10-701 Recitation 10

PCA and Topic Models



Latent Space Methods

* PCA, Topic Models are latent space methods
— Unsupervised
— Reduce data to fewer dimensions
— Easier to visualize and understand
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Principal Component Analysis

* Key idea: find vectors that capture most of the
variability in the data X

— These vectors are the principal components:
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Principal Component Analysis

* Let’s say the data X has n rows and p columns
— Every row x; is a p-dimensional data point
— We assume that X has zero mean

* What quantity represents the variability of X?

— Answer: The p-by-p covariance matrix X'X, which
is equal to

T
X'X = Z v x; (sum of outer products)
i=1



Principal Component Analysis

 What does it mean for a vector to “capture” variability in the data?

e Let C=X"X be the covariance matrix. We want a (unit length) vector u that
maximizes u'Cu

— Why do we want this?
— Intuition: let v = Cu, so we are maximizing u'v
— u'vis high when

* The magnitude of vis large

— In other words, we want to find u such that
* Cmakes ulonger

* u'Cuis maximized when u is the principal eigenvector of C
— Hence Cu = Au where A is the principal (largest) eigenvalue of C
— Graphically, the principal eigenvector gives the direction of highest variability



Principal Component Analysis

* Graphically, the principal eigenvector gives the
direction of highest variability:
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Principal Component Analysis

* We found the first principal component u, (the
principal eigenvector).
— How do we find the other principal components?

* Again, find a unit-length u that maximizes u'Cu,
such that u is perpendicular to u,

— The solution is the

— Next, maximize u'Cu s.t. u perpendicular to u, and u,,
which gives the

— And so on...



Principal Component Analysis

* We maximize u'Cu s.t. u perpendicular to u;:
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Finding the eigenvectors

MATLAB code to find the top k eigenvectors:
— [V,D] = eigs(X"*X,k);

V is p-by-k, D is k-by-k
V contains top k eigenvectors as columns
D contains top k eigenvalues on its diagonal



Principal Component Analysis

* So far we’ve talked about eigenvectors of C
— What'’s the connection with a latent space?

* Let’s project the data points onto the 1st PC/eigenvector
— Notice how the points didn’t move much
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Principal Component Analysis

* |f we pick the top k PCs and project the data X
onto them, we get a lower dimensional latent
space representation of the data

— Note that k < p (original data dimensionality)

— By picking the top k PCs, we ensure the latent
space distorts the data as little as possible



Principal Component Analysis

* How do we project the data on the top k PCs?

* MATLAB code:
— [V,D] = eigs(X'*X,k);
— W = X*V;

* Wis n-by-k, and is the projection of X onto the
top k PCs
— W;; represents how much X; depends on the j-th PC



Principal Component Analysis

The projection W can be thought of as a “compressed” version of X
— In some cases, we can even interpret the columns of W as “concepts”

How do we reconstruct the data from W?

MATLAB code:

— [V,D] = eigs(X *X,k);
— W =X*V;

— Y=W*V’;

Y is n-by-p, and is the reconstruction of X from the top k PCs

— If the top k PCs capture most of the data variability, then Y will be
similar to X



Summary of PCA

* PCA projects p-dimensional data X onto a k-
dimensional latent space W, where k< p

* Properties of the latent space W
— Captures most of the variability in X
— Easier to visualize and understand than X
— Less storage than X
— We can reconstruct X from W with minimal error



Topic Models

e Setting: want to organize documents, represented as
(high-dimensional) bags of words

e Key idea: find K topics (collections of words) so we can
describe documents as

— Note that topics may overlap
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Topic Models

A Topic Model is a Bayesian generative model

— Observed data depends on hidden variables,
which can depend on other hidden variables, etc.

— Can be graphically depicted as a Bayes Net

— You already know another generative model
e K-Gaussians Mixture Model



Topic Models

 The Topic Model “generative process” describes the
model in a compact form:

— Draw topic vocabularies k = 1...K:
* B, ~ Dirichlet(n)

— Draw document topic vectors i = 1...N:
* 8, ~ Dirichlet(a)

— For each documenti=1...N:
* Draw words j=1...M.:
— z; ~ Multinomial(6,) (word-topic indicator)
- W; ™ MultinomiaI(Bzij) (the word itself)



Topic Models

* “Graphical Model” illustration:

Generative Process:
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K
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— Fori-= ]_N, J = 1M|
— ziJ.”MuItinomiaI(ei)
- w;~ MultinomiaI(Bzij)




Reading Plate Notation

* “Graphica

| Model” illustration:

This is a (non-random) parameter

This is a plate.

M

times in this case).
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Process:
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Reading Plate Notation

is the same as




Correspondence with Gen. Process

e “Graphical Model” illustration:

Generative Process:

0 @ — Fork=1..K:
e B, ~ Dirichlet(n)
K
— Fori=1..N:

e ©,~ Dirichlet(a)

— Fori-= ]_N, J = 1M|
— ziJ.”MuItinomiaI(ei)
- W MultinomiaI(Bzij)




Correspondence with Gen. Process

e “Graphical Model” illustration:

Generative Process:

@ — Fork=1.K:
* By~ Dirichlet(n)
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— Fori=1...N:
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Correspondence with Gen. Process

e “Graphical Model” illustration:

Generative Process:
@ — Fork=1.K:
* By~ Dirichlet(n)
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\ — Fori=1..N:

8, ~ Dirichlet(a)
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Correspondence with Gen. Process

e “Graphical Model” illustration:

Generative Process:

M_, 5, ~ Fork=1.K:
* By~ Dirichlet(n)

— Fori=1...N:
e ©,~ Dirichlet(a)

0_—> z; ) w — z;~ Multinomial(6)




From Generative Process to Inference

* We just saw the topic model generative process
and its corresponding graphical model

— Given just the parameters a and n, we could generate
random data from the topic model

e But that’s not what we want!
— We want to represent documents in terms of topics

— So we need to find the and the



From Generative Process to Inference
 We find B and O via probabilistic inference

— In other words, find the distribution of B and 6
conditioned on the observed words w (and
parameters a, n)

— This is the same principle as Viterbi for HMMs and
variable elimination for Bayes Nets

— | won’t go into details here, that’s for HW5



From Generative Process to Inference

* Topic model inference isn’t easy

— We need to marginalize (sum out) the word-topic
indicators z

e But there are exponentially many settings to all z, so this is
infeasible!

— One popular solution is Gibbs sampling
* In HW3, you saw Gibbs sampling for K-Gaussians
* We'll walk you through topic model Gibbs sampling in HW5

— Naive EM doesn’t work, so people use “variational EM”
* You don’t need to know the details, just be aware of it



Interpreting Topic Models

Corresponds to

topic vocabularies
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These are document words w.
Corresponds to The word colors (red/green)

document topic vectors 6 correspond to word-topic
indicators z




Interpreting Topic Models

Corresponds to Interpretation:

topic vocabularies B

Topic 1 is about finance
Topic 2 is about rivers

—— Document 1 is mostly about finance
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document topic vectors 6




Summary of Topic Models

Bayesian Generative Model that represent documents in a
latent space of topics

Topics contain highly related words, corresponding to some
concept

Use probabilistic inference to find topic vocabularies B and
document topic vectors 6, from document text w

— B, is a vector of word frequencies for topic k
— 0, shows what proportion of document i corresponds to topic k

Human interpretation is required to make sense of f and 0



Summary of Latent Space Methods

 PCA and Topic Models are unsupervised learning
methods

* They reduce high dimensional data to a

 The lower dimensional representation is:
— Easier to interpret
— Compact (less storage required)



