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High-Dimensional data

High-Dimensions = Lot of Features

Document classification e
Features per document =
thousands of words/unigrams ¥
millions of bigrams, contextual o *‘.?;‘;
information
Surveys - Netflix
480189 users x 17770 movies
movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6
Tom 5 7 7 1 3 7
George ? ? 3 1 2 5
Susan 4 3 1 7 5 1
Beth 4 3 7 2 4 2




High-Dimensional data

* High-Dimensions = Lot of Features

Discovering gene networks
10,000 genes x 1000 drugs

X several species

MEG Brain Imaging
120 locations x 500 time points Eﬂ

x 20 objects Bl ] E|E_®,]m|,ﬁ;vzﬁ




Curse of Dimensionality

 Why are more features bad?

— Redundant features (not all words are useful to classify a document)

more noise added than signal

— Hard to interpret and visualize

— Hard to store and process data (computationally challenging)

— Complexity of decision rule tends to grow with # features. Hard to learn
complex rules as VC dimension increases (statistically challenging)



Dimensionality Reduction

“Unrolling the swiss roll”



Dimensionality Reduction

e Feature Selection — Only a few features are relevant to the learning task
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X3 - Irrelevant

e Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed features




Feature Selection

e Approach 1: Score each feature and extract a subset

Common scoring methods:

» Training or cross-validated accuracy of single-feature
classifiers f: X. 2 Y

» Estimated mutual information between X, and Y :

. _ P(X;=k,Y =y)
I(X;,Y) = P(X; =k Y =y)log — a
: %3%5 * P(X; = k)P(Y =y)

+ ? statistic to measure independence between X and Y

 Domain specific criteria

— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition



Feature Selection

e Approach 1: Score each feature and extract a subset

Common subset selection methods:

* One step: Choose d highest scoring features
* lterative:

— Choose single highest scoring feature X,
— Rescore all features, conditioned on the set of
already-selected features
. E.g., Score(X;| X,) = 1(X.,Y |X,)
« E.g, Score(X;| X,) = Accuracy(predicting Y from X, and X,)

— Repeat, calculating new scores on each iteration,
conditioning on set of selected features



Feature Selection: Text Classification

Approximately 10° words in English [Rogati&Yang, 2002]
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Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)

|G=information gain, chi= 2 , DF=doc frequency,



Impact of Feature Selection on Classification of

Accuracy classifying

category of word read
by subject

!

fMRI Data

[Pereira et al., 2005]

Hvoxels mean | subjects
2338 3208 3328 4248 4748 4968 7B 368
50 0.735 0,783 817y .55 0. 7s3 0.75 (.8 .65 .75
100 (0.742 0,767 (.8 (.533 0817 (.35 ().783 (.6 0. 783
200 0.737 0.783 (0.783 0.517 0.817 (0.883 0.75 (1.583 0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 (.783 0.583 (.85 (=33 0.75 (},h83 0.75
s00 0.735 (1533 (817 0567 (h.533 (h.=33 (.7 (.55 075
1600 0.698 0.8 0.817 0.45 0.783 0.833 0.633 (0.5 0.75
all (~2500)  0.638 0.767 0.767 0.25 0.75 0.833 0.567 0433 0.733

Table 1. Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
hest mean accuracy, obtained using 300 vaxels.

Each feature X. is a voxel, scored by error in regression to predict X; from Y
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Feature Selection

Approach 2: Regularization (MAP)

Integrate feature selection into learning objective by penalizing number of

features with non-zero weights

—
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Latent Feature Extraction

Combinations of observed features provide more efficient representation, and
capture underlying relations that govern the data

E.g. Ego, personality and intelligence are hidden attributes that characterize
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents

Often may not have physical meaning

* Linear Te6e e fo Wl & T
o B Boo? GRS 0% ey oo

N : N S S S e

Principal Component Analysis (PCA) R T 9 Ony LA T

Factor Analysis
Independent Component Analysis (ICA)

* Nonlinear

ISOMAP
Local Linear Embedding (LLE)
Laplacian Eigenmaps




Principal Component Analysis (PCA)

Only one relevant feature Both features become relevant

Can we transform the features so that we only need to preserve one latent
feature? Find linear projection so that projected data is uncorrelated.
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Principal Component Analysis (PCA)

- D=2
1d=1

Assumption: Data lies on or near a low d-dimensional linear subspace.
Axes of this subspace are an effective representation of the data

|dentifying the axes is known as Principal Components Analysis, and

can be obtained by Eigen or Singular value decomposition »



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

1t PC — direction of greatest variability in
data

Projection of data points along 1st PC
discriminate the data most along any one
direction

Take a data point xi (D-dimensional vector)

Projection of xi onto the 1t PC v is v'xi

15



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

1t PC — direction of greatest variability in
data

2nd PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then
find next direction of greatest variability)

And soon ...

16



Principal Component Analysis (PCA)

Let v1, v2, ..., vd denote the principal components

Orthogonal and unitnorm  vi'vi=0 i#]

vitvi=1

Find vector that maximizes sample variance of projection D=2

ld=1

1 &, 7 o TrT Assume data are centered

n Z:l(v X)) =v XXV Data points X = [ X1 X2 ... Xn]
1=

mélx vIXXTy st. viv=1

Lagrangian: maxy vIXXTv — AvTy  'Vrap constraints into the
objective function

0/0v =20 (XXT - ADv=0 = ‘(XXT)V = v
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Principal Component Analysis (PCA)

(XXTYyv = Av

Therefore, v is the eigenvector of XXT with eigenvalue A

D
1 d

=

Sample variance of projection =vIXXTv = wlv =)

Thus, the eigenvalue A denotes the amount of variability captured along
that dimension.

Eigenvalues A > A2> A3 > ...

The 15t Principal component v1 is the eigenvector of the sample covariance
matrix XXT associated with the largest eigenvalue A1

The 2" Principal component vz is the eigenvector of the sample covariance
matrix XXT associated with the second largest eigenvalue A2

And soon ... 18



Computing the PCs

Eigenvectors are solutions of the following equation:

(XXTYyv = Av (XXT —XIDv=0
Non-zero solution v # 0 possible only if

det(XX! — AI) =0 Characteristic Equation

This is a D" order equation in A, can have at most D distinct solutions (roots
of the characteristic equation)

Once eigenvalues are computed, solve for eigenvectors (Principal Components)
using
(XX —AXDv =0

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal.
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Principal Component Analysis (PCA)

So, the new axes are the eigenvectors of the matrix of sample correlations
XXT of the data, which capture the similarities of the original features
based on how data samples project to the new axes.

Transformed features are uncorrelated.

X2 'tb

v

v

4 X1

« Geometrically: centering followed by rotation

— Linear transformation
20



Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

1 n
— Z vix)? = vIXX!y
n,—

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction

1 5
— Z ||Xz v X’LH
T i=1
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Dimensionality Reduction using PCA

The eigenvalue A denotes the amount of variability captured along
that dimension.

Zero eigenvalues indicate no variability along those directions =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with non-

zero eigenvalues, say v1, ..., vawhere d = rank (XXT)
Original Representation Transformed representation
data point projections

Xi = [xi!, xi?, ....XiP] [ViTXi, v2TXi, ... VdTXi]

(D-dimensional vector) (d-dimensional vector)

i § .
T T T T Y PSP PER TR RYS: . ([ ¥ TR CTITNTPRINTIFRRPUPRRRT
¥
b %
4
¥

=
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Dimensionality Reduction using PCA

Usually data lies near a linear subspace, as noise introduces small variability

Only keep data projections onto principal components with large eigenvalues
Can ignore the components of lesser significance.
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You might lose some information, but if the eigenvalues are small, you don’t lose
much 23



Example of PCA

0.8 1.0

eigenvalues normalized by trace

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.




Example: faces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




Properties of PCA

- Strengths
—Eigenvector method
—No tuning parameters
—Non-iterative '
—No local optima

+ Weaknesses

—Limited to second order statistics
—Limited to linear projections




Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.

ﬂ
ol

A face pose distribution curve -

27



Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.

ﬂ

H X n
L : !
B 4+
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Isomap

Linear methods — Lower-dimensional linear projection that preserves Euclidean
distances

ISOMAP basic idea — preserve geodesic distance as measured along the

manifold

- f'-'ﬂ"-.""\
‘i!""' -t
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Isomap

Step 1. Build Adjacency graph
Vertices = Data points
Undirected edges connect nearest neighbors (k-NN, eps-NN)

- Graph is discretized approximation of manifold.
- k or eps chosen so that neighborhoods on graphs represent

neighborhoods on the manifold (no “shortcuts” connect different arms
of the swiss roll)
30



Isomap

Step 2. Estimate geodesic distances by graph distances
Weight edges by local distances
Compute shortest path through the graph Ajj (denser sampling =>
better estimates)

Step 3. Find embedding that preserves graph distances Aij~ | |yi—vil |
MDS (Multi Dimensional Scaling)

Preserve dot products Gij; 1 5 > > 2
Gy = E[Zk(ﬂ?fc +Ay) - A - ,HAL‘}

(proxy for distances)

Solution - Top d eigenvectors of the Gram matrix G
Eigenvalues measure how each dimension contributes to dot product

Same as PCA if distances are Euclidean y
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» Theoretically sound, Practically useful
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Isomap Results

o
33

Left-right pose

SVETT  Lighting direction
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Isomap Results
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Bottom loop articulation
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Isomap Results
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Dimensionality Reduction Methods

Feature Selection - Only a few features are relevant to the learning task

Score features (mutual information, prediction accuracy, domain knowledge)
Regularization

Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed feature
Linear: Low-dimensional linear subspace projection

PCA (Principal Component Analysis),
MDS (Multi Dimensional Scaling),

Factor Analysis, ICA (Independent Component Analysis)

Nonlinear: Low-dimensional nonlinear projection that preserves geodesic
distances along the manifold

ISOMAP, Kernel PCA,
LLE (Local Linear Embedding), Laplacian Eigenmaps
Data-driven linear subspaces (Wavelets)
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Some Homework for next time ...

* Think about all the (classification) algorithms we have
discussed so far

— What loss functions do they optimize?
— What decision surfaces do they represent?
— Pros/Cons?
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