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True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) #=Y)

Regression — Mean Squared Error E[(£(X) — Y)?]

Also known as “Generalization Error” — performance on a random test point (X,Y)



True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) #=Y)

Regression — Mean Squared Error E[(£(X) — Y)?]

Also known as “Generalization Error” — performance on a random test point (X,Y)

Empirical Risk: Performance on training data

mn
Classification — Proportion of misclassified examples — 1 _ .
p ples 1 2 Lr(xp#Y,

n
Regression — Average Squared Error l Z (f(X;) — 3/;;)2
n .
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Overfitting

@] | f@)

Is the following predictor a good one? 7}(
o) — Y; = Xiter ¢ = yuie,
| any value, otherwise

What is its empirical risk? (performance on training data)
zero |

What about true risk?
> zero

Will predict very poorly on new random test point, Large generalization error !



Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (O-NN classifier, decision tree with one sample/leaf)
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Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k — degree up to k-1) code online
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Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Prediction | _ ._
Ererr f,.' fixed # training data
/
true risk
empirical risk -~ |
h“—--
| E— -
- | - _
underfitting overfitting Complexity

Best

Model @

Empirical risk is no longer a
good indicator of true risk



Behavior of True Risk

Want predictor based on training data fn to be as good as optimal predictor f™

Excess Risk E [H(ﬁ}} —

> wrt the distribution of training data

* Why is the risk of fn a random quantity?

R(fn) = Pxy (fa(X) #Y) 1
frn depends on random
training dataset

R(fn) = Exy[(fn(X) — Y)?]

—



Behavior of True Risk

Want predictor based on training data fn to be as good as optimal predictor f™

Excess Risk E [R(ﬁ }} =l = (E[R(ﬁa}'] = }}}ff R(f}) + (}1’1} R(f)— R*)
estimation error .?Lpproxim;tiun ErTor
finite sarn.ple size Due fo randomness  Due to restriction
+ noise of training data of model class

R(fn) F

Estimation
error

Excess risk

jaL )

Approx. error R*



Behavior of True Risk

-

B [R(fn}} < = (E[R(fn}] _ inf R(f}) T (inf R(f) — R*)
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Complexity of F~



Bias — Variance Tradeoff

-s/\/\éf*(‘t)
Regression: Y = f(X)+e € ~ /\/’(0702) Yo . >

—e-00—66-0-00—06-0-0—0-0-6-0——00-0-6-60-0-0-06—00-0—

X

R* = Exy[(F*(X) — Y)Q] — E[GQ] — 52 Notice: Optimal predictor
does not have zero error

Ep[R(fn)] = Ex,v,p[(fn(X) — Y)?]
=Ex,v,p |(Ja(X) = Ep[fn(X)] + Ep[fn(X)] = Y)?|

= Ex,v,0 |(Ffa(X) = Ep[fn(X)D)? + Ep[fn(X)] — V)7
+2(fn(X) = Eplfn ()N Ep[fn(X)] - V)]

=Ex,v,0 |(Fa(X) = Ep[fa(X)D)?|+Ex,v,0 | (Ep[fn(X)] — Y)?]

+Ex v [2(Ep[fn 51 (COD Ep[fn(X)] - V)]
0



Bias — Variance Tradeoff
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X

R* = Exy[(F*(X) — Y)Q] — E[GQ] — 52 Notice: Optimal predictor
does not have zero error

Ep[R(fn)] = Ex,v, p[(fa(X) — Y)?]
= Ex,v,0 | (fa(X) = Eplfn(X)D)?|+Ex,v,p [(Ep[fn(X)] - ¥)?]

|

variance - how much does the predictor vary about its mean
for different training data points

Now, lets look at the second term:
Ex,v,0 [(Ep[fn(X)] = Y)?| = Ex,y [(Ep[fn(X)] - Y)?]

Note: this term doesn’t depend on D



Bias — Variance Tradeoff

Exy [(Eplfn(X)] - Y)?| = Exy [Eplfa(X)] - £ (X) — €)?]

= Ex,v |(Eplfn(X)] = f*(X))? + €
— 2e(Ep[fn(X)] - £(X))]

= Ex,y [(Ep[fn(X)] = £*(X))?| + Ex,y |¢?]

_QEX,W»}

0 since noise is independent
and zero mean

= Ex,v [(Ep[fa ()] = £*(X))?] + Ex,v [¢?]
| ' J \_'_}
bias™2 - how much does the noise variance

predictor on average differ from the
optimal predictor




Bias — Variance Tradeoff

m)’\/\éf*(‘t)
Regression: Y = f(X)+e € ~ ,/\/’(0702) Yo . >
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X

R* = Exy[(F*(X) — Y)Q] — E[GQ] — 52 Notice: Optimal predictor
does not have zero error

Ep[R(fn)] = Ex.v p[(fn(X) — Y)?]

= E[(fu(X)—E[fu COD2] 4+ E[(ELf CO1—f*(X))2] + o2
L v J L v J l_Y_}

variance bias” 2 Noise var

Excess Risk= Ep[R(fn)] — R* =variance + bias*2

N\

Random component = est err = approx err



Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable
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Examples of Model Spaces

Model Spaces with increasing complexity:

Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,...
Small neighborhood => Higher complexity

Decision Trees with depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

* Regression with polynomials of order k=0, 1, 2, ...
Higher degree => Higher complexity

Kernel Regression with bandwidth h
Small bandwidth => Higher complexity

How can we select the right complexity model ?



Model Selection

Setup:

Model Classes {F) } ea Of increasing complexity Fq < Fo < ...

min min J(f, A
in min (f, A)

We can select the right complexity model in a data-driven/adaptive way:
O Cross-validation
O Method of Sieves
O Structural Risk Minimization
d Complexity Regularization

O Information Criteria - Minimum Description Length, AIC, BIC



Hold-out method

We would like to pick the model that has smallest generalization error.
Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available D = {X,; Y;}"

1) Split into two sets:  Training dataset Validation dataset NOT test
Dr = {X;,Y;}I%, D= [ X, V1T Data !

i=m-+1
2) Use Dr for training a predictor from each model class:

- o5
b arg}ggljp 7(f)

A
|—> Evaluated on training dataset Dr



Hold-out method

3) Use Dv to select the model class which has smallest empirical error on Dv
Ry (f)

|—> Evaluated on validation dataset Dv

A= arg min
AEN

4) Hold-out predictor

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”



Hold-out method

Drawbacks:

= May not have enough data to afford setting one subset aside for getting a

sense of generalization abilities
= Validation error may be misleading (bad estimate of generalization error) if

we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling
methods at the expense of more computation.



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

I:l training I:Ivalidation

Run 1 = f1

Total number of examples

Run 2 = fo

Run K > [k




Cross-validation

Leave-one-out (LOQO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for n runs

I:l training I:Ivalidation
Total number of examples

. P

Run 1 = f1

Run 2 = fo

Run K = fk




Cross-validation

Random subsampling

Randomly subsample a fixed fraction an (0< a <1) of the dataset for validation.
Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

I:Itraining I:Ivalidation
Total number of examples

< 4

Run 1 = f1

Run 2 - f2

Run K = fK




Estimating generalization error

Generalization error Ep [R(fn)]
Hold-out = 1-fold: Error estimate = EV(J?T)

K
K-fold/LOO/random Error estimate = Z RVk(‘ka
sub-sampling: =1

We want to estimate the error of a predictor |:| training [l validation

based on n data points. Total number of examples

If K is large (close to n), bias of error estimate ) >
is small since each training set has close to n Run1
data points.
Run 2
However, variance of error estimate is high since
each validation set has fewer data points and
Ry, might deviate a lot from the mean. Cun K




Practical Issues in Cross-validation

How to decide the values for Kand a?
= largeK

+ The bias of the error estimate will be small

- The variance of the error estimate will be large

- The computational time will be very large as well (many experiments)
=  Small K

+ The # experiments and, therefore, computation time are reduced

+ The variance of the error estimate will be small

- The bias of the error estimate will be large

In practice, the choice of the number of folds depends on the size of the
dataset:
For large datasets, even 3-Fold Cross Validation will be quite accurate
For very sparse datasets, we may have to use leave-one-out in order to
train on as many examples as possible

= A common choiceis K=10and a =0.1



Occam’s Razor

William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the
number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

* Prior information (bias)
* Information Criterion (MDL, AIC, BIC)




Importance of Domain knowledge

f(x)

Distribution of photon arrivals
Compton Gamma-Ray Observatory Burst

and Transient Source Experiment (BATSE)



Method of Sieves

Consider a sequence of models whose complexity grows with # training data, n

Fi1<Fo=<...Fn=<...

. oA
fn argjgglj_nn n(f)

Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions: complexity = bandwidth h

o ®
0" Large h — average more data points, reduce noise
o
o . .
%o Lower variance X —— = # pts in h-ball
o o ©® nh
[ o ©
o o [ ) () . .
e 0% o " Small h — less smoothing, more accurate fit
o
°® ¢ © . X ha-—> Smoothness of
® o ® o0 Q. Lower bias target function



Method of Sieves

Consider a sequence of models whose complexity grows with # training data, n

Fi1<Fo=<...Fn=<...

. oA
fn argjgglj_nn n(f)

Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions: complexity = bandwidth h

o.‘.. Bias-variance tradeoff: 1
°o_o© Bias”2 + Variance o< h** + —
.. ® nh?
: :
° % o If smoothness a is known, we can choose
o .. .. ®o .
Y D P bandwidth h as: A
.. e® ¢ O h=xn" 2+
o oo o

o
o o o . . .
©Teo 00 How to choose scaling constant? Cross-validation



Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

fn = arg ?éi;g {Rn.(f) + C-‘(f)}
Bound on deviation from true

risk

With high probability, |R(f) — ﬁn(f)| <C(f) VferF Concentration bounds
(later)

Prediction 4

<——High prob
Error /' Upper bound
on true risk
true risk
empirical risk ) . C(f) - large for complex models
e -




Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

fn = argmin {ﬁ-n.(f') + C’(f)}

> e F \
Bound on deviation from true
risk

With high probability,

|R(f) — En(f)\ <C(f) VfeF Concentration bounds
B (later)

R(fn) < Rn(fn) + C(fa) = min{Ra(f) +C()]
< ]rpei;{R(f) +2C(f)}
R(fn) — R* < min {R(f) - "+ 2C()}

J
Y —
approx err est err




Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

o = mg?g{ﬂuﬁ+cwﬂ}
e '
Bound on deviation from true
risk

How does structural risk minimization help in kernel regression?

1

With high prob. R(f,) — R* < %ijr;{R(f) — R*42C(f)}

< min ]@jph {R(f) — R*+2C(f)}
. 2 1
o min (R4 )

Error automatically corresponds to best A



Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

fn = arg min { Bn(f) @)}
Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image Noisy image True Flood plain
(elevation level > x)



Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

P

fn = argmin {Rn () HAP(N}

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain Zero penalty CV penalty Theoretical penalty
(elevation level > x)



Complexity Regularization

Penalize complex models using prior knowledge.

e = a-t‘glll_i;l{ﬁ-n.(,f') +C‘(f)}

feF
I—) Cost of model

(log prior)

Bayesian viewpoint:
prior probability of f = e~ ¢ ()
cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F, e.g. linear classifiers,
= uniform prior on f € F, zero probability for other predictors

fL — arg min R
In ng-'FL n(f)



Complexity Regularization

Penalize complex models using prior knowledge.

e

fn = ammn{ +C‘(f)

feF

Cost of model
(log prior)
Examples: MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

Omap = arg maxlog p(D|6) + log p(0)

Bmap = arg mm Z (Y; — X;8)? +®|I5H

|—> Penalize models based

on some norm of
How to choose tuning parameter A? Cross-validation regression coefficients



Information Criteria

Penalize complex models based on their information content.

; — }_g . j_l;.n . CY *}
f u_?g}{ A7) =G )

# bits needed to describe f
MDL (Minimum Description Length) (description length)

Example: Binary Decision trees  F; = {tree classifiers with k leafs}

FT _ UI:T?“-‘I‘FE prefix encode each element f of F T

C(f) =3k — 1 bits

k leaves => 2k — 1 nodes

2k — 1 bits to encode tree structure
+ k bits to encode label of each leaf (0/1)
5 leaves => 9 bits to encode structure



Information Criteria

Penalize complex models based on their information content.

e = a-t‘glllill{ﬁ-n.(,f')+C’(f)}

- JEF

# bits needed to describe f
MDL (Minimum Description Length) (description length)

Other Information Criteria:

AIC (Akiake IC) C(f) = # parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC)  C(f) = # parameters * log n

Penalizes complex models more heavily — limits complexity of models
as # training data n become large



Summary

True and Empirical Risk
Over-fitting
Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection

=  Hold-out, K-fold cross-validation
=  Method of Sieves

= Structural Risk Minimization

=  Complexity Regularization

= |nformation Criteria — MDL, AIC, BIC



