

10- 701 Fall 2011 Recitation - Probability Review

Suyash Shringarpure 09/13/11

What we will cover

- Basic probability
 - Definitions and Axioms.
 - Random Variables PDF and CDF.
- Joint distributions.
- Some common distributions.
- Independence.
- Conditional distributions.
- Information theory basics
 - Application to decision trees
- Overfitting and pruning

Probability

- Real world Full of uncertainty...
- Eg. I have to reach home by 7:30 pm. Can I take the 7:15 pm
 61 C at CMU and reach?
 - How much time will the bus take after I get it (possible delays due to traffic, roads, etc)
 - What if the bus arrives late?
- Probability A mechanism for decision making in the presence of uncertainty
- Probability is a way of using information about a population to learn about a sample.

Population

Probability

Why use probability?

- There have been attempts to develop different methodologies for uncertainty:
 - Fuzzy logic
 - Qualitative reasoning (Qualitative physics)
 - ...
- In 1931, de Finetti proved that :
 - If you gamble using probability you can't be unfairly exploited by an opponent using some other system

Basic Concepts

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
 - E.g., 5 may be the set of all possible outcomes of a dice roll:
- An event A is any subset of S.
 - Eg., A= Event that the dice roll is < 3.

Probability

 A probability P(A) is a function that maps an event A onto the interval [O, 1]. P(A) is also called the probability measure or probability mass of A.

Sample space of all possible worlds.

Call it E

Its area is 1

Worlds in which A is false

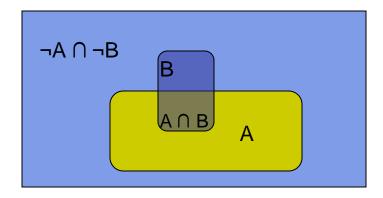
Worlds in which A is false

Worlds in which A is false

P(A) is the area of the oval

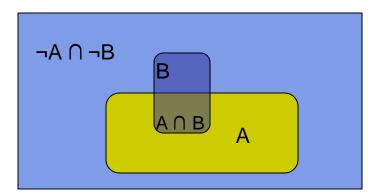
Kolmogorov Axioms

- All probabilities are non-negative
 - 1. $0 \le P(A)$ for all A
- 2. P(E) = 1
- 3. $P(A_1 \cup A_2 ...) = P(A_1) + P(A_2) +$
 - 1. If the A_i are pairwise disjoint, $A_i \cap A_j = 0$ for all I, j
- All other results about probability derive from these axioms



Consequences of Axioms

- $\bullet \quad \mathsf{P}(\Phi) = 0.$
 - Proof?
- $P(A^C) = 1 P(A)$
 - Proof?
- P(A) ≤ P(B) if A is a subset of B
 - Proof?
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Proof?



Random Variable

Χ(ω)

 A random variable is a function that associates a unique number with every outcome of an experiment.

- Discrete r.v.:
 - The outcome of a dice-roll: D={1,2,3,4,5,6}
 - Binary event and indicator variable:
 - Seeing a "6" on a toss $\Rightarrow X=1$, o/w X=0.
 - This describes the true or false outcome a random event.
 - Continuous r.v.:
 - The outcome of **observing** the **measured** location of an aircraft

Probability distributions

- For each value that r.v X can take, assign a number in [0,1].
- Like the probability measure defined earlier.
- Suppose X takes values v₁,...v_n.
- Then,
 - $P(X = V_1) + ... + P(X = V_n) = 1.$
- Intuitively, the probability of X taking value v_i is the frequency of getting outcome represented by v_i

Discrete Distributions

Bernoulli distribution: Ber(p)

$$P(x) = \begin{cases} 1-p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases} \Rightarrow P(x) = p^{x} (1-p)^{1-x}$$

- Binomial distribution: Bin(n,p)
 - Suppose a coin with head prob. *p* is tossed *n* times.
 - What is the probability of getting *k* heads?
 - How many ways can you get k heads in a sequence of k heads and n-k tails?

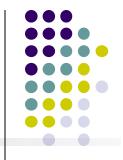
$$\Pr(K=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

More distributions- Multinomial

- Consider a k-sided die.
 - Similar to a coin, but with more possible outcomes.
- A die is tossed n times. What is the probability of getting x₁ ones, x₂ twos..., x_k k's?
- Let $x=(x_1, x_2, ..., x_k)$

$$p(x) = \frac{n!}{x_1! x_2! \cdots x_{\kappa}!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_{\kappa}^{x_{\kappa}} = \frac{n!}{x_1! x_2! \cdots x_{\kappa}!} \theta_1^{x_{\kappa}}$$

Continuous Prob. Distribution



- A continuous random variable X is defined on a continuous sample space: an interval on the real line, a region in a high dimensional space, etc.
 - X usually corresponds to a real-valued measurements of some property, e.g., length, position, ...
 - It is meaningless to talk about the probability of the random variable assuming a particular value --- P(x) = 0
 - Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval, or arbitrary Boolean combination of basic propositions.
 - $P(X \in [x_1, x_2])$
 - $P(X < x) = P(X \in [-\infty, x])$
 - $P(X \in \mathbf{k}_1, x_2 \cup \mathbf{k}_3, x_4)$

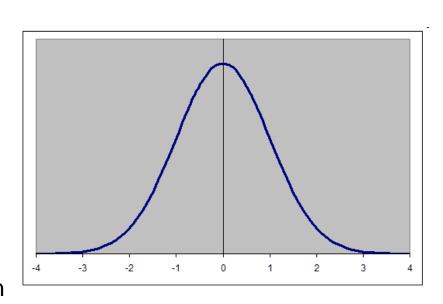
Probability Density

- If the prob. of x falling into [x, x+dx] is given by p(x)dx for dx, then p(x) is called the probability density function over x.
- The probability of the random variable assuming a value within some given interval from x_1 to x_2 is equivalent to the <u>area under the graph</u> of the <u>probability density function</u> between x_1 and x_2 .
- Probability mass:

$$P(X \in [x_1, x_2] = \int_{x_1}^{x_2} p(x) dx$$

$$\int_{-\infty}^{+\infty} p(x) dx = 1.$$

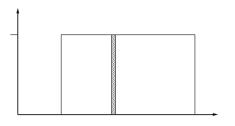
Gaussian Distribution



Continuous Distributions

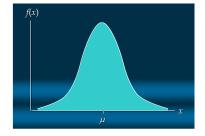
Uniform Density Function

$$p(x) = 1/(b-a)$$
 for $a \le x \le b$
= 0 elsewhere



Normal (Gaussian) Density Function

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$$



- Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of the distribution.
- The <u>highest point</u> on the normal curve is at the mean, which is also the median and mode.

Back to RVs - CDF

- Cumulative Distribution Function.
- In a single dice roll, what is the probability of the number rolled being less than 4?
 - P(x<4)=?
 - P(x<4)=P(x=1 OR x=2 OR x=3 OR x=4)
 - But that is the same as P(x=1)+P(x=2)+P(x=3)+P(x=4).
- A function to represent this quantity is called the Cumulative Distribution Function.
- $F_X(x) = P(X \le x)$

CDF details

Definition for a continuous probability function

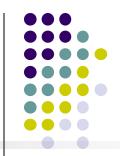
$$P(x) = P(X < x) = \int_{-\infty}^{x} p(x') dx'$$

Property of continous CDF:

$$p(x) = \frac{d}{dx} P(x)$$

Does it have any monotonicity property?

Statistical Characterizations



• Expectation: the centre of mass, mean, first moment):

$$E(X) = \begin{cases} \sum_{i \in S} x_i p(x_i) & \text{discrete} \\ \int_{-\infty}^{\infty} x p(x) dx & \text{continuous} \end{cases}$$

Sample mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance: the spread:

$$Var(X) = \begin{cases} \sum_{x \in S} [x_i - E(X)]^2 p(x_i) & \text{discrete} \\ \int_{-\infty}^{\infty} [x - E(X)]^2 p(x) dx & \text{continuous} \end{cases}$$

Sample variance:

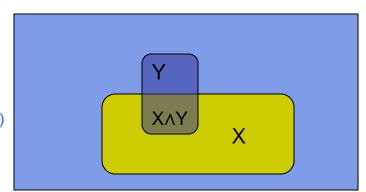
$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$

Elementary manipulations of probabilities

- Set probability of multi-valued r.v.
 - $P(\{x=Odd\}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = \frac{1}{2}$
 - $P(X = X_1 \lor X = X_2,...,\lor X = X_i) = \sum_{j=1}^i P(X = X_j)$
- Multi-variant distribution:
 - Joint probability: $P(X = true \land Y = true)$

$$P \checkmark \land \checkmark = X_1 \lor X = X_2, ..., \lor X = X_j$$

• Marginal Probability: $P \bigvee = \sum_{j \in S} P(Y \land X = X_j)$



Joint Probability

- A joint probability distribution for a set of RVs gives the probability of every atomic event (sample point)
 - P(Flu,DrinkBeer) = a 2 × 2 matrix of values:

	В	¬B
F	0.005	0.02
뚜	0.195	0.78

- P(Flu) = ?
 - =P(Flu,DrinkBeer)+P(Flu,¬DrinkBeer) (How?)
 - \bullet = 0.005+0.02
 - =0.025

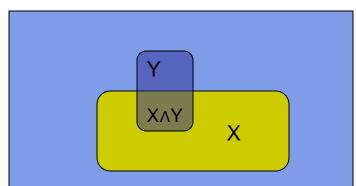
Conditional Probability

- P(X|Y) = Fraction of worlds in which X is true that also have Y true
 - H = "having a headache"
 - F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2
 - P(H|F) = fraction of flu-inflicted worlds in which you have a headache = $P(H \land F)/P(F)$
- Definition:

$$P(X \mid Y) = \frac{P(X \land Y)}{P(Y)}$$

Corollary: The Chain Rule

$$P(X \wedge Y) = P(X \mid Y)P(Y)$$



The Bayes Rule

- $P(Y \mid X)P(X) = P(X \cap Y) = P(X \mid Y).P(Y)$
- Rearrangement gives

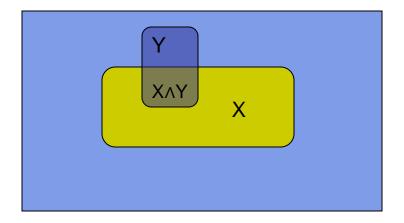
$$P(Y \mid X) = \frac{P(X \mid Y)p(Y)}{P(X)}$$

This is called Bayes rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Independence

- Random variables X and Y are said to be independent if:
 - $P(X \cap Y) = P(X) * P(Y)$
- Alternatively, this can be written as
 - P(X | Y) = P(X) and
 - $P(Y \mid X) = P(Y)$
- Intuitively, this means that telling you that Y happened, does not make X more or less likely.
- Note: This does not mean X and Y are disjoint!!!



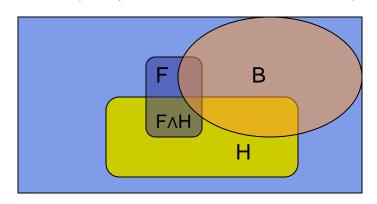
More General Forms of Bayes Rule

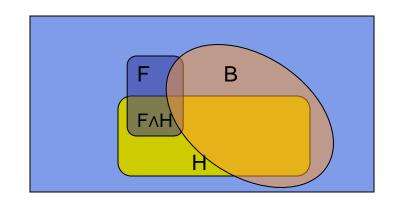
$$P(Y \mid X) = \frac{P(X \mid Y)p(Y)}{P(X \mid Y)p(Y) + P(X \mid Y)p(Y)}$$

$$P(Y = y_i \mid X) = \frac{P(X \mid Y)p(Y)}{\sum_{i \in S} P(X \mid Y = y_i)p(Y = y_i)}$$

$$P(Y|X \land Z) = \frac{P(X|Y \land Z)p(Y \land Z)}{P(X \land Z)} = \frac{P(X|Y \land Z)p(Y \land Z)}{P(X|Y \land Z)p(Y \land Z) + P(X|Y \land Z)p(Y \land Z)}$$

P(Flu | Headache ∧ DrankBeer)





Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2
- One day you wake up with a headache. You come with the following reasoning: "since 50% of flues are associated with headaches, so I must have a 50-50 chance of coming down with flu"

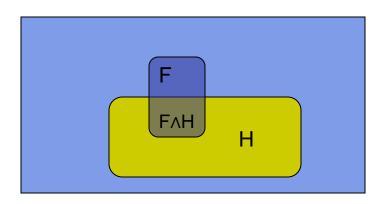
Is this reasoning correct?

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2

• The Problem:

$$P(F|H) = ?$$

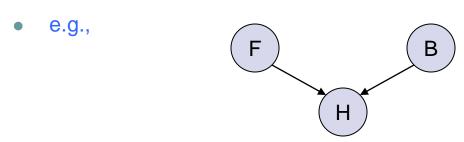


Solution

- By Bayes rule
- P(F|H)
 - $\bullet = P(H|F)P(F) / P(H)$
 - =0.5 * 0.025 / 0.1
 - =0.125
- So the probability that you have a flu given that you have a headache is only 0.125 (and not 0.5).
- Also, the probability that you have a flu given that you have a headache is 4 times less than the probability that you have a headache if you are known to have the flu.
 - Why? (Hint: Priors)

Prior Distribution

 Support that our propositions about the possible has a "causal flow"

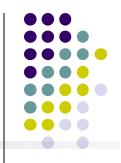


Prior or unconditional probabilities of propositions
 e.g., P(Flu=true) = 0.025 and P(DrinkBeer=true) = 0.2
 correspond to belief prior to arrival of any (new) evidence

Rules of Independence --- by examples

- P(Virus | DrinkBeer) = P(Virus)
 iff Virus is independent of DrinkBeer
- P(Flu | Virus, DrinkBeer) = P(Flu|Virus)
 iff Flu is independent of DrinkBeer, given Virus
- P(Headache | Flu, Virus. DrinkBeer) = P(Headache | Flu, DrinkBeer)
 iff Headache is independent of Virus, given Flu and DrinkBeer

Posterior conditional probability



- Conditional or posterior probabilities
 - e.g., P(Flu|Headache) = 0.178 incorporates effect of information about the Headache into your probability distribution.
- Representation of conditional distributions:
 - P(Flu|Headache) = 2-element vector of 2-element vectors
- If we know more, e.g., DrinkBeer is also given, then we have
 - P(Flu|Headache,DrinkBeer) = 0.070 This effect: explaining away!
 - P(Flu|Headache,Flu) = 1
 - Note how the validity of a certain belief increases or decreases after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
 - **P**(*Flu*|*Headache*, *SteelersWin*) = **P**(*Flu*|*Headache*)
 - This kind of inference, sanctioned by domain knowledge, is crucial

Conditional independence

- Write out full joint distribution using chain rule:
 - P(Headache, Flu, Virus, Drink Beer)
- = P(Headache | Flu, Virus, DrinkBeer) P(Flu, Virus, DrinkBeer)
- = P(Headache | Flu, Virus, DrinkBeer) P(Flu | Virus, DrinkBeer) P(Virus | DrinkBeer) P(DrinkBeer)

Assume independence and conditional independence in slide 29

- = P(Headache|Flu,DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)
- I.e., ? independent parameters
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from **exponential** in *n* to **linear** in *n*.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Marginal and Conditional Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional probability of E given H, written as P(E|H), is

$$P(E \text{ and } H)/P(H)$$

(= the probability of both *E* and *H* are true, given H is true)

E and H are (marginally) independent if

$$P(E) = P(E|H)$$

(i.e., prob. E is true doesn't depend on whether H is true); or equivalently P(E and H) = P(E)P(H).

E and F are conditionally independent given H if

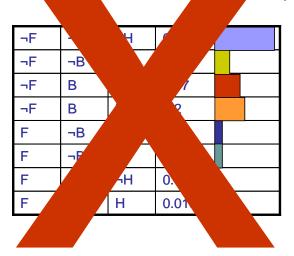
$$P(E|H,F) = P(E|H)$$

or equivalently

$$P(E,F|H) = P(E|H)P(F|H)$$

Why knowledge of Independence is useful

Lower complexity (time ace, see ...)



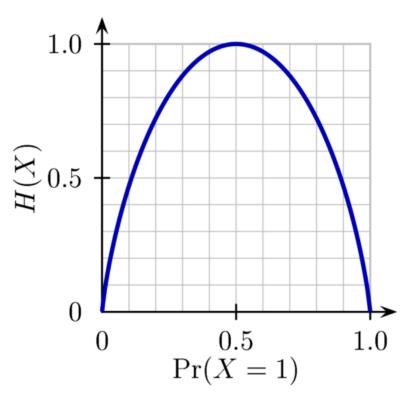
- Motivates efficient inference for all kinds of queries
- Structured knowledge about the domain
 - easy to learning (both from expert and from data)
 - easy to grow

Information theory

- How do you quantify information?
- Developed by Shannon to find limits on compression, reliable communication and other operations on data.
- Fundamental concept: Entropy
- Entropy How many bits are needed to convey a message on average?
 - A measure of unpredictability of the message.
 - Messages can be considered to be values of a random variable.

Entropy

- Usually denoted by H(X) for r.v X
- $\bullet \quad \mathsf{H}(\mathsf{X}) = \mathsf{E}(\mathsf{-log}_2(\mathsf{X}))$
- $H(X) = -\sum_{x} p(X=x) \log_2(p(X=x))$
- Entropy for a coin with head probability p
 - -p*log(p)-(1-p)*log(1-p)
 - Is a function of "p"
 - When is it maximum?



Conditional entropy

- $H(X \mid Y = y) = -\sum_{x} p(X = x \mid y = y) \log_2(p(X = x \mid y = y))$
 - Y takes a specific value
- Conditional entropy is defined as H(X|Y)
- $H(X|Y) = \sum_{y} p(Y=y)H(X|y=y)$
- What if X ⊥ Y?
 - Consider what happens to p(X=x | Y=y)

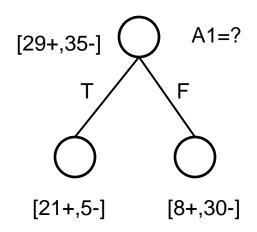
Mutual information

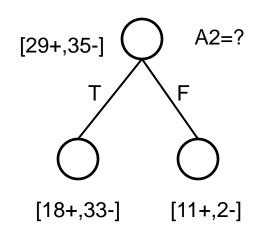
- How much information about X is gained by knowing about Y?
- Alternatively, how much is the unpredictability in X reduced?
 - What is the change in entropy?
- $\bullet \quad MI(X,Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)$
 - Also represented as I(X,Y)
 - $\bullet = H(X) + H(Y) H(X,Y)$
- $I(X,Y) \ge 0$
 - Proof uses Jensen's inequality

Decision trees and entropy

- How to choose what node to split on in a decision tree?
- Class example
 - Decide based on information gain
- Gain(S,A) = Mutual information between attribute A and label
 Y over the sample set S (Remember S = (X,Y) pairs)
 - How much can you reduce entropy of the label distribution by splitting over attribute A?

Example from class



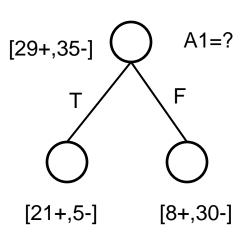


- Procedure: Find information gain for both split choices
- Choose the one which has larger information gain, i.e, most reduction in entropy
- Gain = Entropy(root) Weighted Mean(Entropy of children nodes)
 - Weight = Number of points in the node

Example (contd)

For split by A1

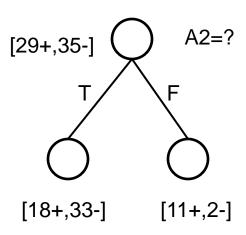
```
At root, 29 + and 35 - means
P(+) = 29/(29+35)=0.45 ; P(-)=35/(29+35) = 0.55
H(root) = -(0.45*log_2(0.45)+0.55*log_2(0.55))
=0.99
H(Child 1)= H(21+,5-) = 0.71 (26 points)
H(Child 2)= H(8+,30-) = 0.74 (38 points)
Gain(A1)=0.99-[ (26/64)*0.71 + (38/64)*0.74)]
=0.26
```



Example (contd)

For split by A2

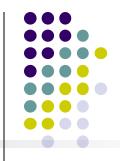
```
At root, 29 + and 35 - means
P(+) = \frac{29}{(29+35)}; P(-)=\frac{35}{(29+35)}
H(root) = 0.99
H(Child 1) = H(18+,33-)=0.94 (51 points)
H(Child 2) = H(11+,2-)=0.62 (13 points)
Gain(A2)=0.99-[ (51/64)*0.94 + (13/64)*0.62)]
=0.12
```



Example

- Gain(A1) = 0.26
- Gain(A2) = 0.12
- Choose to split by attribute A1 since it causes larger reduction in entropy.
- This choice of split is greedy
 - There is no looking ahead, just choose what looks best at this point.
- Easy to implement
 - Hard to guarantee a good result.
- Used in ID3, C4.5 (commonly available decision tree implementations)

Overfitting and decision trees



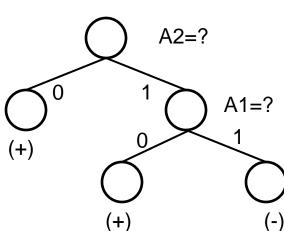
- We build models to make predictions about labels of unseen data (called test data – attributes X known, label Y unknown) after learning from data with known labels (called training data – both, attributes X and label Y known).
- The objective therefore is "to generalize".
- The way to do this usually is to reduce your prediction error on training data
 - For example, you construct a Decision Tree using your training data that gives low error if you provide it with examples from your training data and check the predicted label against the known label.
- Sometimes, you can learn your training data too well and lose your ability to generalize.

Decision tree overfitting

- Suppose you are given a data set with N training examples
 - No two are inconsistent, i.e, there are no examples (X1,Y1) and (X2,Y2) such that X1=X2 but Y1 ≠ Y2
- Can you construct a decision tree that has zero error on training examples?
 - Hint: Consider the decision tree with N leaf nodes.
- Now, what if your test set contains an example not consistent with your training set?
 - Note: This could be caused by your training set being finite.

Example

- X has two attributes binary A1 and A2, each combination is equally likely
 - If X=(0,0), P(+)=1
 - If X=(0,1), P(+)=1
 - If X=(1,0), P(+)=1
 - If X=(1,1), P(+)=0.9
- Suppose your training set was 1 of (0,0,+), 1 of (0,1,+), 1 of (1,0,+), 1 of (1,1,-)
- Your decision tree would be
- Test data = 100 (1,1) examples (say)
- Error?



Overfitting

- Often occurs because we get finite training data
 - Sampling from the population is not perfect
- Different algorithms show different degrees of overfitting
- Can be avoided by modifying algorithm suitably.
- In decision trees, a common mechanism is pruning.

Pruning

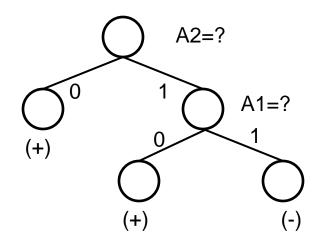
- Removing nodes from the decision tree.
- A small tree will not give enough prediction accuracy.
- A large tree may cause overfitting.
- When removing nodes
 - How to decide when to stop pruning?
- Many metrics exist
- Two common ways
 - Reduced-error pruning
 - Rule post-pruning

Reduced-error pruning

- Keep aside some training data (called a validation set).
 - Not used for training
- Check error of tree on validation data
 - Replace a node by the most popular label at the node
 - Re-check error
 - If node error is reduced, confirm the replacement.
- Practically, look at multiple nodes and prune the one that gives maximum error reduction.
- Simple but not necessarily optimal

Rule post pruning

- Each path to a leaf node in a decision tree is a rule
- Example
 - (A2=1 ^ A1 =1) => (-)
- Prune this rule to
 - A2=1 => (-)
- Check the validation error
 - On original rule
 - On pruned rule



 If error reduced after pruning, modify the decision tree appropriately.