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The big picture

 Semi-supervised Learning
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How?

There is no free lunch!

You need to make assumption

Leverage them to construct an algorithm
If assumption are correct we can improve



Assumption: Overview

both try to attack the same problem: making the most of unlabeled

data U/

uncertainty sampling
qguery instances the model
is least confident about

self-training
expectation-maximization (EM)

propagate confident labelings
among unlabeled data

query-by-committee (QBC)
use ensembles to rapidly
reduce the version space

co-training
multi-view learning

use ensembles with multiple views
to constrain the version space



Semi-supervised

e |If xand x” are similar, then they are likely to have
the same label

e Algorithm
— Assume generative model

— Cluster and label
— Regularize the classifier using unlabeled data

— Multi-view learning

* Does it help?
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Examples: 1-NN, works!
Propagating 1-Nearest-Neighbor: now it works
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Example: 1-NN, doesn’t work

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...
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Can we be more robust?

* Soin general how to deal with this problem?
— Generative model
— Regularization



SSL using Mixture Models

e Use all data not one at a time!




SSL using Mixture Models

They are different because they maximize different quantities.

p(X;,Y710) p(X7,Y;, Xy|0)




SSL using Mixture Models

* Inference and learning
— This was your midterm problem!
— You know more than you think you do!

e |s this robust to noise?

— At least you can get Bayes optimal if assumption is
correct

— What if assumption are wrong?



@ When the assumption is wrong:
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Can we be more robust?

* Soin general how to deal with this problem?
— Generative model
— Regularization



So why a new method

* As we said earlier
* Different kind of assumption

 What if data is not Gaussian?
— Remember spectral clustering



Graph Regularization

* Regularized classifier
* Learn a classifier that minimize

— Loss term + regularize
— Example: ridge regression

* Can we use unlabeled data for regularization?
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Loss on labeled data Graph based smoothness prior
(mean square,0-1) on labeled and unlabeled data



Is it robust?
min D (yi— 2 H+A Y wi(fi— f)?
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Loss on labeled data Graph based smoothness prior
(mean square,0-1) on labeled and unlabeled data

* You can play with the regularization parameter
e Sensitive to graph construction

Handwritten digits recognition with pixel-wise Euclidean distance

GA IS LA

not similar ‘Indirectly’ similar
with stepping stones




The big picture

* Semi-supervised Learning There is no free lunch

Training data I:> Learning algorithm I:> Prediction rule
(X3, Y}y fr
{Xz}gnzl ]?n,m

* Active Learning

{(Xz'ay}:)}?zlrb Learning algorithm :> fm,n

m Selective |
{Xj}j=1|:>[ labeling Pay a little than passive




Active Learning

* Passive learning
— Input a set of example
— Output a classifier

* Observation:
— Labels are expensive

— Sometime you can get the same classifier with subset
of the data

* Example?



Active Learning

SVM

— Only need support vector
Is it that easy?
What assumption are we making here?

— Noise free environment

In general, we need a localized function



Active Learning
* When does it help?

[Castro et al.,’05]

Passive = Active

Active learning is useful if complexity of target function is localized
- labels of some data points are more informative than others.




Active Learning setup

labeled
training set

label new i
instances, induce a model
repeat ]
inspect
% unlabeled
data

machine learning
model

—
o N— p——
‘] unlabeled pool

select “queries” U

oracle (e.g., human annotator)



Algorithms from Insights

* We need to learn a decision boundary
e Classification uncertainty

— Query example closer to decision boundary
— We become more confident if we get them right
— Somehow this is still local decisions
* Version-Space uncertainty
— Some how makes global decision



Version Space

e Set of hypothesis consistent with labeled
examples
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Version Space

 Our goal: get a single hypothesis

e Select example that results in maximum reduction
of hypothesis space

* What is the problem with that?




Version space: Algorithm

 Query by committee

— Keep an ensemble of classifiers to approximate
* Goal reduce “entropy” over their contributions

* |dea
— Sample from P(parameters| data)



Case study: SVM

* How to represent version space

maximizewc F min; {y; (w - ®(x;))}
subject to: |lw| =1
yi(w-®(x;)) >0 1=1...n.

* This is slightly re-parameterized SVM objective
but it is the same



Case study: SVM

* How to represent version space

Parameter Space
O

Feature Space




Parameter Space
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Feature Space




Parameter Space

o

Feature Space

Given the current labeled data we have an explicit representation of the version space



Query point

e Halving the version space (query point c)




Is it the End?

Supervised
Semi-supervised
Active

Transductive

— You still get to see unlabeled data
— But these are also your test data
— What can you do with that?



Transductive SVM

* Chose a confident labeling of unlabeled data

Mnimize over (y 15

subject lo:

e YT b):

Unlabeled data



Transductive SVM

 Why does it make sense?
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Transductive SVM

e When is it useful?

* News filtering
— Labeled data: news users liked in the past
— Test data (unlabeled): today’s news
— We only need to do well on those test data



