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What's EM

o Used for finding maximum likelihood estimates of
parameters in probabilistic models

« Useful when there are latent variables (incomplete data)

— No closed form solution to the objective/gradient due to the
summation over hidden variables

— Or when we don’t want the standard optimization procedures

o |t alternates between two steps
— Expectation (E) step
e computes an expectation of the latent variables

— Maximization (M) step

« computes the parameters which maximize the expected log
likelihood given the expectations from E-step



MLE with Hidden Variables

We have a MLE problem

. |
max log P(D6) = mgtlellog P(x'|6)

For most applications, the existence of latent variables z makes it
nasty to compute expectations (here we omit the superscript |)

logP(x|68)= logZ P(x,z|60)

e.g.
— zis a binary vector of length n, z, are not independent
— then there are 2" terms in the summation

— not affordable if dynamic programming is not applicable



MLE with GMM

 For GMM, zx; are indeed independent to each other, and we can
calculate the objective function efficiently

log P(x|0)=log ) P(x|z,0)P(z| )
=logZH P(X; |z;,0)P(z; | 0)
= logHZ P(x; |z;,0)P(z; | 0)

« But we still cannot get close form solution to the parameters

— after introducing hidden variables, the objective function is not convex
anymore

 And we hate gradient ascent
— especially with constrained optimization n’1=1



Variational Method

e The variational method
— approximates the original objective function by adding extra parameters
— Here we introduce a set of parameter Q(z') for each sample (x!,z!)

1(6) = log P(x | 6) = log > Q(2) P(é’(zz ') 9 Y Q(2)log PXLZ10) _jem

— Jensen’s inequality: log 2., P(z) f(z) = 2., P(z) log f(z)

0,Q)

 Sometimes, we constrain the distribution Q to have factorized form

Qz)=][Q(z)

— therefore, we can enumerate each z; independently instead of jointly in
the summation



KL Divergence

IEM(x) is an lower bound of I(x), and the gap is a KL divergence.
— for GMM, there is no constraint on Q(z"), therefore the gap can be zero

P(x,z|6)
Q(z)

= Q(2)logP(x| )~ Q(2)log

1(0)~17"(6,Q) =log P(x | 0) - > Q(2) log

P(x,z|60)
Q(z)

B P(z|x,60)
= 2.Q@log—5

=KLQ®) [ P(z]x,0))

KLD
— measures the difference of two distributions
— IS never negative
— |Is zero iff the two distribution are identical



E-step

 Actually still a maximization step

Q™ =argmax| (0,Q) =arg min KL(Q(2) | P(z]x,0))

 For GMM, just set Q(z')=P(Z'|x',0)
— here we got the name “E-step”



M-step
* Another maximization step

O™ = arg max 1"(0,Q) = arg max > Q(z)log P(x,z | 6)

 For GMM (and many other directed graphic models)
— there are closed form solutions

ZP(y:i‘XJ’XT) ZP( I‘X ) Zj“P(y:i‘Xj’Xt)(Xj_“i(M)Xj_“i(Hl))T

i - m ZP( I‘X
— You've done it in HW2~~~
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* For other applications (e.g. undirected graphic model)

— this step itself may be an optimization procedure (gradient
ascent, or Newton’s method)



Summery

EM is useful when there are latent variables (incomplete
data)
— No closed form solution to the parameters

— Hard to estimate objective/gradient due to the summation over
hidden variables

— Or when we don't like the standard optimization procedures

It alternates between two steps
— Maximizing the variational parameter Q(z)
— Maximizing the model parameter ¢



e The End
e Thanks



