Machine Learning

10-701/15-781, Spring 2010

Tutorial on Basic Probability




What is probability? o

Steps to
Become a
Sucessful

Trader

PROBABILITY

e “Probability theory is nothing but common sense
reduced to calculation” IH H I] I N H
——

e Answer 1 : Our beliefs about the world ks
e Answer 2 : The random nature of the world HI[’;H

e — Pierre Laplace, 1812.

MARCEL LINK

e Either way, CRITICALLY important toolkit for ML and life

e How confident is the robot that this object is a stapler?

e My measurements have “noise”, i.e. random perturbations
e What is the certainty threshold for acting on a belief?

e Act so as to maximize “average” utility




Why use probability? o

e There have been attempts to develop different methodologies for
uncertainty:
e Fuzzylogic
e Qualitative reasoning (Qualitative physics)

e In 1931, de Finetti proved that it is irrational to have beliefs that
violate probability axioms, in the following sense:

e If you bet in accordance with your beliefs, but your beliefs violate the axioms, then you can be
guaranteed to lose money to an opponent whose beliefs more accurately reflect the true state
of the world. (Here, “betting” and “money” are proxies for “decision making” and “utilities”.)

e What if you refuse to bet? This is like refusing to allow time to pass:
every action (including inaction) is a bet



Basics of Formal
Treatment of Probability




Basic Probability Concepts o

e A sample space S is the set of all possible outcomes of a
conceptual or physical, repeatable experiment. (S can be finite
or infinite.)

e E.g., Smay be the set of all possible outcomes oad®d
of adice roll: 5=11,2,34,56) D At

e E.g., Smay be the set of all possible nucleotides
of a DNA site: S={AT,C,G}

e E.g., Smay be the set of all possible time-space positions
of a aircraft on a radar screen: S ={0,R_, }x{0,360°}x{0,+o0}

e Anevent A Is any subset of 5.

e Seeing"1" or "6" in a dice roll; observing a "G" at a site; UAOQO7 in space-time interval

e If you want to be REALLY precise, use measure theory and set
theory (I don’t recommend this...)




Probability 3

e IMPORTANT HEURISTIC : Picture sample space as subset
of the plane, and probabilities as areas

e Most probability laws can be easily re-derived with this heuristic, and many are
even obvious

e A probability P(A)is a function that maps an event A onto the
interval /O, 1] P(A)is also called the probability measure or
probability mass of A.

Sample space of all
possible worlds.

\
Its areais 1

P(a) is the area of the oval



seic
Kolmogorov AXxioms T
e All probabilities are between O and 1
e 0<PA)<1
¢ P(9=1
o P(P)=0

e The probability of a disjunction is given by
e P(A VB)=P(A) + P(B) - P(A A B)

AvB ?




Random Variable oo

e A random variable is a function that associates a unigue
numerical value (a token) with every outcome of an
experiment. (The value of the r.v. will vary from trial to trial as
the experiment is repeated) Xo)

e Discreter.v.:
The outcome of a dice-roll

Or the square of the outcome; equally valid
e Continuousr.v.:
The outcome of recording the true location of an aircraft: x

true

The outcome of observing the measured location of an aircraft X
e Indicator r.v.:

“Indicates” whether or not event H happened

1 if H happens, 0 otherwise

Example : X is a dice roll, and Y indicates whether X is even

Like True/False

E[Indicator] = Probability of H



Discrete/Continuous
Distributions and Important
Distributions




Discrete Prob. Distribution ot

e A probability distribution P defined on a discrete sample space S
IS an assignment of a non-negative real number P(s) to each
sample se S such that X__ P(s)=1. (0<P(s) <1)

e intuitively, P(s) corresponds to the frequency (or the likelihood) of getting a
particular sample sin the experiments, if repeated multiple times.

e call 6~ P(s) the parameters in a discrete probability distribution

e A discrete probability distribution is sometimes called a
probability model, in particular if several different distributions are
under consideration
e write models as M;, M,, probabilities as P(X|M,), P(X|M,)

e e.g., M, may be the appropriate prob. dist. if X is from "fair dice", M, is for the
"loaded dice".

e Mis usually a two-tuple of {dist. family, dist. parameters}



Discrete Distributions

e Bernoulli distribution: Ber(p)

P(x) = {

1-p for x=0
p

X 1-x
1 = PXO=pTA-p)

e Multinomial distribution: Mult(1, 6)

e Multinomial (indicator) variable:

XX X XXX

where

p(x(J)) = P({X; =1, where j index the dice-face})

=0, = ]:[ekxk




Discrete Distributions

e Multinomial distribution: Mult(~, &)

Count variable:

where ZXJ =N
J

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR, NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER FPROGRAMS PERCENT FRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The Wilkam Randolph Hearst Foundation will give $1.25 million to Lincoln Center,
Metropolitan Opera. Co., New York Philharmonic and Juiliard School.  “Owr board
felt that we had a real opportimity to make a mark on the fiture of the performing
arts with these grants an act every bit as hmportant as owr traditional areas of suppart
in health, medical research, edncation and the social services” Hearst Foundation
President Randolph A.Hearst said Monday naunomcing the grants. Lineoln Center’s
share will be 5200,000 for its new building, which will honse young artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will
receive 5400000 each. The Juilliard School, where music and the performing arts are
tanght, will get $250,000. The Hearst Foundation, a leading supporter af the Lincoln
Center Consolidated Corporate Find, will make its wsnal annnal $100,000 demation,
too.



Continuous Prob. Distribution ot

e A continuous random variable X'is defined on a continuous
sample space: an interval on the real line, a region in a high
dimensional space, etc.

e X usually corresponds to a real-valued measurements of some property, e.g., length,
position, ...

e |tis meaningless to talk about the probability of the random variable assuming a
particular value --- P(x) =0

e Instead, we talk about the probability of the random variable assuming a value within
a given interval, or half interval, or arbitrary Boolean combination of basic
propositions.

P(X €[x,%,])
P(X <x)=P(X [-o0,x])

P(X € [X11 Xz]U[X?,’ X4])



Probability Density

e |Ifthe prob. of xfalling into /x, x+dx] is given by p(x)dx for dx, then
p(x)is called the probability density over x.

e If the probability P(x)is differentiable, then the probability density over

x is the derivative of A(x).

e The probability of the random variable assuming a value within some given interval from x; to x,
is equivalent to the area under the graph of the probability density function between x; and x,.

e Probability mass: P(XE X1 XZ J p(X)a’X

note that I " p(x)dx =1.
e Cumulative distribution function (CDF):
P(x)=P(X <x)=[" p(x')dx
e Probability density function (PDF):
p(x) =2 P(x)
B ax
LC p(x)dx=1; p(x)>0,vx

100
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&0
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40
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Car flow on Liberty Bridge (cooked up!)
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The intuiti ing of e
e intuitive meaning ot p(x o
o |If
p(xy) = aand p(x,) = b,
then when a value X is sampled from the distribution with density p(x), you are
a/b times as likely to find that X is “very close to” x; than that X is “very close to”
5
e Thatis:

x1+h
L Pa-h<X<xi+h) _ le-hp(x)dx _ pxi)x2h :a/
0P —h< X <X h) [ piadk p)x2h

XZ—/'I

e Alternately : p(x,)dx = Pr(X in the interval [x;, X,;+dX) )



Continuous Distributions :

e Uniform Density Function

p(x)=1/(b—-a) fora<x<b
=0 elsewhere
e Normal (Gaussian) Density Function

v N2[0 2
e(X,u)/ZU

plx) = ra

° The distribution is symmetric, and is often illustrated

as a bell-shaped curve.
e  Two parameters, u (mean) and o (standard deviation), determine the location and shape of the distribution.

° The highest point on the normal curve is at the mean, which is also the median and mode.

fx)
e EXxponential Distribution a

3 t P(x < 2) = area = .4866

"1 x
123 4567 8 910

Time Between Successive Arrivals (mins.)

1
PDF: p(X)=;e ’“, CDF: P(x<X,)=1-e™/*



Gaussian (Normal) density in 1D | <2

o If X ~N(u, 02), the probability density function (pdf) of X is
defined as

v 02 2
e(X,u)/ZO'

p(x) = Fa
e We will often use the precision A = 1/02 instead of the variance o2.
e Here is how we plot the pdf in matlab
xs=-3:0.01:3;
plot(xs,normpdf(xs,mu,sigma));

-2

e Note thata density; evaluated at a point can be larger than 1.



Gaussian CDF °°

e If Z ~N(O, 1), the cumulative density function is defined as
o(x)=[ p(z)dz

1 X _z%2
=——| e’ '“dz
Ner L’O
e This has no closed form expression, but is built in to most
software packages (eg. normcdf in matlab stats toolbox).

Standard Mormal Gaussian cdf
T T T T T




More on Gaussian Distribution

o If X~N(u, 02), then Z = (X - u)/o ~N(O, 1).

e How much mass is contained inside the [-20,20] interval?

Pla<X<b)=P(Et <Z <28y =P(2*) - P(£

e Since
pP(Z < -2) = normcdf(-2) = 0.025

we have
P(-20 <X-u<20)=1-2 X0.025=¢( :




Statistical Characterizations °°

e EXxpectation: the centre of mass, mean value, first moment):

> x,p(x;)  discrete
reS

E(X)=A

_[Xp(x)dx continuous
1 N’
e Samplemean: pu = ~ Z T
1=1

e Variance: the spreadness:

> [x -EX)F p(x;) discrete

VGI‘(X) =<

T[X ~EX)) p(x)dx continuous
\—® 1 N

. 2
N — 1?:;(3% )

e Sample variance 02 —




Central limit theorem °°

o If (X;,X,, ... X)) are I.I.d. continuous random variables
e Define

e As n =2 infinity,
p()? ) - Gaussian with mean E[X] and variance Var[Xi]

3

M =1 "M =2 “[M =10
2 2 2
| 1 1
0 0 0

0 0.5 1 0 0.5 1 0 0.5 l

e Somewhat of a justification for assuming Gaussian noise Is
common



Hybrid Prob. Distributions °°

e \World of probability not limited to Continuous and Discrete!

e Example : Elevation of airplane
e Elevation=0 (airplane landed) with finite probability, like a discrete r.v.

e But for >0, it's continuous

e Example : Measured data where detector can saturate

e Non-zero probability you measure the maximum temperature on thermometer
e Perhaps saturation yields string “ERROR?”; not even a number!

e |n practice, we rarely or never use hybrid distributions. But it's
nice to know they’re there ©



Things You Can Do with a
Probability Distribution




Elementary manipulations of

probabilities

e Set probability of multi-valued r.v.

o P({x=0dd}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = ¥

VX =x)=Y P(X =x,)

J=1

e Multi-variant distribution:

e Joint probability: P(X =tfrue AY =true)

e Marginal Probability: P(Y)=Y. PV AX=x;)
Jjes

P(Y AMX =xv X =x,

= x})=YPWAX=x))
J=1




Joint Probability

e A joint probability distribution for a set of RVs gives the
probability of every atomic event (sample point)

e P(Flu,HeadAche) =a 2 X 2 matrix of values:

H -H
- 0.005 |0.02
-F 0.195 |0.78

e Every question about a domain can be answered by the joint distribution,

as we will see later.
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Conditional Probability °c¢
o P(X|Y) = Probability of X, IF we know that Y is true
e H ="having a headache"
e F ="coming down with Flu"
e P(H)=1/10
e P(F)=1/40
o P(H|F)=1/2
e P(H|F) = fraction of flu-inflicted worlds in which you have a headache
= P(HAF)/P(F)
e Equivalently : Fraction of worlds in which Y is true that also
have X true PIX|Y) = P(X AY)
e Definition: PIY)

e Corollary: The Chain Rule
PXAY)=P(X|YV)PY)

Condition formula is obvious when you use a picture!




e This is all fine and dandy If we already
know the probability distribution

e But the real world we don’t have
distributions : we have DATA




Guessing Probability
Distributions
(Educatedly)




Density Estimation 4+

You have some real-world data
You need an “educated guess” about the distribution
What do you do??

There’s no one right answer, but two common approaches are

e Bayesian : Start with a “reasonable guess™ about the distribution
Then update your guess based on observations.

e Frequentist: YOU ARE IGNORANT! Only the data is ground
truth! Choose a distribution for which the data you see is as
likely as possible.

Much of machine learning boils down to just estimating
distributions



Bayesian

e How do you pick a “reasonable guess™?

“ go to CMU - of course I'm smart enough to come up with a great
guess! Come to think of it, why even use data?” ©

e How do you update your guess?
Bayes rule : more on that later

“1 know a domain expert — maybe | can use their knowledge”

“I know nothing! Use maximum entropy distribution” (more on entropy

later)

e Advantages

Can use domain expertise
Not skewed as much by outlier data

e Disadvantages

You add your own bias



Frequentist oo

e Maximum Likelihood Estimation

e Assume data follow a parameterized distribution
Bernoulli with probability p
Normal with some mean and variance

e Choose parameters 0 that minimize ~ P(X., X,,..., X, |6)

= | [P(X =%,16) if data independent
j=1
e Advantages
e Very principled

e Not skewed as much by outlier data

e Disadvantages
e Overfitting!



Maximum Likelihood Estimation °°

e Goal: estimate distribution parameters # from a dataset of N
Independent, identically distributed (iid), fully observed,
training cases

D={X; ..., X}

e Maximum likelihood estimation (MLE)
1. Write probability of data as a function of parameters:

L(0) = P(X, X,,..., Xy 0)
=P(X;0)P(%:;0),...,P(Xy; )
:HLP(Xi;Q)

2. Find the maximum of this function, usually just using calculus

0" =arg max L(8) = arg max log L(&) Often logs make the math
0 0 easier; answer is the same



Example 1: Bernoulli model o

e Data:
e We observed Niid coin tossing: 0={1, 0, 1, ..., 0}

e Representation:

Binary r.v: X, :{0,1}
e Model: 1—p forx=0
P — — 0%(1_ 1-x
(X) {p for x -1 =  P(X)=6*(1-6)

e How to write the likelihood of a single observation x; ?
P(x)=0"(1-0)""

e The likelihood of datasetD={x;, ..., x\}:

N N
1-x.

P(XI’ X2 ..... XN | 9) — ﬁ[ P(Xi | 9) :ﬂ (QXi (1 _ Q)I_Xi ) _ Q;Xi (1 B 9).21: ' _ Q#head (1 - 9)#tails

i=1



MLE for discrete (joint)
distributions

e More generally, it is easy to show that

#records In which event . is true

0.4

0.1

P(event.) =
total number of records
e This is an important (but sometimes -F |8 |-H
-F |-B |H
not so effective) learning algorithm! F |8 |-H

0.17

-F

H

0.2

F

-H

0.05

H

0.05

-H

0.015

e Overfitting : what if, by chance, some E

H

0.015

event never occurs?

e You flip a coin ONCE a get a head. Does that mean tails are impossible?



Example 2: univariate normal 4

e Data:
e We observed Niid real samples:
0={-0.1,10,1,-5.2, ..., 3}

o Model:  pix)=(270? " expl- (x — )% 1202

e Log likelihood:

£ p.6° ) =log P(D| ) =—%|og(zmz)_1i(xn ~u)

n=1 O
e MLE: take derivatives and set to zero:

oL 1

a = (1/0-2)Zn (Xn _/u) Hue :NZ”(XH)

GL’ _ N 1 ( )2 02 :iz (X — U )2
oo? 202 " 20" Z” % T H S VA



Overfitting o

e Recall that for Bernoulli Distribution, we have

head
n
9 head

nheaa’ 4 nfa//

e \What if we tossed too few times so that we saw zero head?

We have 0/¢“ =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue:

e Where n'is know as the pseudo- (imaginary) count

head 1
9 Nhead n +n

ﬂhead 4 n?‘a// ﬂ

e But that's pretty hacky...

e |It's related to “hierarchical Bayesian models”, where you put a prior probability
distribution on the parameters — more on that later



Overfitting o

e S0 vanilla MLE is problematic for discrete distributions
because, by chance, some event might not happen

e That’s an advantage to the Bayesian approach, IF your initial guess makes all
events possible

e \What about continuous distributions, where we estimate
parameters?

e Overfitting still a problem
e For Normal distribution, for example, you underestimate the variance

e Unpleasant choice : Introduce our own biases, or over fit to
the data? ®
e There are ways to partly work around this, but most of them are beyond this class
e Bottom line : it's art as well as science, and nature doesn’t furnish a “best answer”.
So we make due with what we have, which has been quite successful so far.



Entropy

“The tendency for entropy to increase in isolated
systems is expressed in the second law of
thermodynamics — perhaps the most
pessimistic and amoral formulation in all human
thought.”

— and



http://en.wikipedia.org/wiki/Gregory_Hill_(writer)
http://en.wikipedia.org/wiki/Kerry_Thornley

| tell you P(H) for a coin.
How well can you predict it? o
o P=1

e You'll always guess H, and always be right
e This distribution has “no uncertainty”

e P=.7(or.3)
e You'llguess H (or T), and you’'ll usually be right
e “medium uncertainty”

o P=5
e Distribution is useless; you’re right half the time no matter what
e “high uncertainty”

“Entropy” is a formal version of this uncertainty



Entropy of a Distribution -

e Definition
e Imagine you need to communicate observations of a random variable
e Rare outcomes are more surprising; they contain more “information”

o Useful definition Information(xi) ——In P(Xi)
Information adds
Certain event has no information

e Entropy is average information of a message
H(X)=E[-InP(X)]= —Z P(x;)In(P(X;))

e High entropy = rare events more common
e Entropy comes from Information Theory

e Sample space = letters to be encoded

e Use fewer bits for common letters, more for rare to save space ¢jaude Shannon invented

e Entropy = min. average number of bits to encode a letter information theory — and the
motorized pogo stick



Entropy of a Distribution -

e Definition valid for discrete distributions “You should call

e Does not generalize to continuous distributions 't £1trony, for two
reasons. In the first place

e How would you encode a language with a continuum your uncertainty function
of letters in bits? That would be really weird. has been used in statistical
: .. mechanics under that
e But there is a similar concept name, so it already has a

o Differential entropy H (X ) =—E[ln p(X)] = _J' p(X) In( p(x))dx hame. In the second

: : ) place, and more
e Different in subtle but important ways important, no one really

e Some, but not all, of the same uses knows what entropy

: ., : _ ; really is, so in a debate
e Hybrid distributions : Don't even try you will always have the

e This class : Only discrete distributions advantage.”
- John von Neumann


http://en.wikipedia.org/wiki/Entropy

Back to the Coin Example

e Bernoulli Random Variable

H(X) = P(head)(~In P(head)) + P(tail)(~ In P(tail))
= p(=In p)+ (12— p)(=In(1- p))
=—ph p-qling

o P=1

H(X) = 0.0

o P=.7(or.3)

H(X) = 0.360201221 + 0.521089678 = .88129

P=.5
H(X) = 2(.5) = 1.0




Uses of Entropy -

e Density Estimation
e Distribution with max. entropy is “least informative”
e If we have no idea what the distribution is but we need to make a guess,
guess the one that is least informative

e Decision Trees :
e How do you pick a root node for a decision tree?
e Pick the “most informative” attribute A
l.e. on average, distribution after seeing A has less entropy

e Gain(X,A)=H(X)-P(A=0)H(X |A=0)-P(A=DH (X | A=1)

e Pick A with maximum gain



Bayes Theorem and How it
will Change Your Life (in a
good way!)




The Bayes Rule oo

e What we have just done leads to the
following general expression:

P(X]Y)p(Y) _ o(Y)x P(XY)

T P(X)

This is Bayes Rule.
e We use italot

e Probability of Y is “updated” after

observation of X
Bayes, Thomas (1763) An essay

- A : i ; t ds solvi blem in ti
e Key element : direction of conditioning doctrine of chances. Philosophical
reverse d Transactions of the Royal Society of

London, 53:370-418
e P(X]|Y) is easy to calculate if Y is a parameter for a
model of X



More General Forms of Bayes selt.
Rule 111
o _ PX|Y)pY)
0 B vypy - PXT VIp(Y)
o PV=y|X)= PX|Y)pY)

D PXIY =y)pY=y)

PXI|YAZ)pY NZ) PX|YAZ)p(Y A 2)
PXAZ) CPXTYAZ)PCY AZY+PX[ Y AZ)pCY A ZD)

PYIXAZ)=

e P(Flu| HeadAche A DrankBeer)




Probabilistic Inference : i
Using Observations 4+

e H ="having a headache"

e F ="coming down with Flu"
P(H)=1/10
P(F)=1/40
P(H|F)=1/2

e One day you wake up with a headache. You come up with the
following reasoning: "since 50% of flus are associated with
headaches, | must have a 50-50 chance of coming down with
flu”

Is this reasoning correct? NO!!!



Probabilistic Inference

e H ="having a headache"

e F ="coming down with Flu"
e P(H)=1/10
o P(F)=1/40
o P(HIF)=1/2

e The Problem:

P(F|H)=2




Probabilistic Inference

e H ="having a headache"

e F ="coming down with Flu"
e P(H)=1/10
e P(F)=1/40
o P(HIF)=1/2

e The Answer:

~ P(H|F)
P(F|H)=p(F) P(H)
w140 1

(1/10) 8

e 1/40 is the Prior, 1/8 is the Posterior

e Probabilities before and after observation




Posterior conditional probability |

e Conditional or posterior (see later) probabilities

e e.g., P(Flul[Headache) = 0.125
- given that fluis all I know
NOT “if flu then 12.5% chance of Headache”

e Representation of conditional distributions:
e P(Flu|Headache) = 2-element vector of 2-element vectors

e If we know more, e.g., DrinkBeer is also given, then we have
e P(Flu|[Headache,DrinkBeer) =0.070 This effect is known as explain away!
e P(Flu|Headache,Flu) =1

e Note: the less or more certain belief remains valid after more evidence arrives,
but is not always useful

e New evidence may be irrelevant, allowing simplification, e.g.,
e P(Flu|[Headache,StealersWin) = P(Flu|Headache)
e This kind of inference, sanctioned by domain knowledge, is crucial



Prior Distribution °°

e Suppose that our random variables have a "causal flow"

e eg.,

e Typically know probability distribution for a node, given the
values of its parents

e Knowledge of one node gives information about its parents,
via Bayes Rule

e Knowing F
e Dy itself - says nothing about B
e if you know H - gives information about B by explaining away



Inference by enumeration

e Start with a Joint Distribution
e Building a Joint Distribution
of M=3 variables

e Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

e [For each combination of values,
say how probable it is.

e Normalized, i.e., sumsto 1

Prob

0.4

0.1

0.17

0.2

0.05

0.05

0.015

Rl |IP|IP|O]JlOC|O IO | T

PP |O|O|FRP|P|O|OC |

—Rlolr|lo|lr|lo|r|lol|T

0.015




Inference with the Joint

e Once you have the JD you can

-H

0.4

0.1

ask for the probability of any

-H

0.17

atomic event consistent with you

0.2

query

-H

0.05

0.05

H

0.015

P(E)=D P(row,)

ieE

0.015




Inference with the Joint

e Compute Marginals

P(Flu A Headache) =

-F -B -H 0.4
-F -B H 0.1
-F B -H 0.17
-F B H 0.2

F -B -H 0.05
F -B H 0.05
F B -H 0.015
F B H 0.015




Inference with the Joint

e Compute Marginals

P(Headache) =

-F -B -H 0.4
-F -B H 0.1
-F B -H 0.17
-F B H 0.2

F -B -H 0.05
F -B H 0.05
F B -H 0.015
F B H 0.015




Inference with the Joint

e Compute Conditionals

P(E, AE,)
P(E,)

> P(row;)

. i€E1ﬂE2

P(E1‘E2) -

-F -B -H 0.4
-F -B H 0.1
-F B -H 0.17
-F B H 0.2

F -B -H 0.05
F -B H 0.05
F B -H 0.015
F B H 0.015

> P(row;)

iEEZ
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0006
: : 000
Inference with the Joint T
e Compute Conditionals -F |[-B |-H |04
-F |-B |H 0.1
-F B -H 0.17
P(Flu A HeadAche) -k |B A ]02
P(Flu{HeadAche) =
(Flu ) P(HeadAche) F_|B |-H ]005
F -B H 0.05
F B -H 0.015
F B H 0.015

e General idea: compute distribution on query
variable by fixing evidence variables and
summing over hidden variables




Summary: Inference by 3
enumeration o

e Let X be all the variables. Typically, we want
e the posterior joint distribution of the query variables Y
e given specific values e for the evidence variables E
e Let the hidden variables be H = X-Y-E

e Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E=e)=aP(Y,E=e)=a},P(Y,E=e, H=h)

e The terms in the summation are joint entries because Y, E,
and H together exhaust the set of random variables

e Obvious problems:
e Worst-case time complexity O(d") where d is the largest arity
e Space complexity O(d") to store the joint distribution
e How to find the numbers for O(d") entries???



Using Independence to
Simplify Calculations




Rules of Independence 3
--- by examples T

e P(Virus | DrinkBeer) = P(Virus)
Iff Virus is independent of DrinkBeer

e P(Flu | Virus;DrinkBeer) = P(Flu|Virus)
Iff Flu is independent of DrinkBeer, given Virus

Iff IS iIndependent of , given and



Conditional independence o

e \Write out full joint distribution using chain rule:

P(Headache;Flu;Virus;DrinkBeer)
P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)

= P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer)
P(DrinkBeer)

Assume independence and conditional independence
= P(Flu|Virus) P(Virus) P(DrinkBeer)
l.e., ? iIndependent parameters

e In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

e Conditional independence is our most basic and robust form of knowledge
about uncertain environments.



Marginal and Conditional 3
Independence o

e Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional
probability of E given H, written as P(E[H), is
P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

e E and H are (statistically) independent if

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently
P(E and H)=P(E)P(H).

e E and F are conditionally independent given H if
P(E|H,F) = P(E[H)
or equivalently
P(E,F|H) = P(E|H)P(F|H)



Wwhy knowledge of Independence |32

IS useful

e Lower complexity (time, space, search ...)

-F
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-B

~F
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-B

-B

m|im| T

0.01

e Motivates efficient inference for all kinds of queries

Stay tuned !!
e Structured knowledge about the domain

e easy to learning (both from expert and from data)

e easy to grow



Where do probability

distributions come from?

e |dea One: Human, Domain Experts
e Idea Two: Simpler probability facts and some algebra

e.g., P(F)
P(B)
P(H|-F,B)
P(H|F,-B)

e |dea Three: Learn them from data!

—

-F

-B

-H

0.4
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-B

0.1

~F

-H

0.17

-F

0.2

F

-B

-H

0.05

-B

0.05

-H

0.015

F
F
F

0.015

e A good chunk of this course is essentially about various ways of learning

various forms of them!



The Bayesian Theory o

e The Bayesian Theory: (e.g., for data D and model M)

P(M|D) = P(D|M)P(M)/P(D)
e the posterior equals to the likelihood times the prior, up to a constant.

e This allows us to capture uncertainty about the model in a
principled way



Hierarchical Bayesian Models o

0 are the parameters for the likelihood p(x] 6)
o are the parameters for the prior p(6| @) .
We can have hyper-hyper-parameters, etc.

We stop when the choice of hyper-parameters makes no
difference to the marginal likelihood; typically make hyper-
parameters constants.

Where do we get the prior?

e Intelligent guesses
e Empirical Bayes (Type-Il maximum likelihood)

—> computing point estimates of « :

Oy e =aQ mgx =pn|a)




Bayesian estimation for Bernoulli | 3¢

e Beta distribution:

PG, )=t P) gert(1 gyt = B(a, po=i(1-0)

INCIINVE)

e Posterior distribution of 4:

---------

P(Hl Xgseens XN) — p(Xl""’ Xy | 9) p(e) oc O™ (1_9)'% Xea—l (l_e)ﬂ—l _ 9nh+a_1 (1—9)”t+ﬁ_1

P(Xpsee Xy )

Notice the isomorphism of the posterior to the prior,
such a prior is called a conjugate prior


http://upload.wikimedia.org/wikipedia/commons/9/9a/Beta_distribution_pdf.png

Bayesian estimation for Bernoulli, | $32¢

con'd oo

e Posterior distribution of 4:

P(g' X1 ..... XN) _ p(xl ----- XN |9) p(e) o 9”“ (l_e)nt Xea—l (1_9),6’—1 _ gnh+a—1 (l_g)ntJrﬂ—l
P(Xgss Xy)

e Maximum a posteriori (MAP) estimation:

Oyap = arg max log P(@] X;,..., Xy )

Beta parameters
can be understood

e Posterior mean estimation: as pseudo-counts

N+a+pf

Ooayes = | D] D)dO=C[Ox 6™ (1-0)*" "0 =

e Prior strength: A=at+p

e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts



Effect of Prior Strength o

e Suppose we have a uniform prior (a=£=1/2),
and we observe 7 =(n, =2,n, =8)
e Weak prior A = 2. Posterior prediction:
1+2

px=h|n =2,n =8,a=a%2)= 5110 =0.25
e Strong prior A = 20. Posterior prediction:
L, _10+2
px=h|n =2,n =8,a=a'x20) = 0410 =0.40

e However, if we have enough data, it washes away the prior.
e.g., 1 =(n, =200,n =800). Then the estimates under
weak and strong prior are 55 and 50590, respectively,
both of which are close to 0.2




Bayesian estimation for normal i
distribution -

e Normal Prior:

P(u) = (27”2 )_

1/2

exXp - (1 11p)° 1222
e Joint probabillity:
P(x, 1) = (ZﬁUZ)N/ZeX{ > sz — }
<@ )" exp - (u— )2 1272}

e Posterior:

~2\-1/2 ~ ~
P(u| x)=(225° )" expl- (u—11)? 1257
Nlo® X + e and 52 =[N L ’
Nlc®+1/7° v\gaz—kl/rz'uo’ M P

Sample mean




e AFTER THIS POINT ARE OLD SLIDES




Density Estimation :

e A Density Estimator learns a mapping from a set of attributes
to a Probability

Input
Attributes

Density |

» Probabili
Estimator ty

YYTYYY

e Often know as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...

e Three important issues:

e Nature of the data (iid, correlated, ...)

e Objective function (MLE, MAP, ...)

e Algorithm (simple algebra, gradient methods, EM, ...)

e Evaluation scheme (likelihood on test data, predictability, consistency, ...)



Parameter Learning from iid data | ¢

e Goal: estimate distribution parameters # from a dataset of N
Independent, identically distributed (iid), fully observed,
training cases

D={X; ..., X}

e Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(0) = P(X, X5,..., Xy 0)
= P(X;0)P(%,:0)...., P(xy;6)

= [T, Px:6)

3. pick the setting of parameters most likely to have generated the data we saw:

0 =arg mex L(6) =argmax log L(6)



