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What is probability?

 Answer 1 : Our beliefs about the world

 Answer 2 : The random nature of the world

 ―Probability theory is nothing but common sense 

reduced to calculation‖
 — Pierre Laplace, 1812.

 Either way, CRITICALLY important toolkit for ML and life

 How confident is the robot that this object is a stapler?

 My measurements have ―noise‖, i.e. random perturbations

 What is the certainty threshold for acting on a belief?

 Act so as to maximize ―average‖ utility



Why use probability?

 There have been attempts to develop different methodologies for 

uncertainty:
 Fuzzy logic

 Qualitative reasoning (Qualitative physics)

 …

 In 1931, de Finetti proved that it is irrational to have beliefs that 

violate probability axioms, in the following sense:
 If you bet in accordance with your beliefs, but your beliefs violate the axioms, then you can be 

guaranteed to lose money to an opponent whose beliefs more accurately reflect the true state 

of the world. (Here, ―betting‖ and ―money‖ are proxies for ―decision making‖ and ―utilities‖.)

 What if you refuse to bet? This is like refusing to allow time to pass: 

every action (including inaction) is a bet



Basics of Formal 

Treatment of Probability



Basic Probability Concepts

 A sample space S is the set of all possible outcomes of a 

conceptual or physical, repeatable experiment. (S can be finite 

or infinite.)

 E.g., S may be the set of all possible outcomes 

of a dice roll: 

 E.g., S may be the set of all possible nucleotides 

of a DNA site: 

 E.g., S may be the set of all possible time-space positions 

of a aircraft on a radar screen: 

 An event A is any subset of S :
 Seeing "1" or "6" in a dice roll; observing a "G" at a site; UA007 in space-time interval

 If you want to be REALLY precise, use measure theory and set 

theory (I don’t recommend this…) 
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Probability

 IMPORTANT HEURISTIC : Picture sample space as subset 

of the plane, and probabilities as areas

 Most probability laws can be easily re-derived with this heuristic, and many are 

even obvious

 A probability P(A) is a function that maps an event A onto the 

interval [0, 1]. P(A) is also called the probability measure or 

probability mass of A.

Worlds 

in which 

A is true

Worlds in which A is false

P(a) is the area of the oval

Sample space of all 

possible worlds. 

Its area is 1



Kolmogorov Axioms

 All probabilities are between 0 and 1

 0 ≤ P(A) ≤ 1

 P(S) = 1

 P(Φ)=0 

 The probability of a disjunction is given by

 P(A ∨ B) = P(A) + P(B) − P(A ∧ B)

A

B

A∧B

¬A∧¬B
A∨B ?



Random Variable

 A random variable is a function that associates a unique 

numerical value (a token) with every outcome of an 

experiment. (The value of the r.v. will vary from trial to trial as 

the experiment is repeated) 

 Discrete r.v.:

 The outcome of a dice-roll

 Or the square of the outcome; equally valid

 Continuous r.v.:

 The outcome of recording the true location of an aircraft: 

 The outcome of observing the measured location of an aircraft

 Indicator r.v.:

 ―Indicates‖ whether or not event H happened

 1 if H happens, 0 otherwise

 Example : X is a dice roll, and Y indicates whether X is even

 Like True/False

 E[Indicator] = Probability of H

w

S X(w)

trueX

obsX



Discrete/Continuous 

Distributions and Important 

Distributions



Discrete Prob. Distribution

 A probability distribution P defined on a discrete sample space S
is an assignment of a non-negative real number P(s) to each 

sample sS such that SsSP(s)=1. (0P(s) 1)

 intuitively, P(s) corresponds to the frequency (or the likelihood) of getting a 

particular sample s in the experiments, if repeated multiple times.

 call qs= P(s) the parameters in a discrete probability distribution

 A discrete probability distribution is sometimes called a 

probability model, in particular if several different distributions are 

under consideration

 write models as M1, M2, probabilities as P(X|M1), P(X|M2)

 e.g., M1 may be the appropriate prob. dist. if X is from "fair dice", M2 is for the 

"loaded dice". 

 M is usually a two-tuple of {dist. family, dist. parameters}



 Bernoulli distribution: Ber(p)

 Multinomial distribution: Mult(1,q)

 Multinomial (indicator) variable:
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 Multinomial distribution: Mult(n,q)

 Count variable:

Discrete Distributions
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Continuous Prob. Distribution

 A continuous random variable X is defined on a continuous 

sample space: an interval on the real line, a region in a high 

dimensional space, etc.

 X usually corresponds to a real-valued measurements of some property, e.g., length, 

position, …

 It is meaningless to talk about the probability of the random variable assuming a 

particular value --- P(x) = 0

 Instead, we talk about the probability of the random variable assuming a value within 

a given interval, or half interval, or arbitrary Boolean combination of basic 

propositions.
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Probability Density

 If the prob. of x falling into [x, x+dx] is given by p(x)dx for dx , then 

p(x) is called the probability density over x. 

 If the probability P(x) is differentiable, then the probability density over 

x is the derivative of P(x).
 The probability of the random variable assuming a value within some given interval from x1 to x2

is equivalent to the area under the graph of the probability density function between x1 and x2.

 Probability mass:                                             

note that 

 Cumulative distribution function (CDF):

 Probability density function (PDF): 
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The intuitive meaning of p(x)

 If 

p(x1) = a and p(x2) = b, 

then when a value X is sampled from the distribution with density p(x), you are 

a/b times as likely to find that X is ―very close to‖ x1 than that X is ―very close to‖ 

x2.

 That is :

 Alternately : p(x1)dx = Pr(X in the interval [x1, x1+dx) )
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 Uniform Density Function

 Normal (Gaussian) Density Function

 The distribution is symmetric, and is often illustrated 

as a bell-shaped curve. 

 Two parameters,  (mean) and s (standard deviation), determine the location and shape of the distribution.

 The highest point on the normal curve is at the mean, which is also the median and mode.

 Exponential Distribution

Continuous Distributions
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Gaussian (Normal) density in 1D

 If X ∼ N(µ, σ2), the probability density function (pdf) of X is 

defined as

 We will often use the precision λ = 1/σ2 instead of the variance σ2.

 Here is how we plot the pdf in matlab

xs=-3:0.01:3; 

plot(xs,normpdf(xs,mu,sigma));

 Note that a density evaluated at a point can be larger than 1.

22 2

2

1 s

s

/)()(  xexp



Gaussian CDF

 If Z ∼ N(0, 1), the cumulative density function is defined as 

 This has no closed form expression, but is built in to most 

software packages (eg. normcdf in matlab stats toolbox).
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More on Gaussian Distribution

 If X∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1).

 How much mass is contained inside the [-2σ,2σ] interval?

 Since 

p(Z ≤ −2) = normcdf(−2) = 0.025

we have 

P(−2σ < X−µ < 2σ) ≈ 1 − 2 × 0.025 = 0.95

)()()()(
s



s



s



s

 


abba ΦΦZPbXaP



 Expectation: the centre of mass, mean value, first moment):

 Sample mean:

 Variance: the spreadness:

 Sample variance
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Central limit theorem

 If (X1 ,X2, … Xn) are i.i.d. continuous random variables

 Define

 As n  infinity, 

Gaussian with mean E[Xi] and variance Var[Xi]

 Somewhat of a justification for assuming Gaussian noise is 

common
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Hybrid Prob. Distributions

 World of probability not limited to Continuous and Discrete!

 Example : Elevation of airplane

 Elevation=0 (airplane landed) with finite probability, like a discrete r.v.

 But for >0, it’s continuous

 Example : Measured data where detector can saturate

 Non-zero probability you measure the maximum temperature on thermometer

 Perhaps saturation yields string ―ERROR‖; not even a number!

 In practice, we rarely or never use hybrid distributions.  But it’s 

nice to know they’re there  



Things You Can Do with a 

Probability Distribution



Elementary manipulations of 

probabilities

 Set probability of multi-valued r.v.

 P({x=Odd}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = ½



 Multi-variant distribution:

 Joint probability:

 Marginal Probability:
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Joint Probability

 A joint probability distribution for a set of RVs gives the 

probability of every atomic event (sample point)

 P(Flu,HeadAche) = a 2 × 2 matrix of values:

 Every question about a domain can be answered by the joint distribution, 

as we will see later.

H ¬H

F 0.005 0.02

¬F 0.195 0.78



Conditional Probability 

 P(X|Y) = Probability of X, IF we know that Y is true

 H = "having a headache"

 F = "coming down with Flu"

 P(H)=1/10

 P(F)=1/40

 P(H|F)=1/2

 P(H|F) = fraction of flu-inflicted worlds in which you have a headache

= P(H∧F)/P(F)

 Equivalently : Fraction of worlds in which Y is true that also 

have X true

 Definition:

 Corollary: The Chain Rule
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 This is all fine and dandy if we already 

know the probability distribution

 But the real world we don’t have 

distributions : we have DATA



Guessing Probability 

Distributions

(Educatedly) 



Density Estimation

 You have some real-world data

 You need an ―educated guess‖ about the distribution

 What do you do??

 There’s no one right answer, but two common approaches are

 Bayesian : Start with a ―reasonable guess‖ about the distribution 

Then update your guess based on observations.

 Frequentist : YOU ARE IGNORANT!  Only the data is ground 

truth!  Choose a distribution for which the data you see is as 

likely as possible.

 Much of machine learning boils down to just estimating 

distributions



Bayesian

 How do you pick a ―reasonable guess‖?

 ―I go to CMU – of course I’m smart enough to come up with a great 

guess!  Come to think of it, why even use data?‖ 

 ― I know a domain expert – maybe I can use their knowledge‖

 ―I know nothing!  Use maximum entropy distribution‖ (more on entropy 

later)

 How do you update your guess?

 Bayes rule : more on that later

 Advantages

 Can use domain expertise

 Not skewed as much by outlier data

 Disadvantages

 You add your own bias



Frequentist

 Maximum Likelihood Estimation

 Assume data follow a parameterized distribution 

 Bernoulli with probability p

 Normal with some mean and variance

 Choose parameters θ that minimize

 Advantages

 Very principled

 Not skewed as much by outlier data

 Disadvantages

 Overfitting!
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Maximum Likelihood Estimation

 Goal: estimate distribution parameters q from a dataset of N

independent, identically distributed (iid), fully observed, 

training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)

1. Write probability of data as a function of parameters:

2. Find the maximum of this function, usually just using calculus
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Example 1: Bernoulli model

 Data: 

 We observed N iid coin tossing: D={1, 0, 1, …, 0}

 Representation:

Binary r.v:

 Model: 

 How to write the likelihood of a single observation xi ? 

 The likelihood of datasetD={x1, …,xN}:
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MLE for discrete (joint) 

distributions

 More generally, it is easy to show that

 This is an important (but sometimes 

not so effective) learning algorithm!  

 Overfitting : what if, by chance, some

event never occurs?

 You flip a coin ONCE a get a head.  Does that mean tails are impossible?
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Example 2: univariate normal

 Data: 

 We observed N iid real samples: 

D={-0.1, 10, 1, -5.2, …, 3}

 Model: 

 Log likelihood:

 MLE: take derivatives and set to zero:
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Overfitting

 Recall that for Bernoulli Distribution, we have

 What if we tossed too few times so that we saw zero head?

We have                   and we will predict that the probability of 

seeing a head next is zero!!! 

 The rescue: 

 Where n' is know as the pseudo- (imaginary) count

 But that’s pretty hacky…

 It’s related to ―hierarchical Bayesian models‖, where you put a prior probability 

distribution on the parameters – more on that later
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Overfitting

 So vanilla MLE is problematic for discrete distributions 

because, by chance, some event might not happen

 That’s an advantage to the Bayesian approach, IF your initial guess makes all 

events possible

 What about continuous distributions, where we estimate 

parameters?

 Overfitting still a problem

 For Normal distribution, for example, you underestimate the variance

 Unpleasant choice : Introduce our own biases, or over fit to 

the data?  

 There are ways to partly work around this, but most of them are beyond this class

 Bottom line : it’s art as well as science, and nature doesn’t furnish a ―best answer‖.

So we make due with what we have, which has been quite successful so far.



Entropy

―The tendency for entropy to increase in isolated 

systems is expressed in the second law of 

thermodynamics — perhaps the most 

pessimistic and amoral formulation in all human 

thought.‖ 

— Gregory Hill and Kerry Thornley

http://en.wikipedia.org/wiki/Gregory_Hill_(writer)
http://en.wikipedia.org/wiki/Kerry_Thornley


I tell you P(H) for a coin.

How well can you predict it?

 P=1

 You’ll always guess H, and always be right

 This distribution has ―no uncertainty‖

 P=.7 (or .3)

 You’ll guess H (or T), and you’ll usually be right

 ―medium uncertainty‖

 P=.5

 Distribution is useless; you’re right half the time no matter what

 ―high uncertainty‖

 ―Entropy‖ is a formal version of this uncertainty



Entropy of a Distribution

 Definition

 Imagine you need to communicate observations of a random variable

 Rare outcomes are more surprising; they contain more ―information‖

 Useful definition

 Information adds

 Certain event has no information

 Entropy is average information of a message

 High entropy = rare events more common

 Entropy comes from Information Theory

 Sample space = letters to be encoded

 Use fewer bits for common letters, more for rare to save space

 Entropy = min. average number of bits to encode a letter
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Entropy of a Distribution

 Definition valid for discrete distributions

 Does not generalize to continuous distributions

 How would you encode a language with a continuum

of letters in bits?  That would be really weird.

 But there is a similar concept

 Differential entropy :

 Different in subtle but important ways

 Some, but not all, of the same uses

 Hybrid distributions : Don’t even try

 This class : Only discrete distributions

dxxpxpXpEXH  ))(ln()()]([ln)(

“You should call 

it entropy, for two 

reasons. In the first place 

your uncertainty function 

has been used in statistical 

mechanics under that 

name, so it already has a 

name. In the second 

place, and more 

important, no one really 

knows what entropy 

really is, so in a debate 

you will always have the 

advantage.”

- John von Neumann

http://en.wikipedia.org/wiki/Entropy


Back to the Coin Example

 Bernoulli Random Variable



 P=1

 H(X) = 0.0

 P=.7 (or .3)

 H(X) = 0.360201221 + 0.521089678 = .88129

 P=.5

 H(X) = 2(.5) = 1.0
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Uses of Entropy

 Density Estimation

 Distribution with max. entropy is ―least informative‖

 If we have no idea what the distribution is but we need to make a guess,

guess the one that is least informative

 Decision Trees :

 How do you pick a root node for a decision tree?

 Pick the ―most informative‖ attribute A

i.e. on average, distribution after seeing A has less entropy



 Pick A with maximum gain

)1|()1()0|()0()(),(  AXHAPAXHAPXHAXGain



Bayes Theorem and How it 

will Change Your Life (in a 

good way!)



The Bayes Rule

 What we have just done leads to the 

following general expression:

This is Bayes Rule.

 We use it a lot

 Probability of Y is ―updated‖ after 

observation of X

 Key element : direction of conditioning 

reversed

 P(X|Y) is easy to calculate if Y is a parameter for a 

model of X
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More General Forms of Bayes 

Rule







 P(Flu | HeadAche ∧ DrankBeer)
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Probabilistic Inference : 

Using Observations

 H = "having a headache"

 F = "coming down with Flu"

 P(H)=1/10

 P(F)=1/40

 P(H|F)=1/2

 One day you wake up with a headache. You come up with the 

following reasoning: "since 50% of flus are associated with 

headaches, I must have a 50-50 chance of coming down with 

flu‖

Is this reasoning correct? NO!!!



Probabilistic Inference 

 H = "having a headache"

 F = "coming down with Flu"

 P(H)=1/10

 P(F)=1/40

 P(H|F)=1/2

 The Problem:

H

F

F∧H

?)|( HFP



Probabilistic Inference 

 H = "having a headache"

 F = "coming down with Flu"

 P(H)=1/10

 P(F)=1/40

 P(H|F)=1/2

 The Answer:

 1/40 is the Prior, 1/8 is the Posterior

 Probabilities before and after observation
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Posterior conditional probability

 Conditional or posterior (see later) probabilities

 e.g., P(Flu|Headache) = 0.125

 given that flu is all I know

NOT ―if flu then 12.5% chance of Headache‖

 Representation of conditional distributions:

 P(Flu|Headache) = 2-element vector of 2-element vectors

 If we know more, e.g., DrinkBeer is also given, then we have

 P(Flu|Headache,DrinkBeer) = 0.070     This effect is known as explain away!

 P(Flu|Headache,Flu) = 1   

 Note: the less or more certain belief remains valid after more evidence arrives, 

but is not always useful

 New evidence may be irrelevant, allowing simplification, e.g.,

 P(Flu|Headache,StealersWin) = P(Flu|Headache) 

 This kind of inference, sanctioned by domain knowledge, is crucial



Prior Distribution

 Suppose that our random variables have a "causal flow"
 e.g.,

 Typically know probability distribution for a node, given the 
values of its parents

 Knowledge of one node gives information about its parents, 
via Bayes Rule

 Knowing F 
 by itself - says nothing about B

 if you know H - gives information about B by explaining away 

F B

H



Inference by enumeration

 Start with a Joint Distribution 

 Building a Joint Distribution 

of M=3 variables

 Make a truth table listing all

combinations of values of your

variables (if there are M Boolean

variables then the table will have

2M rows).

 For each combination of values, 

say how probable it is.

 Normalized, i.e., sums to 1
H

F

B

F B H Prob

0 0 0 0.4

0 0 1 0.1

0 1 0 0.17

0 1 1 0.2

1 0 0 0.05

1 0 1 0.05

1 1 0 0.015

1 1 1 0.015



Inference with the Joint

 Once you have the JD you can

ask for the probability of any

atomic event consistent with you 

query

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015




Ei

irowPEP )()(

H

F

B



Inference with the Joint

 Compute Marginals

 )HeadacheFlu(P

H

F

B

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015



Inference with the Joint

 Compute Marginals

)Headache(P

H

F

B

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015



Inference with the Joint

 Compute Conditionals
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¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015



Inference with the Joint

 Compute Conditionals

 General idea: compute distribution on query 

variable by fixing evidence variables and 

summing over hidden variables

)HeadAche(

)HeadAcheFlu(
)HeadAcheFlu(

P

P
P


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H

F

B

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015



Summary: Inference by 

enumeration

 Let X be all the variables. Typically, we want

 the posterior joint distribution of the query variables Y

 given specific values e for the evidence variables E

 Let the hidden variables be H = X-Y-E 

 Then the required summation of joint entries is done by 

summing out the hidden variables:

P(Y|E=e)=αP(Y,E=e)=α∑hP(Y,E=e, H=h)

 The terms in the summation are joint entries because Y, E, 

and H together exhaust the set of random variables

 Obvious problems:

 Worst-case time complexity O(dn) where d is the largest arity

 Space complexity O(dn) to store the joint distribution

 How to find the numbers for O(dn) entries???



Using Independence to 

Simplify Calculations



Rules of Independence 

--- by examples

 P(Virus | DrinkBeer) = P(Virus)

iff Virus is independent of DrinkBeer

 P(Flu | Virus;DrinkBeer) = P(Flu|Virus) 

iff Flu is independent of DrinkBeer, given Virus

 P(Headache | Flu;Virus;DrinkBeer) = P(Headache|Flu;DrinkBeer)

iff Headache is independent of Virus, given Flu and DrinkBeer



Conditional independence

 Write out full joint distribution using chain rule:

P(Headache;Flu;Virus;DrinkBeer)

= P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)

= P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer)

P(DrinkBeer)

Assume independence and conditional independence

= P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

I.e.,       ?            independent parameters

 In most cases, the use of conditional independence reduces the size of the 

representation of the joint distribution from exponential in n to linear in n.

 Conditional independence is our most basic and robust form of knowledge 

about uncertain environments.



Marginal and Conditional 

Independence

 Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional 

probability of E given H, written as P(E|H), is

P(E and H)/P(H)

(= the probability of both E and H are true, given H is true)

 E and H are (statistically) independent if 

P(E) = P(E|H)

(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

P(E and H)=P(E)P(H). 

 E and F are conditionally independent given H if 

P(E|H,F) = P(E|H)

or equivalently

P(E,F|H) = P(E|H)P(F|H)



Why knowledge of Independence 

is useful

 Lower complexity (time, space, search …)

 Motivates efficient inference for all kinds of queries 

Stay tuned !!

 Structured knowledge about the domain

 easy to learning (both from expert and from data)

 easy to grow

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

F B

H



Where do probability 

distributions come from?

 Idea One: Human, Domain Experts 

 Idea Two: Simpler probability facts and some algebra

e.g., P(F)

P(B)

P(H|¬F,B)

P(H|F,¬B)

…

 Idea Three: Learn them from data!

 A good chunk of this course is essentially about various ways of learning 

various forms of them! 

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F



The Bayesian Theory

 The Bayesian Theory: (e.g., for data D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

 the posterior equals to the likelihood times the prior, up to a constant. 

 This allows us to capture uncertainty about the model in a 

principled way



Hierarchical Bayesian Models

 q are the parameters for the likelihood p(x|q)

 a are the parameters for the prior p(q|a) .

 We can have hyper-hyper-parameters, etc.

 We stop when the choice of hyper-parameters makes no 

difference to the marginal likelihood; typically make hyper-

parameters constants.

 Where do we get the prior? 

 Intelligent guesses

 Empirical Bayes (Type-II maximum likelihood) 

 computing point estimates of a :

)|(maxarg aa
a


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Bayesian estimation for Bernoulli 

 Beta distribution:  

 Posterior distribution of q : 

 Notice the isomorphism of the posterior to the prior, 

 such a prior is called a conjugate prior
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Bayesian estimation for Bernoulli, 

con'd 

 Posterior distribution of q :

 Maximum a posteriori (MAP) estimation: 

 Posterior mean estimation:

 Prior strength: A=a+
 A can be interoperated as the size of an imaginary data set from which we obtain 

the pseudo-counts
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Effect of Prior Strength

 Suppose we have a uniform prior (a==1/2), 

and we observe

 Weak prior A = 2. Posterior prediction:

 Strong prior A = 20. Posterior prediction:

 However, if we have enough data, it washes away the prior. 

e.g.,                                         .  Then the estimates under 

weak and strong prior are            and            ,  respectively, 

both of which are close to 0.2
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Bayesian estimation for normal 

distribution 

 Normal Prior:  

 Joint probability: 

 Posterior:
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 AFTER THIS POINT ARE OLD SLIDES



Density Estimation

 A Density Estimator learns a mapping from a set of attributes 

to a Probability

 Often know as parameter estimation if the distribution form is 

specified

 Binomial, Gaussian …

 Three important issues:

 Nature of the data (iid, correlated, …)

 Objective function (MLE, MAP, …)

 Algorithm (simple algebra, gradient methods, EM, …)

 Evaluation scheme (likelihood on test data, predictability, consistency, …)



Parameter Learning from iid data

 Goal: estimate distribution parameters q from a dataset of N

independent, identically distributed (iid), fully observed, 

training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)

1. One of the most common estimators

2. With iid and full-observability assumption, write L(q) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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