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Statistics Review



Statistics vs. Probability

• Probability : deriving properties of data 

from the distribution

• Statistics : deducing properties of the 

distribution from the data

– In this sense, Machine Learning is a form of 

statistics

– But “statistics” usually refers to classical 

statistics



Classical Statistics Terminology

• Statistic : any function of your data

– Can have logs, roots, arbitrary manipulation

– Sample mean is just a function where you add 
and divide

• Estimator : a statistic that is intended to 
estimate some distribution parameter

– Consistent estimator : enough data brings you 
arbitrarily close to the correct number

– Unbiased estimator : expected value of the 
estimator is the actual parameter



Estimators can be biased!

• Know X is Uniform(0,theta), theta 

unknown

• Data = x1, x2,…, xn

• Want to estimate theta

• Obvious estimator : max(xi)

– Enough data points makes it close to theta

– But it’s ALWAYS an underestimate

– You can work out the math : max*(n+1)/n is 

unbiased and consistent



Subtle Example

• Estimating a normal distribution: μ and σ

• μ* = (1/n)Σxi

• (σ *)2 = (1/n)Σ(xi- μ*)2

• How good are these estimators?



• Sample mean = consistent, unbiased estimator 

for μ

• Sample variance

– Consistent – converges to actual variance

– But it is biased!

• Imagine only 2 data points.

– μ* exactly between them, used for calculating σ *

– But using any other μ* would give higher σ *

– The points won’t be exactly the same distance from μ

– So we probably underestimate σ!



MLE vs Bayes Summary



MLE vs. Bayes

MLE Bayesian

Basic Idea Pick distribution to 

make data likely

Start with belief, 

and adjust for data

Examples Basic, EM alg, 

logistic regression

Hierachical bayes 

models

Good Data-based, often 

easy

Expert knowledge, 

mirrors thinking

Bad Overfitting Personal bias

Fixes Cross-validation Max-entropy prior



Training, Validation, and 

Testing Data

What the heck?



Reasons we do it

• Recall : this is a special case of MLE

– MLE is subject to overfitting

• The more we train a model, the better is 

becomes at predicting the training data

• But our goal is to predict other data that is 

i.i.d as training data

• Idea : use some training data for testing



Cross-validation

• So we set aside some of the data as 

“validation data” to gauge how much to 

train

• But what if we randomly picked a bad 

validation set?

• Answer : break data into k sets, and use 

each set for validation separately



Testing Data

• Problem : k-fold validation isn’t quite 

independent of validation data

– Classifier implicitly trained on validation set, 

since validation data influences training cutoff

– So validation data underestimates error

• Answer : have another chunk of data that 

plays no part at all in training classifier



Neural Networks



Motivation 1

• Recall linear regression :

• Decision boundary is a straight line

• They work decently, but we don’t want just 

linear boundaries

• Crazy idea for a hack : let’s wire a bunch 

of them together



Motivation 2

• Human brains are fabulous

• They’re made of neurons, which have 

multiple inputs and a single output

• Let have an embarrassingly simple input-

>output function and model a brain

• Note : there’s work going on at using more 

physically realistic neural nets to get better 

performance



Training Neural Nets

• MLE

– Assume Gaussian errors

– Minimize sum of squares

– Backpropagation algorithm

• MAP : 

– Add penalty term  lnP(W)

– If using Gaussian prior :



Regression



Several Interpretations

• Fitting a straight line to data

• A part of logistic regression

• Predicting a continuous variable

– Rather than discrete classification

– Will never be “exactly” right, so error rate=1

– Instead minimize average squared error



Regularization

• General approach to problems where you 

penalize “extreme” solutions

• Examples

– Regression : penalize huge parameters

– Image denoising : penalize jitteriness

• Can be done in a principled way, but also 

just as a heuristic

• Can turn an under-determined set of 

equations into an optimization problem



What Penalty Function

• Ridge Regression : squared

• Lasso Regression : absolute value

• Important point of contention : what should 

penalty terms look like?



Aside : Is Least Squares 

Good?
• “Penalty” terms are ubiquitous

– Least squares is just minimizing a penalty

– Regularization penalty

– Soon : k-means clustering minimizes squares

• Why do we use squares in the term?

– Answer 1 : it’s easy

– Answer 2 : it has a pretty theoretical 

interpretation if you use a Gaussian prior

• But is this really good?



Least Squares

• Effect of squares : emphasize outliers

– Point 10x farther away is 100x more important

• But shouldn’t we fit our model to the 

“normal” data points?

• Gaussians have “thin tails”

– Few outliers, so big deviations very important 



Not Squares

• But real data often has “heavy tails”

– Major outliers more common

• Exponentials, Laplacians, etc. have more 

outliers

• Minimizing sum of absolute values = 

Laplacian prior

• Absolute value penalty function, like in 

Lasso, makes outliers less important

• “Robust Statistics” deals with this



Overfitting : Bias and 

Variance



Risk and Error

• Risk for classification

– Probability data is misclassified

• Error for regression

– We’ll never guess continuous values exactly, 

but a good regression function will be close

– (Is this a good metric?  Food for thought…)



True vs. Empirical

• Empirical risk/error : how badly we do on 

our training data

• True risk/error : how badly we’ll do on new 

data

• These are not the same!!!!



Example

• Empirical error : 0

• True error : very high



The Basic Conflict

• Training picks a single classifier from a 

“family” of classifiers

• Observation 1 : A more expressive family 

can represent more general distributions

• But : A more expressive family is more 

likely to contain a bad distribution that fits 

that data really well



Example

• Fitting a straight line is imperfect, but 

higher order polynomials are not always 

better…



Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Empirical risk is no longer a 
good indicator of true risk 

fixed # training data



• Some risk is inherent to the distribution

– How close are we to this lower bound?

• Lower bound independent of our data

• For this discussion, we have exactly n 

points

Excess Risk



• Recall that      is just a statistic of our data; 

it is a random variable

• Distribution depends on n

• Then its performance will be too

depends on random

training dataset



Behavior of True Risk

Due to restriction 
of model class

Excess Risk

Want predictor based on training data       to be as good as optimal predictor 

Excess risk

Approx. error

Estimation 

error

Due to randomness
of training data

finite sample size
+ noise



Behavior of True Risk



Bias – Variance Tradeoff

0 since noise is independent 
and zero mean

noise variancebias^2 – how our predictor 
differs from the optimal

Excess Risk = = bias^2 + variance



Bottom Line

• Approximation error

– From using a restrictive family of classifiers

• Estimation error

– From not using best classifier in family

• Approximation and Estimation error 

combine to make Bias

• Variance

– inherent to distribution



Model Selection



• Goal : minimize generalization error

• Philosophy : Occam’s Razor, K.I.S.S, etc.

• Hold-out approach

– Have training and validation data.

– Pick model that does best on validation data

• Fancier Approaches

– Penalize models that are likely to overfit

– Several ways to do this



Hold-out method

Goal : pick model to minimize generalization (True) error.

Idea : train models on some data, judge them based on the rest

Hold – out procedure:

n data points available

1) Split into two sets:      Training dataset Validation dataset

2) Use DT for training a predictor from each model class:

NOT test
Data !!

Evaluated on training dataset DT



Hold-out method

3) Use Dv to select the model class which has smallest empirical error on Dv

4) Hold-out predictor

Intuition: Small error on one set of data will not imply small error on 
a randomly sub-sampled second set of data

Ensures method is “stable”

Evaluated on validation dataset DV



Hold-out method

Drawbacks:

 May not have enough data to afford setting one subset aside for getting a 
sense of generalization abilities 

 Validation error may be misleading (bad estimate of generalization error) if 
we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling 
methods at the expense of more computation.



Cross-validation
K-fold cross-validation

Create K-fold partition of the dataset.
Form K hold-out predictors, each time using one partition as validation and 
rest K-1 as training datasets.
Final predictor is average/majority vote over the K hold-out estimates.

validation

Run 1

Run 2

Run K

training

For each model family, train K models and average their errors

Pick the model family that performed best

Re-train this family on all of the data



Fancier Approaches

• Minimizing empirical risk is, um, risky

• Add a “penalty term” of some sort to the 

empirical risk

• This term should indicated how prone a 

model is to overfitting



Structural Risk Minimization
Recall : Best model minimizes true risk

Problem : We don’t know true error
Idea : Bound the true error as a function of complexity and minimize that

With high probability, Concentration bounds 
(later)

Bound on deviation from true
risk



Structural Risk Minimization

In practice, theoretical bounds are way too high, so we scale them

High prob
Upper bound
on true risk

C(f) - large for complex models

Choose by cross-validation!



Complexity Regularization

Penalize complex models using prior knowledge.

Bayesian viewpoint: 

prior probability of f ≡

cost is small if f is highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F, e.g. linear classifiers,
≡ uniform prior on f є F, zero probability for other predictors

Cost of model
(log prior)



Note the common pattern

• Start with MLE

– Minimize –(probability of data)

– But this overfits

• So we add a penalty term for “bad-looking” 

models

– Least squares

– Model complexity

• This has a Bayesian interpretation



5 leaves => 9 bits to encode structure

Information Criteria

Penalize complex models based on their information content.

MDL (Minimum Description Length)

Example: Binary Decision trees

k leaves => 2k – 1 nodes  

2k – 1 bits to encode tree structure 

+   k bits to encode label of each leaf (0/1)

# bits needed to describe f
(description length)


