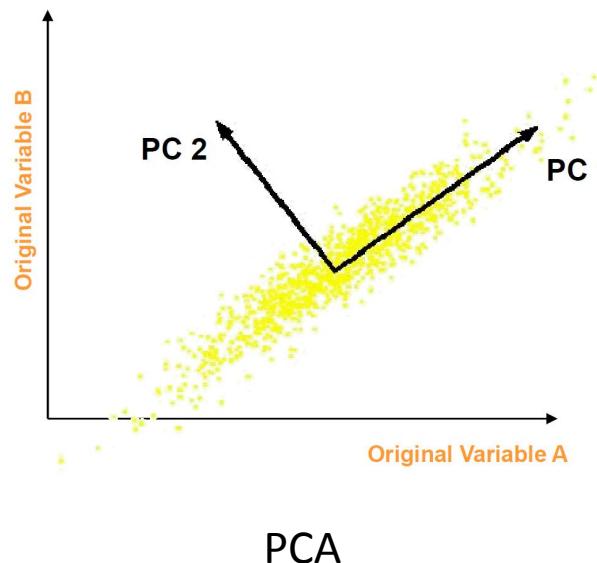
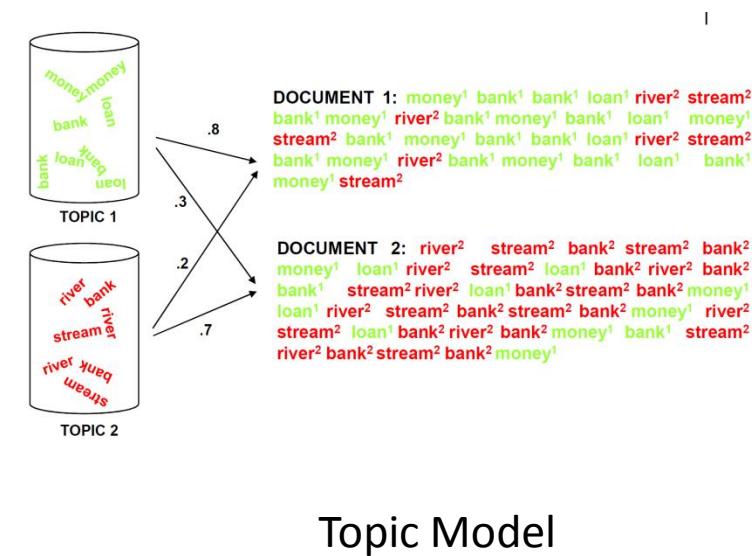


10-701 Recitation 10

PCA and Topic Models

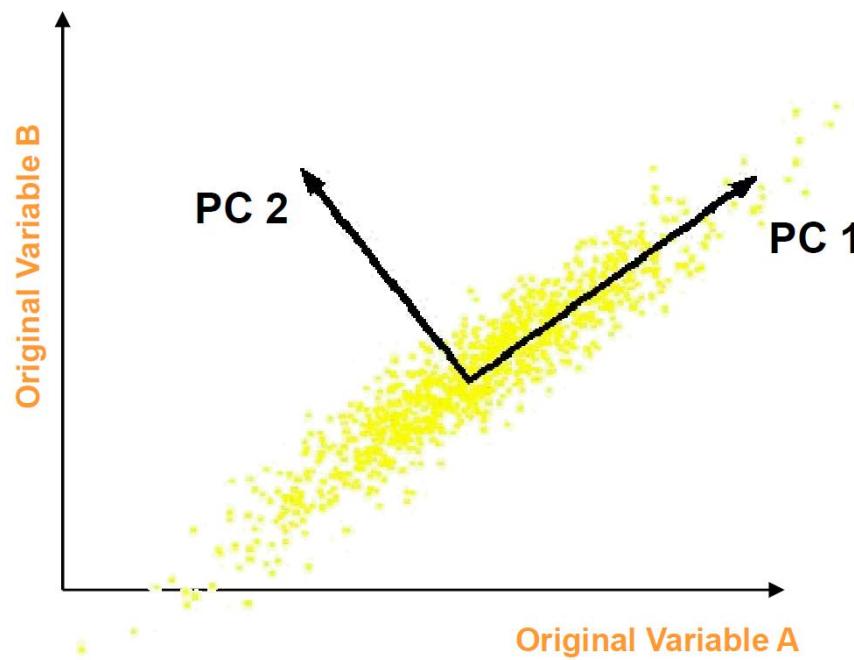
Latent Space Methods

- PCA, Topic Models are latent space methods
 - Unsupervised
 - Reduce data to fewer dimensions
 - Easier to visualize and understand



Principal Component Analysis

- Key idea: find vectors that capture most of the **variability** in the data X
 - These vectors are the principal components:



Principal Component Analysis

- Let's say the data X has n rows and p columns
 - Every row x_i is a p -dimensional data point
 - We assume that X has zero mean
- What quantity represents the variability of X ?
 - Answer: The p -by- p covariance matrix $X^T X$, which is equal to

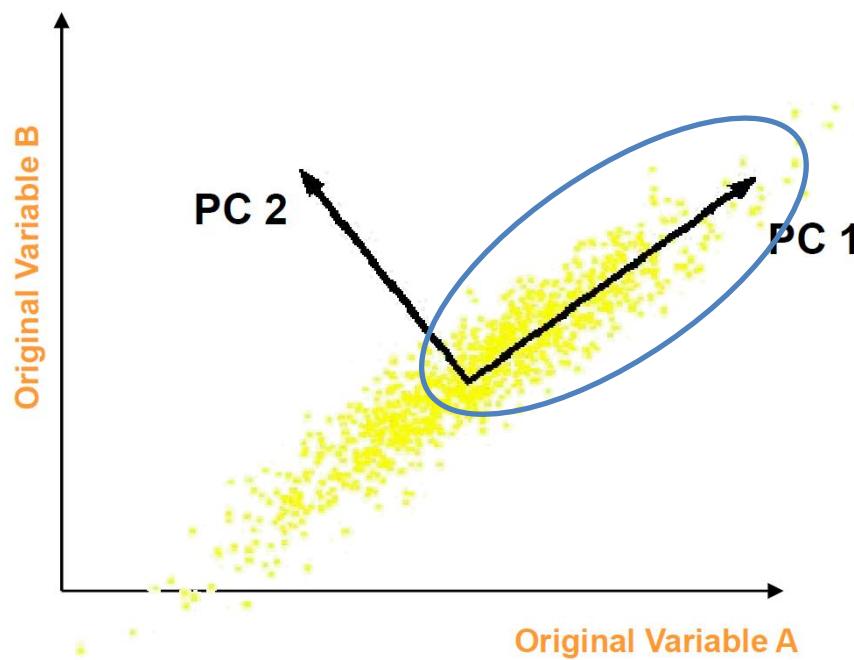
$$X^T X = \sum_{i=1}^n x_i^T x_i \quad (\text{sum of outer products})$$

Principal Component Analysis

- What does it mean for a vector to “capture” variability in the data?
- Let $C = X^T X$ be the covariance matrix. We want a (unit length) vector u that maximizes $u^T C u$
 - Why do we want this?
 - Intuition: let $v = Cu$, so we are maximizing $u^T v$
 - $u^T v$ is high when
 - The magnitude of v is large
 - The angle between u and v is small
 - In other words, we want to find u such that
 - C makes u longer
 - C doesn't change the angle of u
- $u^T C u$ is maximized when u is the principal eigenvector of C
 - Hence $Cu = \lambda u$ where λ is the principal (largest) eigenvalue of C
 - Graphically, the principal eigenvector gives the direction of highest variability

Principal Component Analysis

- Graphically, the principal eigenvector gives the direction of highest variability:

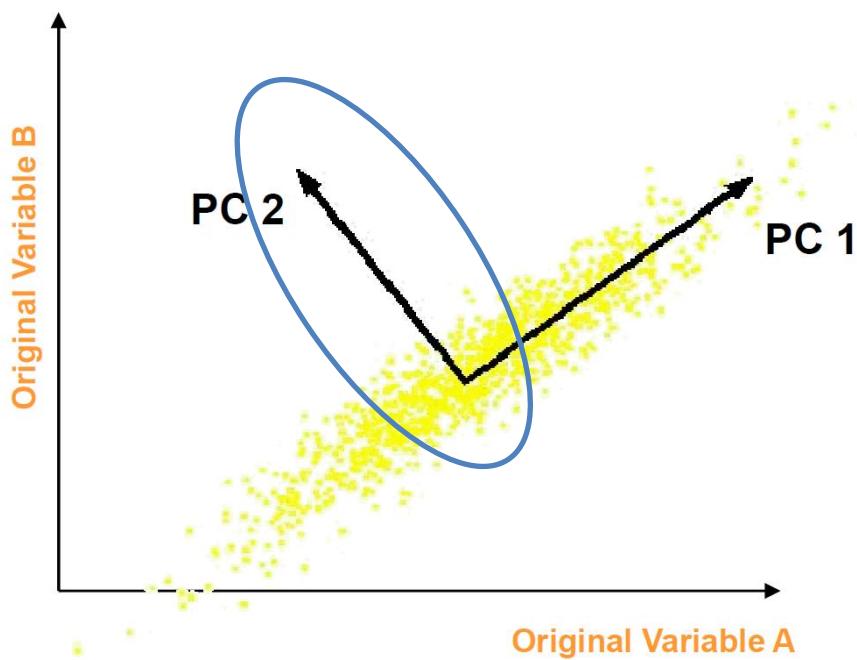


Principal Component Analysis

- We found the first principal component u_1 (the principal eigenvector).
 - How do we find the other principal components?
- Again, find a unit-length u that maximizes $u^T C u$, such that u is perpendicular to u_1
 - The solution is the second eigenvector u_2
 - Next, maximize $u^T C u$ s.t. u perpendicular to u_1 and u_2 , which gives the third eigenvector u_3
 - And so on...

Principal Component Analysis

- We maximize $u^T C u$ s.t. u perpendicular to u_1 :

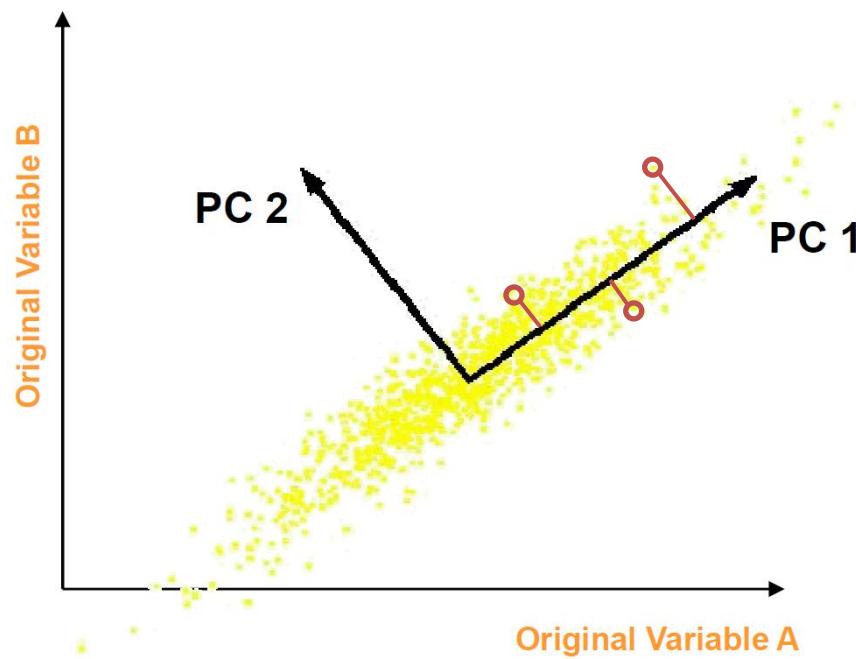


Finding the eigenvectors

- MATLAB code to find the top k eigenvectors:
 - $[V, D] = \text{eigs}(X^*X, k);$
- V is p -by- k , D is k -by- k
- V contains top k eigenvectors as columns
- D contains top k eigenvalues on its diagonal

Principal Component Analysis

- So far we've talked about eigenvectors of C
 - What's the connection with a latent space?
- Let's project the data points onto the 1st PC/eigenvector
 - Notice how the points didn't move much



Principal Component Analysis

- If we pick the top k PCs and project the data X onto them, we get a lower dimensional **latent space representation** of the data
 - Note that $k < p$ (original data dimensionality)
 - By picking the top k PCs, we ensure the latent space **distorts the data as little as possible**

Principal Component Analysis

- How do we project the data on the top k PCs?
- MATLAB code:
 - $[V, D] = \text{eigs}(X' * X, k);$
 - $W = X * V;$
- W is n -by- k , and is the projection of X onto the top k PCs
 - W_{ij} represents how much X_i depends on the j -th PC

Principal Component Analysis

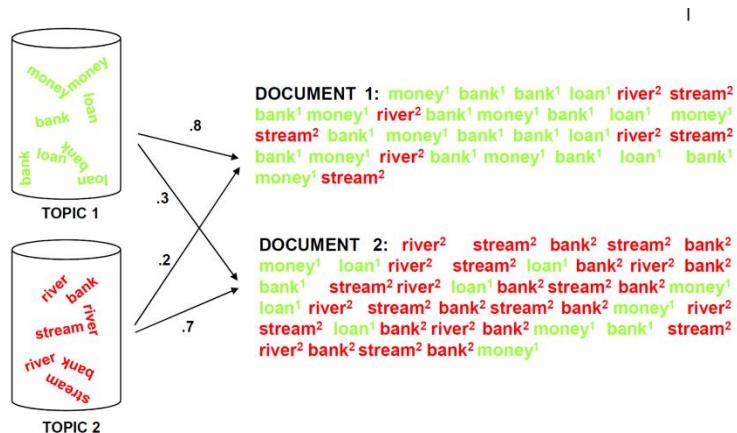
- The projection W can be thought of as a “compressed” version of X
 - In some cases, we can even interpret the columns of W as “concepts”
- How do we reconstruct the data from W ?
- MATLAB code:
 - $[V,D] = \text{eigs}(X'*X,k);$
 - $W = X*V;$
 - $Y = W*V';$
- Y is n -by- p , and is the reconstruction of X from the top k PCs
 - If the top k PCs capture most of the data variability, then Y will be similar to X

Summary of PCA

- PCA projects p -dimensional data X onto a k -dimensional latent space W , where $k < p$
- Properties of the latent space W
 - Captures most of the variability in X
 - Easier to visualize and understand than X
 - Less storage than X
 - We can reconstruct X from W with minimal error

Topic Models

- Setting: want to organize documents, represented as (high-dimensional) **bags of words**
- Key idea: find **K topics (collections of words)** so we can describe documents as **combinations of topics**
 - Note that topics may overlap



Topic Models

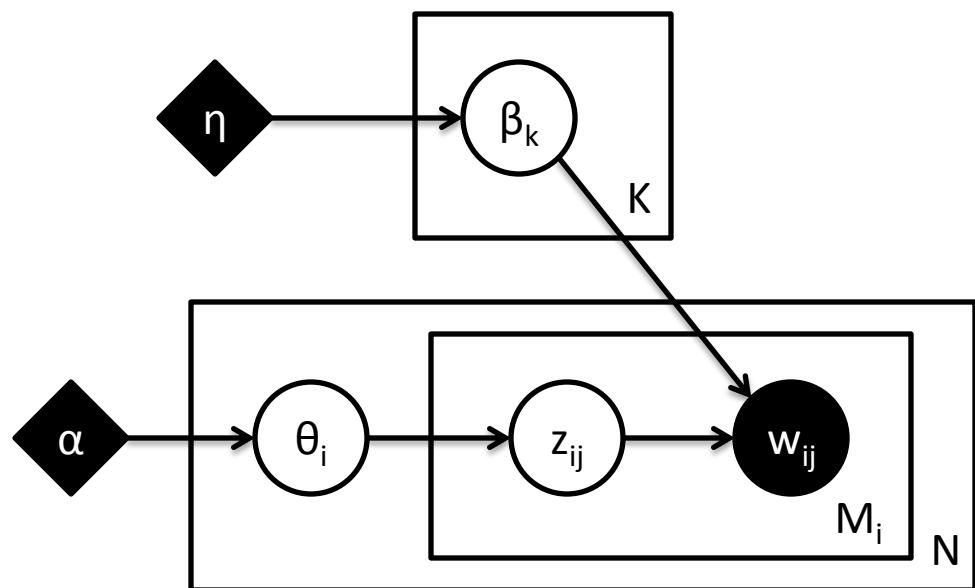
- A Topic Model is a Bayesian generative model
 - Observed data depends on hidden variables, which can depend on other hidden variables, etc.
 - Can be graphically depicted as a Bayes Net
 - You already know another generative model
 - K-Gaussians Mixture Model

Topic Models

- The Topic Model “generative process” describes the model in a compact form:
 - Draw topic vocabularies $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
 - Draw document topic vectors $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
 - For each document $i = 1 \dots N$:
 - Draw words $j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$ (word-topic indicator)
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$ (the word itself)

Topic Models

- “Graphical Model” illustration:



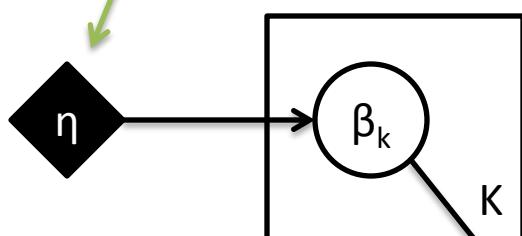
Generative Process:

- For $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
- For $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
- For $i = 1 \dots N, j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

Reading Plate Notation

- “Graphical Model” illustration:

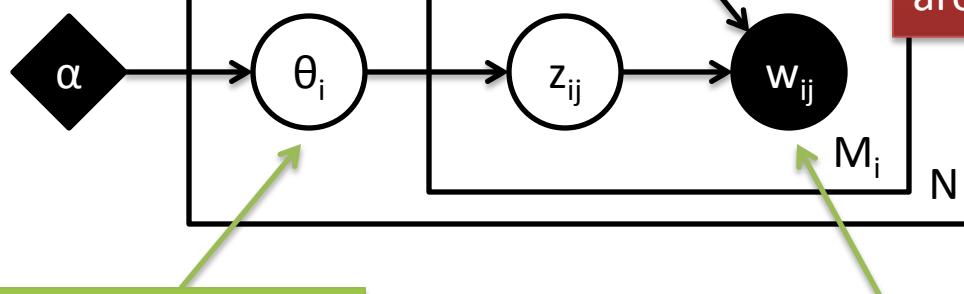
This is a (non-random) parameter



This is a plate.

Variables inside the plate are duplicated (K times in this case).

Dependencies (arrows) are also duplicated



This is a hidden random variable

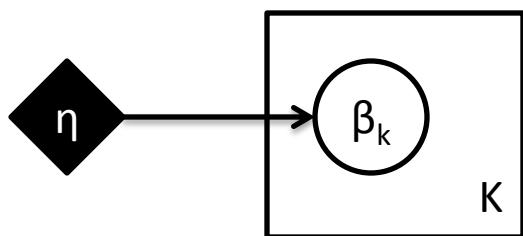
This is an observed random variable

Process:
....K:
Dirichlet(η)

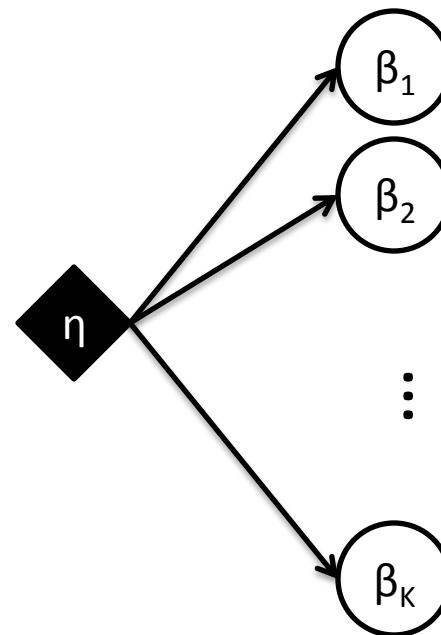
....N:
Dirichlet(α)

— For $i = 1 \dots N, j = 1 \dots M_i$:
— $z_{ij} \sim \text{Multinomial}(\theta_i)$
— $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

Reading Plate Notation

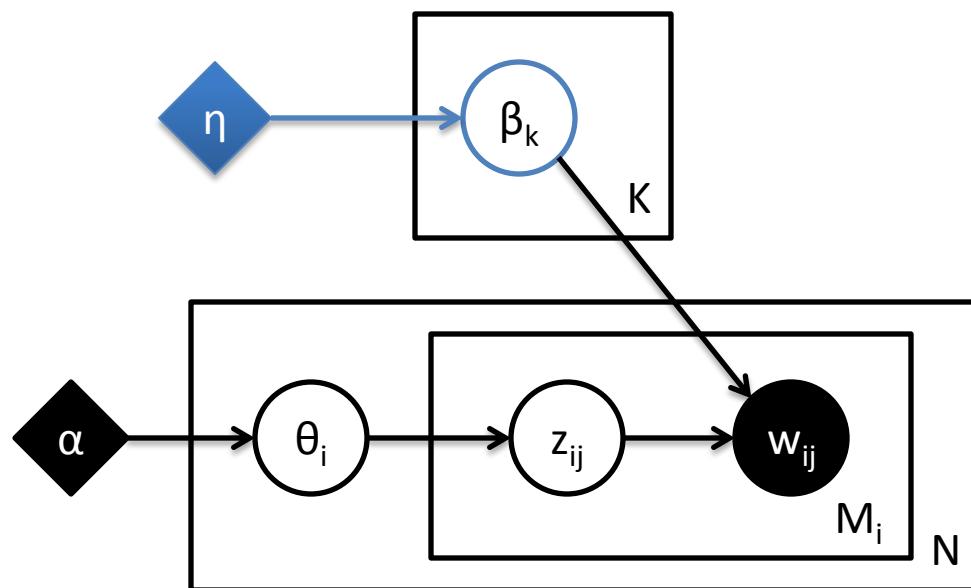


is the same as



Correspondence with Gen. Process

- “Graphical Model” illustration:

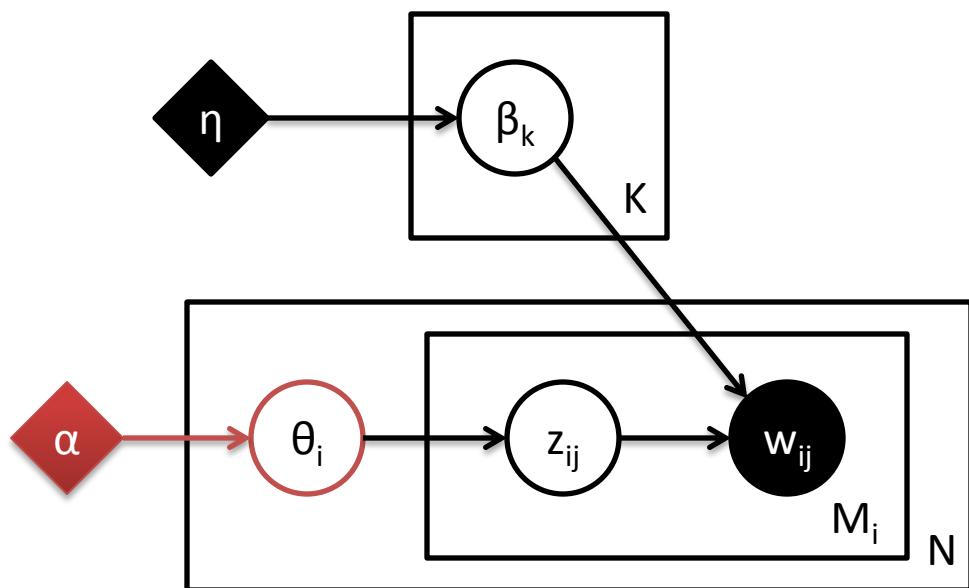


Generative Process:

- For $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
- For $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
- For $i = 1 \dots N, j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

Correspondence with Gen. Process

- “Graphical Model” illustration:

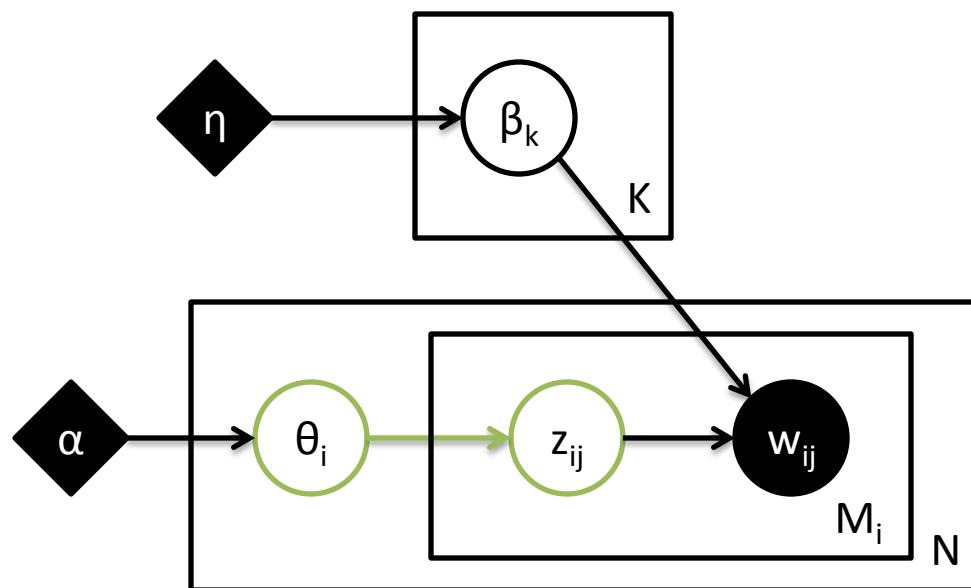


Generative Process:

- For $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
- For $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
- For $i = 1 \dots N, j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

Correspondence with Gen. Process

- “Graphical Model” illustration:

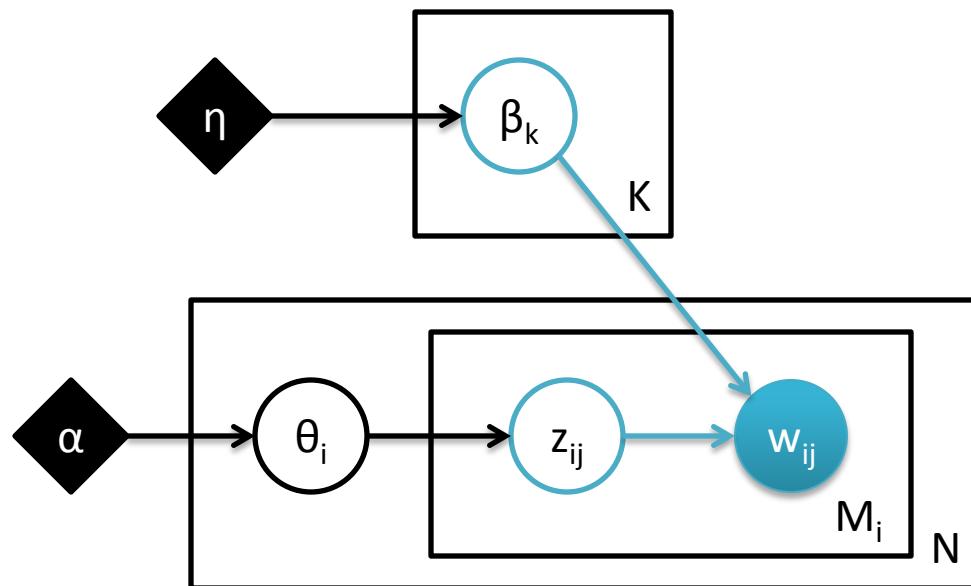


Generative Process:

- For $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
- For $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
- For $i = 1 \dots N, j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

Correspondence with Gen. Process

- “Graphical Model” illustration:



Generative Process:

- For $k = 1 \dots K$:
 - $\beta_k \sim \text{Dirichlet}(\eta)$
- For $i = 1 \dots N$:
 - $\theta_i \sim \text{Dirichlet}(\alpha)$
- For $i = 1 \dots N, j = 1 \dots M_i$:
 - $z_{ij} \sim \text{Multinomial}(\theta_i)$
 - $w_{ij} \sim \text{Multinomial}(\beta_{z_{ij}})$

From Generative Process to Inference

- We just saw the topic model generative process and its corresponding graphical model
 - Given just the parameters α and η , we could generate random data from the topic model
- But that's not what we want!
 - We want to **represent documents in terms of topics**
 - So we need to find the **topic vocabularies β** and the **document topic vectors θ**

From Generative Process to Inference

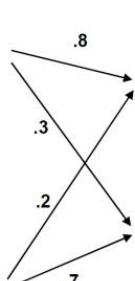
- We find β and θ via probabilistic inference
 - In other words, find the distribution of β and θ conditioned on the observed words w (and parameters α, η)
 - This is the same principle as Viterbi for HMMs and variable elimination for Bayes Nets
 - I won't go into details here, that's for HW5

From Generative Process to Inference

- Topic model inference isn't easy
 - We need to marginalize (sum out) the word-topic indicators z
 - But there are exponentially many settings to all z , so this is infeasible!
 - One popular solution is Gibbs sampling
 - In HW3, you saw Gibbs sampling for K-Gaussians
 - We'll walk you through topic model Gibbs sampling in HW5
 - Naïve EM doesn't work, so people use “variational EM”
 - You don't need to know the details, just be aware of it

Interpreting Topic Models

Corresponds to topic vocabularies β

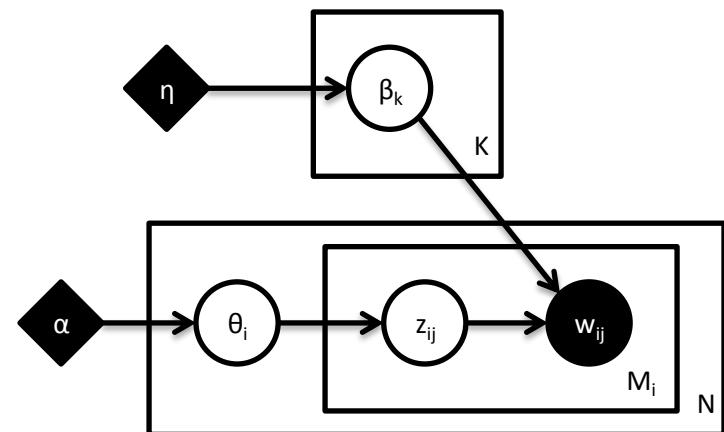


DOCUMENT 1: money¹ bank¹ bank¹ loan¹ river² stream² bank¹ money¹ river² bank¹ money¹ bank¹ loan¹ money¹ stream² bank¹ money¹ bank¹ bank¹ loan¹ river² stream² bank¹ money¹ river² bank¹ money¹ bank¹ loan¹ bank¹ money¹ stream²

DOCUMENT 2: river² stream² bank² stream² bank² money¹ loan¹ river² stream² loan¹ bank² river² bank² bank¹ stream² river² loan¹ bank² stream² bank² money¹ loan¹ river² stream² bank² stream² bank² money¹ river² stream² loan¹ bank² river² bank² money¹ bank¹ stream² river² bank² stream² bank² money¹

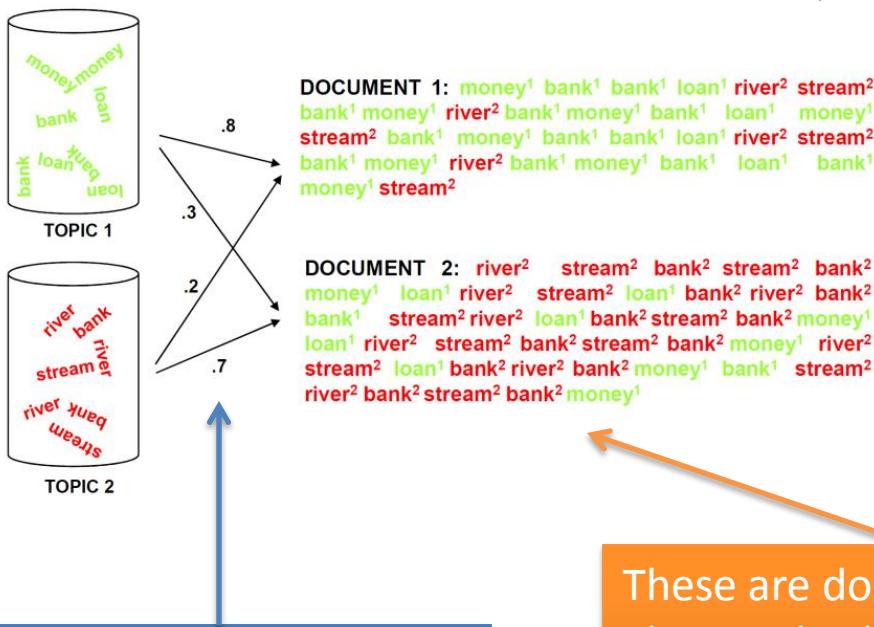
Corresponds to document topic vectors θ

These are document words w .
The word colors (red/green) correspond to word-topic indicators z



Interpreting Topic Models

Corresponds to
topic vocabularies β



Corresponds to
document topic vectors θ

Interpretation:

Topic 1 is about finance
Topic 2 is about rivers

Document 1 is mostly about finance
Document 2 is mostly about rivers

Although “bank” appears in both topic vocabularies, in doc 1 it probably means a place to store money, whereas in doc 2 it probably means a river bank

These are document words w .
The word colors (red/green)
correspond to word-topic
indicators z

Summary of Topic Models

- Bayesian Generative Model that represent documents in a latent space of topics
- Topics contain highly related words, corresponding to some concept
- Use probabilistic inference to find topic vocabularies β and document topic vectors θ , from document text w
 - β_k is a vector of word frequencies for topic k
 - θ_{ik} shows what proportion of document i corresponds to topic k
- Human interpretation is required to make sense of β and θ

Summary of Latent Space Methods

- PCA and Topic Models are **unsupervised learning methods**
- They reduce high dimensional data to a **lower dimensional representation**
- The lower dimensional representation is:
 - Easier to interpret
 - Compact (less storage required)