Boosting

10-701/15-781, Recitation April 15, 2010 Ni Lao

Today's Schedule

- Review of AdaBoost
 - Boosting as sequential optimization

Preview of HW5 AdaBoost questions

The AdaBoost Algorithm

• Given N examples (x_i, y_i)

- 1. Initialize $w_i^1 = 1/N \ (i = 1, ..., N)$
- 2. For t = 1, ..., T,
 - a. Learn a weak classifier $h_t(x)$ by minimizing the weighed error function J_t , where $J_t = \sum_{i=1}^{N} w_i^t I(h_t(x_i) \neq y_i)$;
 - b. Compute the error rate for the learnt weak classifier $h_t(x)$: $\epsilon_t = \sum_{i=1}^N w_i^t I(h_t(x_i) \neq y_i)$;
 - c. Compute the weight for $h_t(x)$: $\alpha_t = \frac{1}{2} \ln \frac{1 \epsilon_t}{\epsilon_t}$;
 - d. Update the weight for each example: $w_i^{t+1} = \frac{w_i^t \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}$, where Z_t is the normalization factor for w_i^{t+1} : $Z_t = \sum_{i=1}^N w_i^t \exp\{-\alpha_t y_i h_t(x_i)\}$.
- 3. Output the final classifier: $H(x) = sign(f_T(x))$, where $f_T(x)$ is a linear combination of the weak classifiers, i.e., $f_t(x) = \sum_{m=1}^t \alpha_t h_m(x)$.

The Objective Function

From class we know that the objective function is

$$E = \sum_{i=1}^{N} \exp\{-y_i f_T(x_i)\}$$

- But why is it so?
 - People invented AdaBoost much earlier than they discover its objective function ...

Optimization in Functional Space

• Similar to gradient decent (in vector space), we can minimize an objective function in function space.

	Vector space	Functional space
Objective	$\min_{x} F(x)$	$\min_{f} E(f)$
	s.t. $x \in \mathbb{R}^p$	s.t. $f(x)$ is a function
Gradient	$\nabla_x F(x)$	$\nabla_{f(x)}E(f)$
Update	$x^{t} = x^{t-1} - \alpha^{t} \nabla_{x} F(x)$	$f^{t}(x) = f^{t-1}(x) - \alpha^{t} \nabla_{f(x)} E(f)$

Think a function f as an infinite long vector

Optimization in Functional Space

• Now we constrain that $f(x) = \sum_{m=1...T} \alpha^m h^m(x)$, where $h \in M$ comes from a family of functions (which is easy to represent)

	Vector space	Functional space
Objective	$\min_{x} F(x)$	$\min_{f} E(f)$
	s.t. $x \in \mathbb{R}^p$	s.t. $f(x)$ is a function
Gradient	$\nabla_x F(x)$	$h^{t} = \underset{h \in M}{\operatorname{argmax}} \left\langle h, \nabla_{f(x)} E(f) \right\rangle$
Update	$x^{t} = x^{t-1} - \alpha^{t} \nabla_{x} F(x)$	$f^{t}(x) = f^{t-1}(x) - \alpha^{t}h^{t}(f)$

where $\langle h, g \rangle = \int h(x)g(x)dx$ is the dot product of two functions

AdaBoost

For AdaBoost the functional gradient is

$$\nabla_{f(x)} E(f) = -\sum_{i=1..N} \delta(x - x_i) y_i \exp(-y_i f(x_i))$$

• Its dot product with h(x) is

$$\langle h, \nabla_{f(x)} E(f) \rangle = -\sum_{i=1..N} y_i \exp(-y_i f(x_i)) h(x_i)$$

δ () is the Dirac delta

$$\int \delta(x - y) f(x) dx = f(y)$$

- which is the objective function of a classifier with weighted samples
 - no matter what kind of base classifier we choose, we are still minimizing E()
- In home work you will see that $w_i^t \propto exp\{-y_if_{t-1}(x_i)\}$
- You will prove that $\ \alpha_t = \frac{1}{2} ln \frac{1-\epsilon_t}{\epsilon_t}$ is also minimizing E()

Sequential Optimization

1. Initialize $w_i^1 = 1/N \ (i=1,...,N)$

2. For t = 1, ..., T,

Prove this is minimizing E(), assuming existing α and h() of are fixed

- a. Learn a weak classifier $h_t(x)$ by minimizing the weighed error function J_t , where $J_t = \sum_{i=1}^{N} w_i^t I(h_t(x_i) \neq y_i)$;
- b. Compute the error rate for the learnt weak classifier $h_t(x)$: $\epsilon_t = \sum_{i=1}^N w_i^t I(h_t(x_i) \neq y_i)$;
- c. Compute the weight for $h_t(x)$: $\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$;
- d. Update the weight for each example: $w_i^{t+1} = \frac{w_i^t \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}$, where Z_t is the normalization factor for w_i^{t+1} : $Z_t = \sum_{i=1}^N w_i^t \exp\{-\alpha_t y_i h_t(x_i)\}$.
- 3. Output the final classifier: $H(x) = sign(f_T(x))$, where $f_T(x)$ is a linear combination of the weak classifiers, i.e., $f_t(x) = \sum_{m=1}^t \alpha_t h_m(x)$.

- Other HW questions
 - AdaBoost objective function 1

$$E = \sum_{i=1}^{N} \exp\{-y_i f_T(x_i)\}$$

- AdaBoost objective function 2 (Extra credit)
 - the training error of AdaBoost, is upper bounded by

$$E = \sum_{i=1}^{N} \exp\{-y_i f_T(x_i)\}$$

Derive update equation for a different objective function

$$E = \sum_{i=1}^{N} (y_i - f_T(x_i))^2$$

- Under stand the margin of classifiers
 - What does "margin" mean? Do logistic regression and Adaboost have margins?

Summary of AdaBoost

- Both of the following steps are minimizing the functional E()
 - Find h() by training a classifier with weighted samples
 - -Setting $\alpha_t = \frac{1}{2} \ln \frac{1 \epsilon_t}{\epsilon_t}$

- The End
- Thanks