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@ Homework/Lectures

@ Bias-Variance tradeoff
Theory and motivation

Bias and variance of KNN

© VC dimension computation

@ Feature and model selection
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e Project proposals due Monday 10/17

e Questions about Homework 2 or the lectures?

e Office Hours: Wednesday 2:00 pm-3:00 pm
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e Objective: Predict t from x using training set D of
observations (x, t)
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e Objective: Predict t from x using training set D of
observations (x, t)

e The (unknown) optimal predictor is h(x) = Ep|[t|x] (we won't
prove this).
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e Objective: Predict t from x using training set D of
observations (x, t)

e The (unknown) optimal predictor is h(x) = Ep|[t|x] (we won't
prove this).

e Let your predictor be y(x; D) based on your optimization
method of choice.
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Motivation

Objective: Predict t from x using training set D of
observations (x, t)

The (unknown) optimal predictor is h(x) = Ep[t|x] (we won't
prove this).

Let your predictor be y(x; D) based on your optimization
method of choice.

Note that the predictor y(x; D) depends on D.



Motivation

Objective: Predict t from x using training set D of
observations (x, t)

The (unknown) optimal predictor is h(x) = Ep[t|x] (we won't
prove this).

Let your predictor be y(x; D) based on your optimization
method of choice.

Note that the predictor y(x; D) depends on D.
What can we say about the error of y(x; D)?



e Assume squared loss to measure the error of an predictor.
e Expected loss = Ep(y(x; D) — h(x))2.
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e Assume squared loss to measure the error of an predictor.
e Expected loss = Ep(y(x; D) — h(x))2.

e Note that the expectation is over D since your estimator
y(x; D) will be different for different D.
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Analysis

Assume squared loss to measure the error of an predictor.
Expected loss = Ep(y(x; D) — h(x))?.

Note that the expectation is over D since your estimator
y(x; D) will be different for different D.

We will look at this error with respect to the error of the
mean predictor Ep(y(x;D)).



Analysis

Assume squared loss to measure the error of an predictor.
Expected loss = Ep(y(x; D) — h(x))?.

Note that the expectation is over D since your estimator
y(x; D) will be different for different D.

We will look at this error with respect to the error of the
mean predictor Ep(y(x;D)).

Note that Ep(y(x; D)) = ¥(x), it is not a function of D
anymore.



Ep(y(x; D) — h(x))* Ep(y(x; D) = ¥(x) + ¥(x) — h(x))? ,
Ep(y(x; D) = ¥(x))* + Ep(¥(x) — h(x))

+Ep(2(y(x; D) = y(x))(¥(x) — h(x)))

«O>» «Fr «=)r « =) = Q>



Algebraic manipulation

Ep(y(x; D) — h(x))? Ep(y(x; D) = ¥(x) + ¥(x) — h(x))?

Ep(y(x; D) = ¥(x))* + Ep(¥(x) —

+Ep(2(y(x; D) — ¥(x))(¥(x) — h(x

e Now, since (¥(x) — h(x)) is constant w.r.t D, and we know
that E[cX] = cE[X], we can simplify the last term

Ep(2(y(x; D) = y(x))(¥(x) = h(x)))

h(x))
)



Ep(y(x; D) — h(x))*

Algebraic manipulation

Ep(y(x; D) = ¥(x) + ¥(x) — h(x))?
Ep(y(x;D) = ¥(x))* + En(¥(x) -
+Ep(2(y(x; D) = ¥(x))(¥(x) — h(x

h(x))
)

e Now, since (¥(x) — h(x)) is constant w.r.t D, and we know
that E[cX] = cE[X], we can simplify the last term

Ep(2(y(x; D)

Last term

—¥(x))(r(x) = h(x)))

Ep(2(y(x; D) = y(x))(¥(x) — h(x)))
2(y(x) = h(x))Ep((y(x; D) = ¥(x)))
2(y(x) — h(x))(Ep(y(x; D) = ¥(x)))
2(y(x) = h(x))(¥(x)) — ¥(x)))



Ep(y(x; D) — h(x))? = Ep(y(x; D) — ¥(x))* + Ep(¥(x) — h(x))?
= Ep(y(x; D) — En(y(x; D)))? + Ep(En(y(x; D)) — h(x))?>
= Ep(y(x; D) — Ep(y(x; D)))? + (Ep(y(x: D)) — h(x))?
e Bias: Ep(y(x; D)) — h(x) - How far is the mean predictor
from the optimal?
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Bias and variance

Ep(y(x; D) — h(X)) = Ep(y(x; D) — ¥(x))? + Ep(¥(x) — h(x))?
= Ep(y(x;D) = Ep(y(x;D)))? + Ep(Ep(y(x; D)) — h(x))*
= Ep(y(x; D) — Ep(y(x; D)))? + (En(y(x; D)) — h(x))?
e Bias: Ep(y(x; D)) — h(x) - How far is the mean predictor
from the optimal?

e Variance: Ep(y(x; D) — Ep(y(x; D))? - How far away is a
given predictor from the mean predictor?



Bias and variance

Ep (y(x; D)—h(X)) = Ep(y(x; D) = ¥(x))? + Ep(¥(x) — h(x))?
= Ep(y(x; D) — Ep(y(x; D)))? + Ep(Ep(y(x; D)) — h(x))?

= Ep(y(x;D) ~ Ep(y(x:D)))? + (En(y(x D)) — h(x))?

e Bias: Ep(y(x; D)) — h(x) - How far is the mean predictor

from the optimal?
e Variance: Ep(y(x; D) — Ep(y(x; D))? - How far away is a
given predictor from the mean predictor?

e Expected loss = Variance + (Bias)?



Bias and variance

Ep(y(x; D)—h(X)) = Ep(y(x: D) — ¥(x))* + Ep(¥(x) — h(x))?
Ep(y(x; D) — Ep(y(x; D)))? + Ep(Ep(y(x; D)) — h(x))
= Ep(y(x; D) — Ep(y(x; D)))? + (En(y(x; D)) — h(x))?

)

)

e Bias: Ep(y(x; D)) — h(x) - How far is the mean predictor
from the optimal?

e Variance: Ep(y(x; D) — Ep(y(x; D))? - How far away is a
given predictor from the mean predictor?

e Expected loss = Variance + (Bias)?

e A more general analysis would account for the fact that your
optimal predictor may itself not be perfect if there is noise in
the model. Say t = f(x) + ¢, where e ~ N(0,02).



Bias and variance

Ep(y(x; D)—h(X)) = Ep(y(x: D) — ¥(x))* + Ep(¥(x) — h(x))?
Ep(y(x; D) — Ep(y(x; D)))? + Ep(Ep(y(x; D)) — h(x))
= Ep(y(x; D) — Ep(y(x; D)))? + (En(y(x; D)) — h(x))?

)

)

e Bias: Ep(y(x; D)) — h(x) - How far is the mean predictor
from the optimal?

e Variance: Ep(y(x; D) — Ep(y(x; D))? - How far away is a
given predictor from the mean predictor?

e Expected loss = Variance + (Bias)?

e A more general analysis would account for the fact that your
optimal predictor may itself not be perfect if there is noise in
the model. Say t = f(x) + ¢, where e ~ N(0,02).

e Then, Expected loss = Variance + (Bias)? + Noise
(irreducible)



e Bias can be minimized by choosing the predictor from a

complex family which can fit any data distribution well. This
could cause overfitting.
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Bias-Variance tradeoff

e Bias can be minimized by choosing the predictor from a
complex family which can fit any data distribution well. This
could cause overfitting.

e Variance can be minimized by choosing the predictor from a
simple family so that all predictors are close to the mean.
This could lead to a poor fit to the data.



Bias-Variance tradeoff

e Bias can be minimized by choosing the predictor from a
complex family which can fit any data distribution well. This
could cause overfitting.

e Variance can be minimized by choosing the predictor from a
simple family so that all predictors are close to the mean.
This could lead to a poor fit to the data.

e The two minimization objectives are contradictory.



Bias-Variance tradeoff

Bias can be minimized by choosing the predictor from a
complex family which can fit any data distribution well. This
could cause overfitting.

Variance can be minimized by choosing the predictor from a
simple family so that all predictors are close to the mean.
This could lead to a poor fit to the data.

The two minimization objectives are contradictory.

The solution is usually to settle for a predictor with
intermediate values of bias and variance for the best
generalization.



e Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?
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Alternative interpretations - Bias

e Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?

e It measures the impact of the assumptions you made when
choosing your predictor class. How different are they from the
reality of the data?



Alternative interpretations - Bias

e Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?

e It measures the impact of the assumptions you made when
choosing your predictor class. How different are they from the
reality of the data?

e For example, suppose I'm using logistic regression (a linear
classifier).



Alternative interpretations - Bias

Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?

It measures the impact of the assumptions you made when
choosing your predictor class. How different are they from the
reality of the data?

For example, suppose I'm using logistic regression (a linear
classifier).

Qualitatively, is the bias more when - (a) the decision
boundary is non-linear (b) the decision boundary is linear?



Alternative interpretations - Bias

Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?

It measures the impact of the assumptions you made when
choosing your predictor class. How different are they from the
reality of the data?

For example, suppose I'm using logistic regression (a linear
classifier).

Qualitatively, is the bias more when - (a) the decision
boundary is non-linear (b) the decision boundary is linear?

When the decision boundary is non-linear, | can never expect
to perfectly learn the decision boundary. So the bias is higher.



e Variance can be thought of as the sensitivity of the predictor
to the dataset D.
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e Variance can be thought of as the sensitivity of the predictor
to the dataset D.

e A very complex (flexible) predictor will change a lot even if
the dataset D changes due to just noise.
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Alternative interpretations - Variance

e Variance can be thought of as the sensitivity of the predictor
to the dataset D.

e A very complex (flexible) predictor will change a lot even if
the dataset D changes due to just noise.

e Sensitivity to noise is undesirable.



e Suppose we want to use a KNN to predict t = f(x) + € (e=
noise). We are given pairs of the form x, t(x).
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Prediction with KNN

e Suppose we want to use a KNN to predict t = f(x) + € (e=
noise). We are given pairs of the form x, t(x).

e For prediction, if we use k nearest neighbors, the prediction
rule is )
ty
= > =7
yiy €Nk (x)

where N (x) is the set of the k nearest neighbors of point x.



Prediction with KNN

e Suppose we want to use a KNN to predict t = f(x) + € (e=
noise). We are given pairs of the form x, t(x).

e For prediction, if we use k nearest neighbors, the prediction

rule is
t)= > t(ky)

y:y€Nk(x)
where N (x) is the set of the k nearest neighbors of point x.

e First, what does the bias and variance of this predictor depend
on?



Prediction with KNN

Suppose we want to use a KNN to predict t = f(x) + € (e=
noise). We are given pairs of the form x, t(x).

For prediction, if we use k nearest neighbors, the prediction

rule is )
ty
y:y€Nk(x)
where N (x) is the set of the k nearest neighbors of point x.

First, what does the bias and variance of this predictor depend
on?

It depends on k, the number of neighbors.



e What if k =17
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e What if k =17

e Then t(x) is assumed to be equal to the value for its nearest
neighbor.
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Bias-variance and the number of neighbors k

e What if k =17

e Then t(x) is assumed to be equal to the value for its nearest
neighbor.

e Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.



Bias-variance and the number of neighbors k

What if k =17
Then t(x) is assumed to be equal to the value for its nearest
neighbor.

Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.

But if the dataset changes even a little, the nearest neighbor
for x could change. So the prediction could be quite different.
So the variance is high.



Bias-variance and the number of neighbors k

What if k =17

Then t(x) is assumed to be equal to the value for its nearest
neighbor.

Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.

But if the dataset changes even a little, the nearest neighbor
for x could change. So the prediction could be quite different.
So the variance is high.

Suppose k = N, the number of training points.



Bias-variance and the number of neighbors k

What if k =17
Then t(x) is assumed to be equal to the value for its nearest
neighbor.

Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.

But if the dataset changes even a little, the nearest neighbor
for x could change. So the prediction could be quite different.
So the variance is high.

Suppose k = N, the number of training points.

The prediction t(x) is then the mean t of all N training
points. It is completely independent of what point x you want
to make the prediction for.



Bias-variance and the number of neighbors k

What if k =17

Then t(x) is assumed to be equal to the value for its nearest
neighbor.

Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.

But if the dataset changes even a little, the nearest neighbor
for x could change. So the prediction could be quite different.
So the variance is high.

Suppose k = N, the number of training points.

The prediction t(x) is then the mean t of all N training
points. It is completely independent of what point x you want
to make the prediction for.

Therefore, the bias is high and the variance is low.



e Bias o« Number of nearest neighbors.

. 1
e Variance Number of nearest neighbors

«O» «F»r «

>

« =

DA



e Bias o« Number of nearest neighbors.

. 1
e Variance Number of nearest neighbors

e Earlier, we said that a more complex predictor has less bias
and more variance.
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KNN bias-variance summary

Bias oc Number of nearest neighbors.

. 1
Variance o Number of nearest neighbors
Earlier, we said that a more complex predictor has less bias
and more variance.

This suggests that KNN complexity actually reduces as k
increases. (Not intuitive!)



o A classifer family shatters a set of points if for any labeling of

the set of points, there exists a member of the classifer family
that can correctly label the set.
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Computing VC dimension of a classifer

o A classifer family shatters a set of points if for any labeling of
the set of points, there exists a member of the classifer family
that can correctly label the set.

o If a classifier family has VC dimension at least m, then there
must be a set of m points it can shatter.



Computing VC dimension of a classifer

o A classifer family shatters a set of points if for any labeling of
the set of points, there exists a member of the classifer family
that can correctly label the set.

o If a classifier family has VC dimension at least m, then there
must be a set of m points it can shatter.

e If a classifier family has VC dimension at most m, then there
cannot be any set of m+ 1 points that it can shatter.



Computing VC dimension of a classifer

A classifer family shatters a set of points if for any labeling of
the set of points, there exists a member of the classifer family
that can correctly label the set.

If a classifier family has VC dimension at least m, then there
must be a set of m points it can shatter.

If a classifier family has VC dimension at most m, then there
cannot be any set of m+ 1 points that it can shatter.

A classifier family has VC dimension m if its VC dimension is
at least m and at most m.



Open-intervals (in one direction):

H1: if x >atheny=1else y =0

Open-intervals (in both directions):
H2: if x >atheny=1else y =0
orifx<atheny=1elsey =20
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H3: ifa<x < btheny=1else y =0.

H4: ifa<x < btheny=1elsey =0
orifa<x<btheny=0elsey=1
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e Setting: Data: X=50 x 15 ,Y = 50 x1. 50 data points, 15
features.
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e Setting: Data: X=50 x 15 ,Y = 50 x1. 50 data points, 15
features.

e Assume a linear regression model. You can choose to include
or exclude features.
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Feature and model selection- linear regression

e Setting: Data: X=50 x 15,Y =50 x1. 50 data points, 15
features.

e Assume a linear regression model. You can choose to include
or exclude features.

e What | did: Built models by progressively adding features.
Model M; used all 50 data points and the first j features, i.e
X(M;)=X[1:50,1:i].



Feature and model selection- linear regression

Setting: Data: X=50 x 15, Y =50 x1. 50 data points, 15
features.

Assume a linear regression model. You can choose to include
or exclude features.

What | did: Built models by progressively adding features.
Model M; used all 50 data points and the first j features, i.e
X(M;)=X[1:50,1:i].

Fit a linear regression model using the /m function in R.



Feature and model selection- linear regression

Setting: Data: X=50 x 15, Y =50 x1. 50 data points, 15
features.

Assume a linear regression model. You can choose to include
or exclude features.

What | did: Built models by progressively adding features.
Model M; used all 50 data points and the first j features, i.e
X(M;)=X[1:50,1:i].

Fit a linear regression model using the /m function in R.
Question: Which model (My, -+, Mys) is best?



Plot of RSS
— % —o
o\o‘o
o ~
8 ] TP To—o0—0—5—_6—_6—0—0o
@ o
2 8-
o _|
N
o -
T T T T T T T
2 4 6 8 10 12 14
Model number

What model is best?
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e The graph showed RSS decreasing as more features were
added.
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Aside about RSS and extra features

e The graph showed RSS decreasing as more features were
added.

e Claim: The performance of linear regression can never get

worse due to addition of a feature (assuming no optimization
errors).



Aside about RSS and extra features

e The graph showed RSS decreasing as more features were
added.

e Claim: The performance of linear regression can never get
worse due to addition of a feature (assuming no optimization
errors).

e Proof?



Aside about RSS and extra features

The graph showed RSS decreasing as more features were
added.

Claim: The performance of linear regression can never get
worse due to addition of a feature (assuming no optimization
errors).

Proof?

Useful to note that there are no direct interactions between
features in linear regression.



e We will try to use information criteria to resolve this problem.
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e We will try to use information criteria to resolve this problem.

e Remember the gaussian model equivalent of linear regression?

«O» «F»r « =

Er «E>»

DA



e We will try to use information criteria to resolve this problem.

e Remember the gaussian model equivalent of linear regression?
o yi =07x; + ¢, where e ~ N(0,02)
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Back to model/feature selection

We will try to use information criteria to resolve this problem.
Remember the gaussian model equivalent of linear regression?
yi =0T x; + ¢, where e ~ N(0,02?)

Log-likelihood /(6) = nlog ﬁ — S (i — 07 x)?



Back to model/feature selection

We will try to use information criteria to resolve this problem.
Remember the gaussian model equivalent of linear regression?
yi = 07 x; + ¢, where ¢ ~ N(0,0?)

Log-likelihood /(6) = nlog ﬁ — S (i — 07 x)?
Here, 02 = 0.5(assume known), so /(8) = — >_7_, (yi — 07 x;)?
+ C



e BIC=1(0) — % log n, where k is the number of free
parameters
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e BIC=1(0) — % log n, where k is the number of free
parameters

e For linear regression with i features, there are i 4+ 1 free
parameters.
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e BIC=1(0) — % log n, where k is the number of free
parameters

e For linear regression with i features, there are i 4+ 1 free
parameters.

o BIC(M;) = — 71 (yi — 07x)2 — Hllogn
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Bayesian Information Criterion

BIC = I(f) — % log n, where k is the number of free
parameters

For linear regression with i features, there are i + 1 free
parameters.

BIC(M;) = —=>"" 1 (vi — 07x)? — % log n
The model with maximum BIC is considered the best.



Bayesian Information Criterion

BIC = I(f) — % log n, where k is the number of free
parameters

For linear regression with i features, there are i + 1 free
parameters.

BIC(M;) = —=>"" 1 (vi — 07x)? — % log n
The model with maximum BIC is considered the best.
(Note: Alternative definition of BIC possible)



Plot of BIC score

S
— o
1 i \o-—‘°
N
9 ] o
e 7 N
g o o
2 % . ~
] S \,
9 AN
81,/ :
— o0
- T T T T T T I
2 4 6 8 10 12 14

Model number

So the best model is ?

«O» «F»r «

i
it
it
N)
¥l
i)



	Outline
	Homework/Lectures
	Bias-Variance tradeoff
	Theory and motivation
	Bias and variance of KNN

	VC dimension computation
	Feature and model selection

