed data

Oy g = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed
data and prior belief

By ap = arg m@ax P(6|D)
= arg m@ax P(DI|0)P(0)



