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PCA and Topic Models 



Latent Space Methods 

• PCA, Topic Models are latent space methods 

– Unsupervised 

– Reduce data to fewer dimensions 

– Easier to visualize and understand 

PCA Topic Model 



Principal Component Analysis 

• Key idea: find vectors that capture most of the 
variability in the data X 

– These vectors are the principal components: 



Principal Component Analysis 

• Let’s say the data X has n rows and p columns 

– Every row xi is a p-dimensional data point 

– We assume that X has zero mean 

 

• What quantity represents the variability of X? 

– Answer: The p-by-p covariance matrix XTX, which 
is equal to 



Principal Component Analysis 

• What does it mean for a vector to “capture” variability in the data? 
 

• Let C = XTX be the covariance matrix. We want a (unit length) vector u that 
maximizes uTCu 
– Why do we want this? 
– Intuition: let v = Cu, so we are maximizing uTv 
– uTv is high when 

• The magnitude of v is large 
• The angle between u and v is small 

– In other words, we want to find u such that 
• C makes u longer 
• C doesn’t change the angle of u 

 
• uTCu is maximized when u is the principal eigenvector of C 

– Hence Cu = λu where λ is the principal (largest) eigenvalue of C 
– Graphically, the principal eigenvector gives the direction of highest variability 

 



Principal Component Analysis 

• Graphically, the principal eigenvector gives the 
direction of highest variability: 



Principal Component Analysis 

• We found the first principal component u1 (the 
principal eigenvector). 
– How do we find the other principal components? 

 

• Again, find a unit-length u that maximizes uTCu, 
such that u is perpendicular to u1 

– The solution is the second eigenvector u2 

– Next, maximize uTCu s.t. u perpendicular to u1 and u2, 
which gives the third eigenvector u3 

– And so on… 



Principal Component Analysis 

• We maximize uTCu s.t. u perpendicular to u1: 



Finding the eigenvectors 

• MATLAB code to find the top k eigenvectors: 

– [V,D] = eigs(X’*X,k); 

 

• V is p-by-k, D is k-by-k 

• V contains top k eigenvectors as columns 

• D contains top k eigenvalues on its diagonal 



Principal Component Analysis 

• So far we’ve talked about eigenvectors of C 
– What’s the connection with a latent space? 

 
• Let’s project the data points onto the 1st PC/eigenvector 

– Notice how the points didn’t move much 



Principal Component Analysis 

• If we pick the top k PCs and project the data X 
onto them, we get a lower dimensional latent 
space representation of the data 

 

– Note that k < p (original data dimensionality) 

 

– By picking the top k PCs, we ensure the latent 
space distorts the data as little as possible 



Principal Component Analysis 

• How do we project the data on the top k PCs? 

 

• MATLAB code: 
– [V,D] = eigs(X’*X,k); 

– W = X*V; 

 

• W is n-by-k, and is the projection of X onto the 
top k PCs 
– Wij represents how much Xi depends on the j-th PC 



Principal Component Analysis 

• The projection W can be thought of as a “compressed” version of X 
– In some cases, we can even interpret the columns of W as “concepts” 

 
• How do we reconstruct the data from W? 

 
• MATLAB code: 

– [V,D] = eigs(X’*X,k); 
– W = X*V; 
– Y = W*V’; 

 
• Y is n-by-p, and is the reconstruction of X from the top k PCs 

– If the top k PCs capture most of the data variability, then Y will be 
similar to X 



Summary of PCA 

• PCA projects p-dimensional data X onto a k-
dimensional latent space W, where k < p 

 

• Properties of the latent space W 

– Captures most of the variability in X 

– Easier to visualize and understand than X 

– Less storage than X 

– We can reconstruct X from W with minimal error 



Topic Models 

• Setting: want to organize documents, represented as 
(high-dimensional) bags of words 
 

• Key idea: find K topics (collections of words) so we can 
describe documents as combinations of topics 
– Note that topics may overlap 



Topic Models 

• A Topic Model is a Bayesian generative model 

 

– Observed data depends on hidden variables, 
which can depend on other hidden variables, etc. 

 

– Can be graphically depicted as a Bayes Net 

 

– You already know another generative model 

• K-Gaussians Mixture Model 



Topic Models 

• The Topic Model “generative process” describes the 
model in a compact form: 

 
– Draw topic vocabularies k = 1…K: 

• βk ~ Dirichlet(η) 

 
– Draw document topic vectors i = 1…N: 

• θi ~ Dirichlet(α) 

 
– For each document i = 1…N: 

• Draw words j = 1…Mi: 
– zij ~ Multinomial(θi) (word-topic indicator) 
– wij ~ Multinomial(βzij

) (the word itself) 



Topic Models 

• “Graphical Model” illustration: 

α 

η βk 

θi zij wij 

K 

Mi N 

Generative Process: 
– For k = 1…K: 

• βk ~ Dirichlet(η) 

 

– For i = 1…N: 
• θi ~ Dirichlet(α) 

 

– For i = 1…N, j = 1…Mi: 
– zij ~ Multinomial(θi) 
– wij ~ Multinomial(βzij

) 



Reading Plate Notation 

• “Graphical Model” illustration: 

α 

η βk 

θi zij wij 

K 

Mi N 

Generative Process: 
– For k = 1…K: 

• βk ~ Dirichlet(η) 

 

– For i = 1…N: 
• θi ~ Dirichlet(α) 

 

– For i = 1…N, j = 1…Mi: 
– zij ~ Multinomial(θi) 
– wij ~ Multinomial(βzij

) 

This is a plate.  
 
Variables inside the 
plate are duplicated (K 
times in this case). 
 
Dependencies (arrows) 
are also duplicated 

This is a (non-random) parameter 

This is a hidden 
random variable 

This is an observed 
random variable 



Reading Plate Notation 

η βk 

K 

η 

β1 

βK 

β2 

…
 

is the same as 



Correspondence with Gen. Process 

• “Graphical Model” illustration: 
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Generative Process: 
– For k = 1…K: 

• βk ~ Dirichlet(η) 

 

– For i = 1…N: 
• θi ~ Dirichlet(α) 

 

– For i = 1…N, j = 1…Mi: 
– zij ~ Multinomial(θi) 
– wij ~ Multinomial(βzij

) 
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Correspondence with Gen. Process 
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From Generative Process to Inference 

• We just saw the topic model generative process 
and its corresponding graphical model 

– Given just the parameters α and η, we could generate 
random data from the topic model 

 

• But that’s not what we want! 

– We want to represent documents in terms of topics 

– So we need to find the topic vocabularies β and the 
document topic vectors θ 



From Generative Process to Inference 

• We find β and θ via probabilistic inference 
 

– In other words, find the distribution of β and θ 
conditioned on the observed words w (and 
parameters α, η) 

 

– This is the same principle as Viterbi for HMMs and 
variable elimination for Bayes Nets 

 

– I won’t go into details here, that’s for HW5 



From Generative Process to Inference 

• Topic model inference isn’t easy 
 

– We need to marginalize (sum out) the word-topic 
indicators z 
• But there are exponentially many settings to all z, so this is 

infeasible! 

 
– One popular solution is Gibbs sampling 

• In HW3, you saw Gibbs sampling for K-Gaussians 
• We’ll walk you through topic model Gibbs sampling in HW5 

 
– Naïve EM doesn’t work, so people use “variational EM” 

• You don’t need to know the details, just be aware of it 



Interpreting Topic Models 

α 

η βk 

θi zij wij 

K 

Mi 
N 

Corresponds to 
topic vocabularies β 

Corresponds to 
document topic vectors θ 

These are document words w. 
The word colors (red/green) 
correspond to word-topic 
indicators z 



Interpretation: 
 
Topic 1 is about finance 
Topic 2 is about rivers 
 
Document 1 is mostly about finance 
Document 2 is mostly about rivers 
 
Although “bank” appears in both 
topic vocabularies, in doc 1 it 
probably means a place to store 
money, whereas in doc 2 it probably 
means a river bank 

Interpreting Topic Models 

Corresponds to 
topic vocabularies β 

Corresponds to 
document topic vectors θ 

These are document words w. 
The word colors (red/green) 
correspond to word-topic 
indicators z 



Summary of Topic Models 

• Bayesian Generative Model that represent documents in a 
latent space of topics 
 

• Topics contain highly related words, corresponding to some 
concept 
 

• Use probabilistic inference to find topic vocabularies β and 
document topic vectors θ, from document text w 
– βk is a vector of word frequencies for topic k 
– θik shows what proportion of document i corresponds to topic k 

 
• Human interpretation is required to make sense of β and θ 



Summary of Latent Space Methods 

• PCA and Topic Models are unsupervised learning 
methods 

 

• They reduce high dimensional data to a lower 
dimensional representation 

 

• The lower dimensional representation is: 

– Easier to interpret 

– Compact (less storage required) 


