Practical Issues in Machine Learning Overfitting and Model selection

Aarti Singh

Machine Learning 10-701/15-781 Feb 3, 2010

True vs. Empirical Risk

<u>True Risk</u>: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Also known as "Generalization Error" – performance on a random test point (X,Y)

True vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Also known as "Generalization Error" – performance on a random test point (X,Y)

Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples $\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{f(X_i)\neq Y_i}$

Regression – Average Squared Error $\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2$

Overfitting

Is the following predictor a good one?

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value}, & \text{otherwise} \end{cases}$$

What is its empirical risk? (performance on training data)

zero!

What about true risk?

> zero

Will predict very poorly on new random test point, Large generalization error!

Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (0-NN classifier, decision tree with one sample/leaf)

Football player? No Yes Height Height

Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to k-1) code online

Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Behavior of True Risk

Want predictor based on training data \widehat{f}_n to be as good as optimal predictor f^*

Excess Risk
$$E\left[R(\widehat{f}_n)\right]-R^*$$
 wrt the distribution of training data

• Why is the risk of \widehat{f}_n a random quantity?

$$R(\widehat{f}_n) = P_{XY}(\widehat{f}_n(X) \neq Y)$$

$$\widehat{f}_n \text{ depends on random training dataset}$$

$$R(\widehat{f}_n) = \mathbb{E}_{XY}[(\widehat{f}_n(X) - Y)^2]$$

Behavior of True Risk

Want predictor based on training data \widehat{f}_n to be as good as optimal predictor f^*

Excess Risk
$$E\left[R(\widehat{f}_n)\right] - R^* = \underbrace{\left(E[R(\widehat{f}_n)] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}}$$

Due to randomness Due to restriction finite sample size of training data of model class + noise

Behavior of True Risk

$$E\left[R(\widehat{f}_n)\right] - R^* = \underbrace{\left(E[R(\widehat{f}_n)] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}}$$

Regression:

$$Y = f^*(X) + \epsilon$$

$$Y = f^*(X) + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$\mathbb{E}_{D}[R(\hat{f}_{n})] = \mathbb{E}_{X,Y,D}[(\hat{f}_{n}(X) - Y)^{2}]$$

$$= \mathbb{E}_{X,Y,D} \left[(\hat{f}_{n}(X) - \mathbb{E}_{D}[\hat{f}_{n}(X)] + \mathbb{E}_{D}[\hat{f}_{n}(X)] - Y)^{2} \right]$$

$$= \mathbb{E}_{X,Y,D} \left[(\hat{f}_{n}(X) - \mathbb{E}_{D}[\hat{f}_{n}(X)])^{2} + (\mathbb{E}_{D}[\hat{f}_{n}(X)] - Y)^{2} + 2(\hat{f}_{n}(X) - \mathbb{E}_{D}[\hat{f}_{n}(X)])(\mathbb{E}_{D}[\hat{f}_{n}(X)] - Y) \right]$$

$$= \mathbb{E}_{X,Y,D} \left[(\hat{f}_{n}(X) - \mathbb{E}_{D}[\hat{f}_{n}(X)])^{2} \right] + \mathbb{E}_{X,Y,D} \left[(\mathbb{E}_{D}[\hat{f}_{n}(X)] - Y)^{2} \right]$$

$$+ \mathbb{E}_{X,Y} \left[2(\mathbb{E}_{D}[\hat{f}_{n}(X)] - \mathbb{E}_{D}[\hat{f}_{n}(X)])(\mathbb{E}_{D}[\hat{f}_{n}(X)] - Y) \right]$$

$$Y = f^*(X) + \epsilon$$

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$\mathbb{E}_{D}[R(\widehat{f}_{n})] = \mathbb{E}_{X,Y,D}[(\widehat{f}_{n}(X) - Y)^{2}]$$

$$= \mathbb{E}_{X,Y,D}\left[(\widehat{f}_{n}(X) - \mathbb{E}_{D}[\widehat{f}_{n}(X)])^{2}\right] + \mathbb{E}_{X,Y,D}\left[(\mathbb{E}_{D}[\widehat{f}_{n}(X)] - Y)^{2}\right]$$

variance - how much does the predictor vary about its mean for different training data points

Now, lets look at the second term:

$$\mathbb{E}_{X,Y,D}\left[\left(\mathbb{E}_D[\widehat{f}_n(X)] - Y\right)^2\right] = \mathbb{E}_{X,Y}\left[\left(\mathbb{E}_D[\widehat{f}_n(X)] - Y\right)^2\right]$$

Note: this term doesn't depend on D

$$\mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\widehat{f}_n(X)] - Y)^2 \right] = \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X) - \epsilon)^2 \right]$$

$$= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X))^2 + \epsilon^2 - 2\epsilon (\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X)) \right]$$

$$= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right]$$

$$-2\mathbb{E}_{X,Y} \left[\epsilon (\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X)) \right]$$
0 since noise is independent and zero mean

$$= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\widehat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right]$$

bias² - how much does the predictor on average differ from the optimal predictor

noise variance

$$Y = f^*(X) + \epsilon$$

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$\mathbb{E}_D[R(\widehat{f}_n)] = \mathbb{E}_{X,Y,D}[(\widehat{f}_n(X) - Y)^2]$$

Excess Risk =
$$\mathbb{E}_D[R(\widehat{f}_n)] - R^*$$
 = variance + bias^2
Random component = est err = approx err

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but instable

Examples of Model Spaces

Model Spaces with increasing complexity:

- Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,...
 Small neighborhood => Higher complexity
- Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves => Higher complexity
- Regression with polynomials of order k = 0, 1, 2, ...
 Higher degree => Higher complexity
- Kernel Regression with bandwidth h
 Small bandwidth => Higher complexity

How can we select the right complexity model?

Model Selection

Setup:

Model Classes $\{\mathcal{F}_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of increasing complexity $\mathcal{F}_1\prec\mathcal{F}_2\prec\dots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_{\lambda}} J(f, \lambda)$$

We can select the right complexity model in a data-driven/adaptive way:

- Cross-validation
- ☐ Method of Sieves
- ☐ Structural Risk Minimization
- ☐ Complexity Regularization
- ☐ Information Criteria Minimum Description Length, AIC, BIC

Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets: Training dataset Validation dataset

NOT test $D_T = \{X_i, Y_i\}_{i=1}^m$ $D_V = \{X_i, Y_i\}_{i=m+1}^n$ Data!!

2) Use D_T for training a predictor from each model class:

$$\widehat{f}_{\lambda} = \arg\min_{f \in \mathcal{F}_{\lambda}} \widehat{R}_{T}(f)$$

→ Evaluated on training dataset D_T

Hold-out method

3) Use D_V to select the model class which has smallest empirical error on D_V

4) Hold-out predictor

$$\widehat{f} = \widehat{f}_{\widehat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is "stable"

Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an "unfortunate" split

Limitations of hold-out can be overcome by a family of random sub-sampling methods at the expense of more computation.

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

	Total number of examples ►	training	validation
Run 1		$\Rightarrow \widehat{f}_1$	
Run 2		$\Rightarrow \widehat{f}_2$	
Run K		$\Rightarrow \widehat{f}_K$	

Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for n runs

	Total number of examples	training validation
Run 1		$\Rightarrow \widehat{f}_1$
Run 2		$\Rightarrow \widehat{f}_2$
	:	
Run K		$\Rightarrow \widehat{f}_K$

Cross-validation

Random subsampling

Randomly subsample a fixed fraction αn (0< α <1) of the dataset for validation.

Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

Estimating generalization error

Generalization error $\mathbb{E}_D[R(\widehat{f}_n)]$

Hold-out = 1-fold: Error estimate =
$$\widehat{R}_V(\widehat{f}_T)$$

K-fold/LOO/random sub-sampling:

Error estimate =
$$\frac{1}{K} \sum_{k=1}^{K} \widehat{R}_{V_k}(\widehat{f}_{T_k})$$

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \widehat{R}_{V_k} might deviate a lot from the mean.

Practical Issues in Cross-validation

How to decide the values for K and a?

- Large K
 - + The bias of the error estimate will be small
 - The variance of the error estimate will be large
 - The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + The variance of the error estimate will be small
 - The bias of the error estimate will be large

In practice, the choice of the number of folds depends on the size of the dataset:

For large datasets, even 3-Fold Cross Validation will be quite accurate For very sparse datasets, we may have to use leave-one-out in order to train on as many examples as possible

• A common choice is K=10 and $\alpha = 0.1$

Occam's Razor

William of Ockham (1285-1349) Principle of Parsimony:

"One should not increase, beyond what is necessary, the number of entities required to explain anything."

Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)

Importance of Domain knowledge

Oil Spill Contamination

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Method of Sieves

Consider a sequence of models whose complexity grows with # training data, n

$$\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots \mathcal{F}_n \prec \ldots$$

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}_n} \widehat{R}_n(f)$$

Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions: complexity ≡ bandwidth h

Large h – average more data points, reduce noise Lower variance $\propto \frac{1}{nh^d}$ = # pts in h-ball

Small h – less smoothing, more accurate fit Lower bias $\propto h^{\alpha}$ \rightarrow Smoothness of target function

Method of Sieves

Consider a sequence of models whose complexity grows with # training data, n

$$\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots \mathcal{F}_n \prec \ldots$$

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}_n} \widehat{R}_n(f)$$

Why does optimal complexity depend on # training data?

Consider kernel regression in d-dimensions: complexity ≡ bandwidth h

Bias-variance tradeoff:

Bias^2 + Variance
$$\propto h^{2\alpha} + \frac{1}{nh^d}$$

If smoothness α is known, we can choose bandwidth h as: $h \simeq n^{-\frac{2\alpha}{2\alpha+d}}$

How to choose scaling constant? Cross-validation

Penalize models using bound on deviation of true and empirical risks.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
 Bound on deviation from true risk

With high probability, $|R(f) - \widehat{R}_n(f)| \leq C(f)$ $\forall f \in \mathcal{F}$ Concentration bounds (later)

Penalize models using bound on deviation of true and empirical risks.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
Bound on deviation from true risk

With high probability,

$$|R(f) - \widehat{R}_n(f)| \le C(f) \quad \forall f \in \mathcal{F}$$
 Concentration bounds (later)

$$R(\widehat{f}_n) \le \widehat{R}_n(\widehat{f}_n) + C(\widehat{f}_n) = \min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
$$\le \min_{f \in \mathcal{F}} \left\{ R(f) + 2C(f) \right\}$$

$$R(\widehat{f_n}) - R^* \leq \min_{f \in \mathcal{F}} \left\{ R(f) - R^* + 2C(f) \right\}$$
 approx err est err

Penalize models using bound on deviation of true and empirical risks.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
Bound on deviation from true risk

How does structural risk minimization help in kernel regression?

Let
$$C(f) \propto \frac{1}{nh^d}$$
 $\forall f \in \mathcal{F}_h$ With high prob. $R(\widehat{f}_n) - R^* \leq \min_{f \in \mathcal{F}} \{R(f) - R^* + 2C(f)\}$ $\leq \min_{h} \min_{f \in \mathcal{F}_h} \{R(f) - R^* + 2C(f)\}$ $\propto \min_{h} \left\{h^{2\alpha} + \frac{1}{nh^d}\right\}$ Error automatically corresponds to best h

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda C(f) \right\}$$
Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image

Noisy image

True Flood plain (elevation level > x)

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda C(f) \right\}$$
Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain (elevation level > x)

Zero penalty

CV penalty

Theoretical penalty

Complexity Regularization

Penalize complex models using **prior knowledge**.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Bayesian viewpoint:

prior probability of $f \equiv e^{-C(f)}$

cost is small if f is highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F, e.g. linear classifiers, \equiv uniform prior on $f \in F$, zero probability for other predictors

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \widehat{R}_n(f)$$

Complexity Regularization

Penalize complex models using **prior knowledge**.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Examples: MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

$$\widehat{\theta}_{\mathsf{MAP}} = \operatorname{arg\,max} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\theta}_{\text{MAP}} = \arg\max_{\theta} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|$$

How to choose tuning parameter λ? Cross-validation

Penalize models based on some norm of regression coefficients

Information Criteria

Penalize complex models based on their information content.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

MDL (Minimum Description Length)

bits needed to describe f (description length)

Example: Binary Decision trees $\mathcal{F}_k^T = \{\text{tree classifiers with } k \text{ leafs}\}$

$$\mathcal{F}^T = \bigcup_{k \geq 1} \mathcal{F}_k^T$$
 prefix encode each element f of \mathcal{F}^T

$$C(f) = 3k - 1$$
 bits

k leaves => 2k - 1 nodes

2k - 1 bits to encode tree structure

+ k bits to encode label of each leaf (0/1)

5 leaves => 9 bits to encode structure

Information Criteria

Penalize complex models based on their **information content**.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
 # bits needed to describe f MDL (Minimum Description Length) (description length)

Other Information Criteria:

AIC (Akiake IC)
$$C(f) = \#$$
 parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC)
$$C(f) = \#$$
 parameters * log n

Penalizes complex models more heavily – limits complexity of models as # training data n become large

Summary

True and Empirical Risk

Over-fitting

Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection

- Hold-out, K-fold cross-validation
- Method of Sieves
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria MDL, AIC, BIC