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Probability and MLE



(brief) intro to probability 



Basic notations

• Random variable

- referring to an element / event whose status is unknown:

A = “it will rain tomorrow”

• Domain (usually denoted by )

- The set of values a random variable can take:

- “A = The stock market will go up this year”: Binary

- “A = Number of Steelers wins in 2019”: Discrete

- “A = % change in Google stock in 2019”: Continuous



Axioms of probability (Kolmogorov’s axioms)

A variety of useful facts can be derived from just three axioms:

1. 0 ≤ P(A) ≤ 1

2. P(true) = 1,  P(false) = 0

3. P(A  B) = P(A) + P(B) – P(A  B)

There have been several 

other attempts to provide a 

foundation for probability 

theory. Kolmogorov’s axioms 

are the most widely used.



Priors

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8

Rain

No rain
Degree of belief 

in an event in the 

absence of any 

other information



Conditional probability

• P(A = 1 | B = 1): The fraction of cases where A is true if B is true

P(A = 0.2) P(A|B = 0.5)



Conditional probability

• In some cases, given knowledge of one or 

more random variables we can improve upon 

our prior belief of another random variable

• For example:

p(slept in movie) = 0.5

p(slept in movie | liked movie) = 1/4

p(didn’t sleep in movie | liked movie) = 3/4

Slept Liked

1 0

0 1

1 1

1 0

0 0

1 0

0 1

0 1



Joint distributions

• The probability that a set of random variables will take a 

specific value is their joint distribution.

• Notation: P(A  B) or P(A,B)

• Example:  P(liked movie, slept)

If we assume independence then

P(A,B)=P(A)P(B)

However, in many cases such an 

assumption may be too strong 

(more later in the class)



Joint distribution (cont)

P(class size > 20) = 0.6

P(summer) = 0.4

Evaluation of classes

P(class size > 20, summer) = ?

Size Time Eval

30 R 2

70 R 1

12 S 2

8 S 3

56 R 1

24 S 2

10 S 3

23 R 3

9 R 2

45 R 1



Joint distribution (cont)

P(class size > 20) = 0.6

P(summer) = 0.4

P(class size > 20, summer) = 0.1

Evaluation of classes

Size Time Eval

30 R 2

70 R 1

12 S 2

8 S 3

56 R 1

24 S 2

10 S 3

23 R 3

9 R 2

45 R 1



Joint distribution (cont)

P(class size > 20) = 0.6

P(eval = 1) = 0.3

P(class size > 20, eval = 1) = 0.3

Size Time Eval

30 R 2

70 R 1

12 S 2

8 S 3

56 R 1

24 S 2

10 S 3

23 R 3

9 R 2

45 R 1



Joint distribution (cont)

P(class size > 20) = 0.6

P(eval = 1) = 0.3

P(class size > 20, eval = 1) = 0.3

Evaluation of classes

Size Time Eval

30 R 2

70 R 1

12 S 2

8 S 3

56 R 1

24 S 2

10 S 3

23 R 3

9 R 2

45 R 1



Chain rule
• The joint distribution can be specified in terms of conditional probability:

P(A,B) = P(A|B)*P(B)

• Together with Bayes rule (which is actually derived from it) this is one of the most 

powerful rules in probabilistic reasoning 



Bayes rule

• One of the most important rules for this class.

• Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)

• Thus,

Thomas Bayes was 

an English 

clergyman who set 

out his theory of 

probability in 1764. 
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Bayes rule (cont)

Often it would be useful to derive the rule a bit further:


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This results from: 

P(B) = ∑AP(B,A)
A
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P(B,A=1) P(B,A=0)



Bayes Rule for Continuous Distribtuions

• Standard form:

• Replacing the bottom:



AIDS test (Bayes rule) 

Data 

Approximately 0.1% are infected 

Test detects all infections 

Test reports positive for 1% healthy people 

10 

Only 9%!... 

Probability of having AIDS if test is positive: 
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AIDS test (Bayes rule) 

Data 

Approximately 0.1% are infected 

Test detects all infections 

Test reports positive for 1% healthy people 

10 

Only 9%!... 

Probability of having AIDS if test is positive: 



Continuous distributions



Statistical Models

• Statistical models attempt to characterize properties of the 
population of interest

• For example, we might believe that repeated measurements follow a 
normal (Gaussian) distribution with some mean µ and variance 2 , x ~ 
N(µ,2)

where

and =(µ,2) defines the parameters (mean and variance) of the 
model. 
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How much do grad students sleep?
• Lets try to estimate the distribution of the time students spend sleeping (outside 

class).



Possible statistics

• X 

Sleep time

•Mean of X:

E{X}

7.03

• Variance of X: 

Var{X} = E{(X-E{X})^2}

3.05
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• A statistical model is a collection

of distributions; the parameters

specify individual distributions x ~ 

N(µ,2)

• We need to adjust the parameters 

so that the resulting 

distribution fits the data well

The Parameters of Our Model



• A statistical model is a collection

of distributions; the parameters

specify individual distributions x ~ 

N(µ,2)

• We need to adjust the parameters 

so that the resulting 

distribution fits the data well

The Parameters of Our Model



Covariance: Sleep vs. GPA

Sleep / GPA

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

Sleep hours

G
P

A

Sleep / GPA

•Co-Variance of X1, X2: 

Covariance{X1,X2} = 

E{(X1-E{X1})(X2-E{X2})}

= 0.88



Probability Density Function

• Discrete distributions

• Continuous: Cumulative Density Function (CDF): F(a)

1 2 3 4 5 6

f(x)

x
a



Cumulative Density Functions

• Total probability

• Probability Density Function (PDF)

• Properties:

F(x)



Density estimation: The Bayesian way



Your first consulting job

• A billionaire from the suburbs of Seattle asks you a question:

–He says: I have a coin, if I flip it, what’s the probability it will fall with the head 

up?

–You say: Please flip it a few times:

–You say: The probability is: 3/5 because… frequency of heads in all flips

–He says: But can I put money on this estimate?

–You say: ummm…. Maybe not. 

– Not enough flips (less than sample complexity)



What about prior knowledge?

• Billionaire says: Wait, I know that the coin is “close” to 50-50. What can 

you do for me now?

• You say: I can learn it the Bayesian way…

• Rather than estimating a single , we obtain a distribution over possible 

values of 

50-50

Before data After data



Bayesian Learning

32

• Use Bayes rule:

• Or equivalently:

posterior likelihood prior



Prior distribution

• From where do we get the prior?

- Represents expert knowledge (philosophical approach)

- Simple posterior form (engineer’s approach)

• Uninformative priors:

- Uniform distribution

• Conjugate priors:

- Closed-form representation of posterior

- P(q) and P(q|D) have the same algebraic form as a function of \theta 



Conjugate Prior

• P(q) and P(q|D) have the same form as a function of theta

Eg. 1 Coin flip problem

Likelihood given Bernoulli model:

If prior is Beta distribution, 

Then posterior is Beta distribution



Beta distribution

More concentrated as values of bH, bT increase



Beta conjugate prior

As n = aH + aT

increases

As we get more samples, effect of prior is “washed out”



Conjugate Prior

• P() and P(|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial( = {1, 2, … , k})

If prior is Dirichlet distribution, 

Then posterior is Dirichlet distribution

For Multinomial, conjugate prior is Dirichlet distribution.



Posterior Distribution

• The approach seen so far is what is known as a Bayesian approach

• Prior information encoded as a distribution over possible values of parameter

• Using the Bayes rule, you get an updated posterior distribution over parameters, 

which you provide with flourish to the Billionaire

• But the billionaire is not impressed

- Distribution? I just asked for one number: is it 3/5, 1/2, what is it?

- How do we go from a distribution over parameters, to a single estimate of the 

true parameters?



Maximum A Posteriori Estimation

Choose  that maximizes a posterior probability

MAP estimate of probability of head:

Mode of Beta
distribution



Density estimation: Learning



Density Estimation

• A Density Estimator learns a mapping from a set of attributes to a Probability

Density
Estimator

Probability

Input data for a 
variable or a set of 

variables



Density estimation

• Estimate the distribution (or conditional distribution) of a random variable

• Types of variables:

- Binary

coin flip, alarm

- Discrete

dice, car model year

- Continuous 

height, weight, temp.,



When do we need to estimate densities? 
• Density estimators are critical ingredients in several of the ML algorithms we will 

discuss

• In some cases these are combined with other inference types for more involved 

algorithms (i.e. EM) while in others they are part of a more general process 

(learning in BNs and HMMs)



Density estimation

• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit a 
model



Learning a density estimator for discrete 

variables

 

ˆ P (x i = u) =
# records in which x i = u 

total number of records

A trivial learning algorithm!

But why is this true?



Maximum Likelihood Principle

M is our model (usually a 
collection of parameters)

 

ˆ P (dataset | M) = ˆ P (x1  x2  xn | M) = ˆ P (xk | M)
k=1

n



We can define the likelihood of the data given the model as follows:

For example M is

- The probability of ‘head’ for a coin flip

- The probabilities of observing 1,2,3,4 and 5 for a dice

- etc.



Maximum Likelihood Principle

• Our goal is to determine the values for the parameters in M

• We can do this by maximizing the probability of generating the observed samples

• For example, let  be the probabilities for a coin flip

• Then

L(x1, … ,xn | ) = p(x1 | ) … p(xn  | )

• The observations (different flips) are assumed to be independent

• For such a coin flip with P(H)=q the best assignment for h is

argmaxq = #H/#samples

• Why?

 

ˆ P (dataset | M) = ˆ P (x1  x2  xn | M) = ˆ P (xk | M)
k=1

n





• For a binary random variable A with P(A=1)=q
argmaxq = #1/#samples

• Why?

Data likelihood:

We would like to find:

Maximum Likelihood Principle: Binary 

variables
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Omitting terms that do 
not depend on q



Data likelihood:

We would like to find:

Maximum Likelihood Principle
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Log Probabilities

When working with products, probabilities of entire datasets often get too 
small. A possible solution is to use the log of probabilities, often termed 

‘log likelihood’

 

log ˆ P (dataset | M) = log ˆ P (xk | M)
k=1

n

 = log ˆ P (xk | M)
k=1

n



Log values 
between 0 and 1

Maximizing this likelihood function is the 
same as maximizing P(dataset | M)

In some cases moving to log space would also 
make computation easier (for example, 

removing the exponents)



Density estimation

• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit a 
model

But what if we 
only have very few 

samples?



Maximum Likelihood Principle


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• We can fit statistical models by maximizing the probability of 
generating the observed samples:
L(x1, … ,xn | ) = p(x1 | ) … p(xn  | )
(the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the variance to the 
sample mean and the sample variance:
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Why?



MLE vs. MAP

⚫ Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of 
observed data

⚫ Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed 
data and prior belief


