Recitation

By Field Cady
February 4, 2010

Statistics Review

Statistics vs. Probability

* Probability : deriving properties of data
from the distribution

« Statistics : deducing properties of the
distribution from the data

— In this sense, Machine Learning is a form of
statistics

— But “statistics” usually refers to classical
statistics

Classical Statistics Terminology

« Statistic : any function of your data
— Can have logs, roots, arbitrary manipulation
— Sample mean is just a function where you add
and divide
» Estimator : a statistic that is intended to
estimate some distribution parameter

— Consistent estimator : enough data brings you
arbitrarily close to the correct number

— Unbiased estimator : expected value of the
estimator is the actual parameter

Estimators can be biased!

Know X is Uniform(0,theta), theta
unknown

Data = x1, x2,..., Xn
Want to estimate theta

Obvious estimator : max(xi)
— Enough data points makes it close to theta
— But it's ALWAYS an underestimate

— You can work out the math : max*(n+1)/n is
unblased and consistent

Subtle Example

Estimating a normal distribution: gy and o
u* = (1/n)Zxi

(0 %)% = (1) Z(xi- p*)?

How good are these estimators?

« Sample mean = consistent, unbiased estimator
for y

« Sample variance
— Consistent — converges to actual variance
— But it is biased!
* Imagine only 2 data points.
— u* exactly between them, used for calculating o *
— But using any other y* would give higher ¢ *
— The points won’t be exactly the same distance from p
— S0 we probably underestimate o!

MLE vs Bayes Summary

MLE vs. Bayes

MLE Bayesian
Basic Idea Pick distribution to | Start with belief,
make data likely and adjust for data
Examples Basic, EM alg, Hierachical bayes
logistic regression | models
Good Data-based, often | Expert knowledge,
easy mirrors thinking
Bad Overfitting Personal bias
Fixes Cross-validation Max-entropy prior

Training, Validation, and
Testing Data

What the heck?

Reasons we do It

Recall : this is a special case of MLE
— MLE Is subject to overfitting

The more we train a model, the better Is
becomes at predicting the training data

But our goal Is to predict other data that Is
I.I.d as training data

ldea : use some training data for testing

Cross-validation

« So we set aside some of the data as
“validation data” to gauge how much to
train

« But what if we randomly picked a bad
validation set?

« Answer : break data into k sets, and use
each set for validation separately

Testing Data

* Problem : k-fold validation isn’t quite
Independent of validation data

— Classifier implicitly trained on validation set,
since validation data influences training cutoff

— So validation data underestimates error

« Answer : have another chunk of data that
plays no part at all in training classifier

Neural Networks

Motivation 1

Recall linear regression :
1

1 + exp(wo + X5 wiz;)
Decision boundary is a straight line

They work decently, but we don’t want just
linear boundaries

Crazy idea for a hack : let's wire a bunch
of them together

unit output =

Motivation 2

Human brains are fabulous

They’re made of neurons, which have
multiple inputs and a single output

Let have an embarrassingly simple input-
>output function and model a brain

Note : there’'s work going on at using more
physically realistic neural nets to get better
performance

Training Neural Nets

* MLE

— Assume Gaussian errors
— Minimize sum of squares IV + argmir

— Backpropagation algorithm " l

c MAP .
— Add penalty term InP(W)

— If using Gaussian prior :

ergrrl}[i/n csz 4

l))?

Regression

Several Interpretations

 Fitting a straight line to data
» A part of logistic regression

* Predicting a continuous variable
— Rather than discrete classification
— Will never be “exactly” right, so error rate=1
— Instead minimize average squared error

Regularization

* General approach to problems where you
penalize “extreme” solutions

 Examples
— Regression : penalize huge parameters
— Image denoising : penalize jitteriness

« Can be done in a principled way, but also
just as a heuristic

« Can turn an under-determined set of
eqguations into an optimization problem

What Penalty Function

* Ridge Regression : squared
» Lasso Regression : absolute value

* Important point of contention : what should
penalty terms look like?

Aside : Is Least Squares
Good?

* "“Penalty” terms are ubiquitous
— Least squares is just minimizing a penalty
— Regularization penalty
— Soon : k-means clustering minimizes squares

 Why do we use squares in the term?
— Answer 1 : it's easy

— Answer 2 : it has a pretty theoretical
Interpretation if you use a Gaussian prior

* But is this really good?

Least Squares

« Effect of squares : emphasize outliers
— Point 10x farther away is 100x more important

 But shouldn’t we fit our model to the
“normal” data points?

« Gaussians have “thin tails”
— Few outliers, so big deviations very important

Not Squares

But real data often has “heavy tails”
— Major outliers more common

Exponentials, Laplacians, etc. have more
outliers

Minimizing sum of absolute values =
Laplacian prior

Absolute value penalty function, like in
Lasso, makes outliers less important

"Robust Statistics” deals with this

Overfitting : Bias and
Variance

Risk and Error

 Risk for classification P(f(X) = Y)

— Probability data is misclassified

+ Error for regression E[(f(X) — Y)?]

— We’'ll never guess continuous values exactly,
but a good regression function will be close

— (Is this a good metric? Food for thought...)

True vs. Empirical

« Empirical risk/error : how badly we do on
our training data

* True risk/error : how badly we’'ll do on new
data

* These are not the samelll!

Example

9 |

> J
1 ,

.-"'/\.'___.---.._/

0

-3

-5 T T T T T

0 1 2 3 4 5 &

« Empirical error : O
* True error : very high

The Basic Conflict

* Training picks a single classifier from a
“family” of classifiers

* Observation 1 : A more expressive family
can represent more general distributions

* But : A more expressive family iIs more
likely to contain a bad distribution that fits
that data really well

Example

 Fitting a straight line I1s imperfect, but
higher order polynomials are not always
better... !

.
;- f\f,-\ oA

Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Prediction
Error

. . ; T
empirical risk -

o

fixed # training date

! ot

true risk

-

underfitting

h‘ -
overfitting Complexity

U

Empirical risk is no longer a
good indicator of true risk

Best
Model

Excess Risk

e Some risk Is inherent to the distribution
— How close are we to this lower bound?

E [nr;_ﬁ, ;] _ R

* Lower bound independent of our data

* For this discussion, we have exactly n
poInts

. Recall that Jn is just a statistic of our data;
It Is a random variable

 Distribution depends on n
* Then its performance will be too

—

R(fn) — PXY(fn(X) #=Y) _
fn depends on random

training dataset

—

R(fn) = Exy[(fn(X) — Y)?] i

Behavior of True Risk

Want predictor based on training dafn to be as good as optimal pre f*ztor

Excess Risk E[R(fn}}—ﬂ* - ((R(f)] — inf R[f}) (}gf? R(f}—R*)

- T,

T T

estimation error approximation error
finite sam.ple size Due to r.'arudomness Due to restriction
+ noise of training data of model class
R(fn) J

Estimation
error

Excess risk

Jgg; R(f)

Approx. error R+

Behavior of True Risk

B[R -R = (E[Rt};}]— filelj-;R(f}) + (figffﬂm—ﬂ*)

- Vg
T T

estimation error approximation error

estimation
error

approximation
error

Complexity of F~

Bias — Variance Tradeoff

Ex,y [(Eplfa(X)] = ¥)?| =Exy [(Eplfa(X)] — £7(X) — €)?]
=Ex,y [(Bp[fa(X)] = f(X))? + €
— 2e(Ep[fn(X)] — £*(X))]

= Bxv [(EplfaCO] — 1(X))?] + Ex v [

~2Exy [e(EplEH=T(X)]

0 since noise is independent
and zero mean

= Ex,v [(Ep[fn(X)] = £(X))?] + Ex,v [
\ y J _Y_I
bias”™2 - how our predictor noise variance
differs from the optimal

ExcessRisk= Ep[R(f,)] — R*=bias"2 + variance

Bottom Line

Approximation error
— From using a restrictive family of classifiers

Estimation error
— From not using best classifier in family

Approximation and Estimation error
combine to make Bias

Variance
— Inherent to distribution

Model Selection

Goal : minimize generalization error
Philosophy : Occam’s Razor, K.I.S.S, etc.

Hold-out approach

— Have training and validation data.

— Pick model that does best on validation data
Fancier Approaches

— Penalize models that are likely to overfit
— Several ways to do this

Hold-out method

Goal : pick model to minimize generalization (True) error.
|ldea : train models on some data, judge them based on the rest

Hold - out procedure:

n data points available D = { X;,Y; }X

1) Split into two sets: Training dataset Validation dataset NOT test

2) Use Dr for training a predictor from each model class:

fr = arg min Rr(f)

cFy
|—> Evaluated on training dataset Dr

Hold-out method

3) Use Dv to select the model class which has smallest empirical error on Dv

A= &n Ry (f))

n
A

> Evaluated on validation dataset Dv

4) Hold-out predictor

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”

Hold-out method

Drawbacks:

= May not have enough data to afford setting one subset aside for getting a

sense of generalization abilities
= Validation error may be misleading (bad estimate of generalization error) if

we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling
methods at the expense of more computation.

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

I:I training I:Ivalidation

Total number of examples

L P
Run 1 = f1
Run 2 = f2
Run K L

For each model family, train K models and average their errors
Pick the model family that performed best
Re-train this family on all of the data

Fancier Approaches

* Minimizing empirical risk Is, um, risky

* Add a “penalty term” of some sort to the
empirical risk

* This term should indicated how prone a
model is to overfitting

Structural Risk Minimization

Recall : Best model minimizes true risk

estimation
error

approximation
error

Complexity of F
Problem : We don’t know true error

Idea : Bound the true error as a function of complexity and minimize that

ﬁl = arﬂmm{R f)+C(f)}

feF
| 3 Bound on deviation from true

risk

With high probability, |R(f) — R, (f)| < C(f) VfeF ﬁg:ecsntration bounds

Structural Risk Minimization

Prediction 4 ._High prob
Error Upper bound
on true risk
true risk

empirical risk = | C(f) - large for complex models

underfitting overﬁmng Com plexity

Best
Model

In practice, theoretical bounds are way too high, so we scale them

fo = argmin {Ra(f) H AP (N}

Choose by cross-validation!

Complexity Regularization

Penalize complex models using prior knowledge.

fn = argmin{ﬁﬂ(f) + C-"(f)}

feF
I—) Cost of model

(log prior)

Bayesian viewpoint:
prior probability of f = e—C(f)
cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F, e.g. linear classifiers,
= uniform prior on f € F, zero probability for other predictors

o oA
fn argfrgjlgl n(f)

Note the common pattern

« Start with MLE
— Minimize —(probability of data)
— But this overfits
* So we add a penalty term for “bad-looking”
models
— Least squares
— Model complexity

* This has a Bayesian interpretation

Information Criteria

Penalize complex models based on their information content.
fn = argmin {Rﬂ(f) + C-"(f)}
feF

MDL (Minimum Description Length) I—) # bits needed to describe f
(description length)

Example: Binary Decision trees F] = {tree classifiers with k leafs)

FU = Upy FF prefix encode each element f of F7

C(f) = 3k — 1 bits

k leaves => 2k — 1 nodes

2k — 1 bits to encode tree structure
+ k bits to encode label of each leaf (0/1)

5 leaves => 9 bits to encode structure

