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What’s EM
• Used for finding maximum likelihood estimates of 

parameters in probabilistic models

• Useful when there are latent variables (incomplete data)
– No closed form solution to the objective/gradient due to the 

summation over hidden variables 
– Or when we don’t want the standard optimization procedures

• It alternates between two steps
– Expectation (E) step

• computes an expectation of the latent variables

– Maximization (M) step
• computes the parameters which maximize the expected log 

likelihood given the expectations from E-step



MLE with Hidden Variables
• We have a MLE problem

• For most applications, the existence of latent variables z makes it 
nasty to compute expectations (here we omit the superscript l)

• e.g. 
– z is a binary vector of length n, zi are not independent
– then there are 2n terms in the summation
– not affordable if dynamic programming is not applicable
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MLE with GMM 
• For GMM, zi xi are indeed independent to each other, and we can 

calculate the objective function efficiently 

• But we still cannot get close form solution to the parameters 
– after introducing hidden variables, the objective function is not convex 

anymore

• And we hate gradient ascent
– especially with constrained optimization π’1=1
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Variational Method
• The variational method 

– approximates the original objective function by adding extra parameters
– Here we introduce a set of parameter Q(zl) for each sample (xl,zl)

– Jensen’s inequality: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z)

• Sometimes, we constrain the distribution Q to have factorized form            

– therefore, we can enumerate each zi independently instead of jointly in 
the summation
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KL Divergence
• lEM(x) is an lower bound of l(x), and the gap is a KL divergence. 

– for GMM, there is no constraint on Q(zl), therefore the gap can be zero

• KLD 
– measures the difference of two distributions
– is never negative
– Is zero iff the two distribution are identical
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E-step 

• Actually still a maximization step

• For GMM, just set  
– here we got the name “E-step”
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M-step 
• Another maximization step

• For GMM (and many other directed graphic models) 
– there are closed form solutions

– You’ve done it in HW2~~~ 

• For other applications (e.g. undirected graphic model) 
– this step itself may be an optimization procedure (gradient 

ascent, or Newton’s method) 
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Summery
• EM is useful when there are latent variables (incomplete 

data)
– No closed form solution to the parameters
– Hard to estimate objective/gradient due to the summation over 

hidden variables 
– Or when we don’t like the standard optimization procedures

• It alternates between two steps
– Maximizing the variational parameter Q(z)
– Maximizing the model parameter θ



• The End
• Thanks


