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True vs. Empirical RiskTrue vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification

Regression – Mean Squared Error

Also known as “Generalization Error” – performance on a random test point (X,Y)Also known as “Generalization Error” – performance on a random test point (X,Y)



True vs. Empirical RiskTrue vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification

Regression – Mean Squared Error

Also known as “Generalization Error” – performance on a random test point (X,Y)Also known as “Generalization Error” – performance on a random test point (X,Y)

Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples

Regression – Average Squared Error



OverfittingOverfitting

Is the following predictor a good one?

What is its empirical risk? (performance on training data)

zero !

What about true risk?

> zero

Will predict very poorly on new random test point, Large generalization error ! 



OverfittingOverfitting

If we allow very complicated predictors, we could overfit the training data.

Examples:  Classification (0-NN classifier, decision tree with one sample/leaf)

Football player ?
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OverfittingOverfitting

If we allow very complicated predictors, we could overfit the training data.

Examples:  Regression (Polynomial of order k – degree up to k-1)    code online
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Effect of Model ComplexityEffect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

fixed # training data

Empirical risk is no longer a 
good indicator of true risk 



Behavior of True RiskBehavior of True Risk

Excess Risk

Want predictor based on training data       to be as good as optimal predictor 

wrt the distribution of training data

• Why is the risk of       a random quantity?

depends on random

training dataset



Behavior of True RiskBehavior of True Risk

Due to restriction 

Excess Risk

Want predictor based on training data       to be as good as optimal predictor 

Due to randomnessfinite sample size Due to restriction 
of model class

Excess risk

Approx. error

Estimation 

error

Due to randomness
of training data

finite sample size
+ noise



Behavior of True RiskBehavior of True Risk



Bias Bias –– Variance TradeoffVariance Tradeoff

Regression:

Notice: Optimal predictor

does not have zero error

0



Bias Bias –– Variance TradeoffVariance Tradeoff

Regression:

Notice: Optimal predictor

does not have zero error

variance – how much does the predictor vary about its mean

for different training data points

Note: this term doesn’t depend on D

Now, lets look at the second term:



Bias Bias –– Variance TradeoffVariance Tradeoff

0 since noise is independent 

and zero mean

noise variancebias^2 – how much does the 

predictor on average differ from the 

optimal predictor



Bias Bias –– Variance TradeoffVariance Tradeoff

Regression:

Notice: Optimal predictor

does not have zero error

Excess Risk = = variance + bias^2

variance bias^2 Noise var

.

.

.

Random component ≡ est err ≡ approx err



Bias Bias –– Variance TradeoffVariance Tradeoff

Large bias, Small variance – poor approximation but robust/stable
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Small bias, Large variance – good approximation but instable
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Examples of Model SpacesExamples of Model Spaces

Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,…

Small neighborhood => Higher complexity

• Decision Trees with depth k or with k leaves

Higher depth/ More # leaves => Higher complexityHigher depth/ More # leaves => Higher complexity

• Regression with polynomials of order k = 0, 1, 2, …

Higher degree => Higher complexity

• Kernel Regression with bandwidth h

Small bandwidth => Higher complexity

How can we select the right complexity model ?



Model SelectionModel Selection

Setup:

Model Classes                     of increasing complexity

We can select the right complexity model in a data-driven/adaptive way:We can select the right complexity model in a data-driven/adaptive way:

� Cross-validation

� Method of Sieves

� Structural Risk Minimization

� Complexity Regularization

� Information Criteria - Minimum Description Length, AIC, BIC



HoldHold--out methodout method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold – out procedure:

n data points availablen data points available

1) Split into two sets:      Training dataset Validation dataset

2) Use DT for training a predictor from each model class:

NOT test
Data !!

Evaluated on training dataset DT



HoldHold--out methodout method

3) Use Dv to select the model class which has smallest empirical error on Dv

4) Hold-out predictor

Evaluated on validation dataset DV

4) Hold-out predictor

Intuition: Small error on one set of data will not imply small error on 

a randomly sub-sampled second set of data

Ensures method is “stable”



HoldHold--out methodout method

Drawbacks:

� May not have enough data to afford setting one subset aside for getting a 

sense of generalization abilities 

� Validation error may be misleading (bad estimate of generalization error) if 

we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling 
methods at the expense of more computation.



CrossCross--validationvalidation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and 

rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

validationtraining validation

Run 1

Run 2

Run K

training



CrossCross--validationvalidation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions 

Equivalently, train on n-1 samples and validate on only one sample per run 

for n runs

training validation

Run 1

Run 2

Run K

training validation



CrossCross--validationvalidation

Random subsampling

Randomly subsample a fixed fraction αn (0< α <1) of the dataset for validation.

Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

training validation

Run 1

Run 2

Run K

training validation



Estimating generalization errorEstimating generalization error

Generalization error

Hold-out ≡ 1-fold: Error estimate = 

K-fold/LOO/random Error estimate = 

sub-sampling:sub-sampling:

We want to estimate the error of a predictor  

based on n data points.

If K is large (close to n), bias of error estimate 

is small since each training set has close to n 

data points.

However, variance of error estimate is high since 

each validation set has fewer data points and 

might deviate a lot from the mean.

Run 1

Run 2

Run K

training validation



Practical Issues in CrossPractical Issues in Cross--validationvalidation

How to decide the values for K and α ?
� Large K

+ The bias of the error estimate will be small

- The variance of the error estimate will be large 

- The computational time will be very large as well (many experiments)

� Small K

+ The # experiments and, therefore, computation time are reduced+ The # experiments and, therefore, computation time are reduced

+ The variance of the error estimate will be small

- The bias of the error estimate will be large 

In practice, the choice of the number of folds depends on the size of the 
dataset:

For large datasets, even 3-Fold Cross Validation will be quite accurate

For very sparse datasets, we may have to use leave-one-out in order to

train on as many examples as possible

� A common choice is K=10 and α = 0.1



Occam’s RazorOccam’s Razor

William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the 

number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

• Prior information (bias)

• Information Criterion (MDL, AIC, BIC)



Importance of Domain knowledgeImportance of Domain knowledge

Oil Spill Contamination

Compton Gamma-Ray Observatory Burst 

and Transient Source Experiment (BATSE)

Distribution of photon arrivals

Oil Spill Contamination



Method of SievesMethod of Sieves

Consider a sequence of models whose complexity grows with # training data, n

Why does optimal complexity depend on # training data?Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions:  complexity ≡ bandwidth h

h Large h – average more data points, reduce noise

= # pts in h-ball

Small h – less smoothing, more accurate fit

Lower variance

Lower bias Smoothness of 

target function



Method of SievesMethod of Sieves

Consider a sequence of models whose complexity grows with # training data, n

Why does optimal complexity depend on # training data?Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions:  complexity ≡ bandwidth h

h
Bias-variance tradeoff:

Bias^2 + Variance

If smoothness α is known, we can choose 

bandwidth h as:

How to choose scaling constant? Cross-validation



Structural Risk MinimizationStructural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

With high probability,

Bound on deviation from true

risk

Concentration bounds 

(later)(later)

High prob

Upper bound

on true risk

C(f) - large for complex models



Structural Risk MinimizationStructural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

With high probability,

Bound on deviation from true

risk

Concentration bounds 

approx err est err

Concentration bounds 

(later)



Penalize models using bound on deviation of true and empirical risks.

Structural Risk MinimizationStructural Risk Minimization

Bound on deviation from true

risk

How does structural risk minimization help in kernel regression?

Let

With high prob.

Error automatically corresponds to best h



Deviation bounds are typically pretty loose, for small sample sizes. In practice, 

Problem: Identify flood plain from noisy satellite images

Structural Risk MinimizationStructural Risk Minimization

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image Noisy image True Flood plain

(elevation level > x) 



Deviation bounds are typically pretty loose, for small sample sizes. In practice, 

Problem: Identify flood plain from noisy satellite images

Structural Risk MinimizationStructural Risk Minimization

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain

(elevation level > x) 
Theoretical penaltyCV penaltyZero penalty



Complexity RegularizationComplexity Regularization

Penalize complex models using prior knowledge.

Cost of model

(log prior)

Bayesian viewpoint: 

prior probability of f ≡

cost is small if f is highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F, e.g. linear classifiers,

≡ uniform prior on f є F, zero probability for other predictors



Complexity RegularizationComplexity Regularization

Penalize complex models using prior knowledge.

Cost of model

(log prior)

Examples:    MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

How to choose tuning parameter λ? Cross-validation

Penalize models based 

on some norm of 

regression coefficients



Information CriteriaInformation Criteria

Penalize complex models based on their information content.

MDL (Minimum Description Length)
# bits needed to describe f

(description length)

5 leaves => 9 bits to encode structure

Example: Binary Decision trees

k leaves => 2k – 1 nodes  

2k – 1 bits to encode tree structure 

+   k bits to encode label of each leaf (0/1)



Information CriteriaInformation Criteria

Penalize complex models based on their information content.

MDL (Minimum Description Length)
# bits needed to describe f

(description length)

Other Information Criteria:

AIC (Akiake IC)          C(f) = # parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily – limits complexity of models

as # training data n become large



SummarySummary

True and Empirical Risk

Over-fitting

Approx err vs Estimation err, Bias vs Variance tradeoff

Model SelectionModel Selection

� Hold-out, K-fold cross-validation

� Method of Sieves

� Structural Risk Minimization

� Complexity Regularization

� Information Criteria – MDL, AIC, BIC


