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Outline of Topics

1 Homework/Lectures

2 Bias-Variance tradeoff
Theory and motivation
Bias and variance of KNN

3 VC dimension computation

4 Feature and model selection



Questions about HW 2 or the lectures?

• Project proposals due Monday 10/17

• Questions about Homework 2 or the lectures?

• Office Hours: Wednesday 2:00 pm-3:00 pm



Motivation

• Objective: Predict t from x using training set D of
observations (x , t)

• The (unknown) optimal predictor is h(x) = ED[t|x ] (we won’t
prove this).

• Let your predictor be y(x ;D) based on your optimization
method of choice.

• Note that the predictor y(x ;D) depends on D.

• What can we say about the error of y(x ;D)?
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Analysis

• Assume squared loss to measure the error of an predictor.

• Expected loss = ED(y(x ;D)− h(x))2.

• Note that the expectation is over D since your estimator
y(x ;D) will be different for different D.

• We will look at this error with respect to the error of the
mean predictor ED(y(x ;D)).

• Note that ED(y(x ;D)) = y(x), it is not a function of D
anymore.
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Algebraic manipulation

•

ED(y(x ;D)− h(x))2 = ED(y(x ;D)− y(x) + y(x)− h(x))2

= ED(y(x ;D)− y(x))2 + ED(y(x)− h(x))2

+ED(2(y(x ;D)− y(x))(y(x)− h(x)))

• Now, since (y(x)− h(x)) is constant w.r.t D, and we know
that E[cX ] = cE[X ], we can simplify the last term
ED(2(y(x ;D)− y(x))(y(x)− h(x)))
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= 0
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Bias and variance

ED(y(x ;D)− h(x))2 = ED(y(x ;D)− y(x))2 + ED(y(x)− h(x))2

= ED(y(x ;D)− ED(y(x ;D)))2 + ED(ED(y(x ;D))− h(x))2

= ED(y(x ;D)− ED(y(x ;D)))2 + (ED(y(x ;D))− h(x))2

• Bias: ED(y(x ;D))− h(x) - How far is the mean predictor
from the optimal?

• Variance: ED(y(x ;D)− ED(y(x ;D))2 - How far away is a
given predictor from the mean predictor?

• Expected loss = Variance + (Bias)2

• A more general analysis would account for the fact that your
optimal predictor may itself not be perfect if there is noise in
the model. Say t = f (x) + ε, where ε ∼ N (0, σ2e ).

• Then, Expected loss = Variance + (Bias)2 + Noise
(irreducible)
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Bias-Variance tradeoff

• Bias can be minimized by choosing the predictor from a
complex family which can fit any data distribution well. This
could cause overfitting.

• Variance can be minimized by choosing the predictor from a
simple family so that all predictors are close to the mean.
This could lead to a poor fit to the data.

• The two minimization objectives are contradictory.

• The solution is usually to settle for a predictor with
intermediate values of bias and variance for the best
generalization.
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Alternative interpretations - Bias

• Bias: What is the difference between the true predictor and
the predictor that you can expect to learn?

• It measures the impact of the assumptions you made when
choosing your predictor class. How different are they from the
reality of the data?

• For example, suppose I’m using logistic regression (a linear
classifier).

• Qualitatively, is the bias more when - (a) the decision
boundary is non-linear (b) the decision boundary is linear?

• When the decision boundary is non-linear, I can never expect
to perfectly learn the decision boundary. So the bias is higher.
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Alternative interpretations - Variance

• Variance can be thought of as the sensitivity of the predictor
to the dataset D.

• A very complex (flexible) predictor will change a lot even if
the dataset D changes due to just noise.

• Sensitivity to noise is undesirable.
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Prediction with KNN

• Suppose we want to use a KNN to predict t = f (x) + ε (ε=
noise). We are given pairs of the form x , t(x).

• For prediction, if we use k nearest neighbors, the prediction
rule is

t(x) =
∑

y :y∈Nk (x)

t(y)

k

where Nk(x) is the set of the k nearest neighbors of point x .

• First, what does the bias and variance of this predictor depend
on?

• It depends on k, the number of neighbors.
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Bias-variance and the number of neighbors k

• What if k = 1?

• Then t(x) is assumed to be equal to the value for its nearest
neighbor.

• Assuming f is smooth, t(x) should be close to the value for
its neighbor. So the bias will be low.

• But if the dataset changes even a little, the nearest neighbor
for x could change. So the prediction could be quite different.
So the variance is high.

• Suppose k = N, the number of training points.

• The prediction t(x) is then the mean t of all N training
points. It is completely independent of what point x you want
to make the prediction for.

• Therefore, the bias is high and the variance is low.
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KNN bias-variance summary

• Bias ∝ Number of nearest neighbors.

• Variance ∝ 1
Number of nearest neighbors

• Earlier, we said that a more complex predictor has less bias
and more variance.

• This suggests that KNN complexity actually reduces as k
increases. (Not intuitive!)
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Computing VC dimension of a classifer

• A classifer family shatters a set of points if for any labeling of
the set of points, there exists a member of the classifer family
that can correctly label the set.

• If a classifier family has VC dimension at least m, then there
must be a set of m points it can shatter.

• If a classifier family has VC dimension at most m, then there
cannot be any set of m + 1 points that it can shatter.

• A classifier family has VC dimension m if its VC dimension is
at least m and at most m.
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Open intervals in 1-D

Open-intervals (in one direction):
H1: if x > a then y = 1 else y = 0.

Open-intervals (in both directions):
H2: if x > a then y = 1 else y = 0
or if x < a then y = 1 else y = 0



Closed intervals in 1-D

H3: if a < x < b then y = 1 else y = 0.

H4: if a < x < b then y = 1 else y = 0
or if a < x < b then y = 0 else y = 1



Feature and model selection- linear regression

• Setting: Data: X= 50 × 15 , Y = 50 ×1. 50 data points, 15
features.

• Assume a linear regression model. You can choose to include
or exclude features.

• What I did: Built models by progressively adding features.
Model Mi used all 50 data points and the first i features, i.e
X(Mi )=X[1:50,1:i].

• Fit a linear regression model using the lm function in R.

• Question: Which model (M1, · · · ,M15) is best?
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X(Mi )=X[1:50,1:i].

• Fit a linear regression model using the lm function in R.

• Question: Which model (M1, · · · ,M15) is best?
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Aside about RSS and extra features

• The graph showed RSS decreasing as more features were
added.

• Claim: The performance of linear regression can never get
worse due to addition of a feature (assuming no optimization
errors).

• Proof?

• Useful to note that there are no direct interactions between
features in linear regression.
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Back to model/feature selection

• We will try to use information criteria to resolve this problem.

• Remember the gaussian model equivalent of linear regression?

• yi = θT xi + ε, where ε ∼ N (0, σ2)

• Log-likelihood l(θ) = n log 1
σ
√
2π
− 1

2σ2

∑n
i=1(yi − θT xi )2

• Here, σ2 = 0.5(assume known), so l(θ) = −
∑n

i=1(yi − θT xi )2
+ C
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Bayesian Information Criterion

• BIC = l(θ)− k
2 log n, where k is the number of free

parameters

• For linear regression with i features, there are i + 1 free
parameters.

• BIC (Mi ) = −
∑n

i=1(yi − θT xi )2 − i+1
2 log n

• The model with maximum BIC is considered the best.

• (Note: Alternative definition of BIC possible)
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