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Advanced topics in MaxAdvanced topics in Max--Margin Margin 
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Eric XingEric Xing

Lecture 18, March 29, 2008
Reading: class handouts

Recap: the SVM problem
We solve the following constrained opt problem:
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This is a quadratic programming problem.

∑∑
==

−=
ji

j
T
ijiji

i
i yy

11 2
1

,
)()(max xxααααα J     

.0         

,,1    0,     s.t.

1
∑

=

=

=≥
m

i
ii

i

y

mi

α

α K

© Eric Xing @ CMU, 2006-2010 22

q p g g p
A global maximum of αi can always be found.

The solution:

How to predict: 
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Non-linearly Separable Problems

Class 2

© Eric Xing @ CMU, 2006-2010 33

We allow “error” ξi in classification; it is based on the output of 
the discriminant function wTx+b
ξi approximates the number of misclassified samples

Class 1

© Eric Xing @ CMU, 2006-2010

Soft Margin Hyperplane
Now we have a slightly different opt problem:
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ξi are “slack variables” in optimization
Note that ξi=0 if there is no error for xi

ξi is an upper bound of the number of errors
C : tradeoff parameter between error and margin

© Eric Xing @ CMU, 2006-2010
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The Optimization Problem
The dual of this new constrained optimization problem is
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This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi 
now
Once again, a QP solver can be used to find αi
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The SMO algorithm
Consider solving the unconstrained opt problem:

We’ve already see three opt algorithms! 
Coordinate ascent 
Gradient ascent 
Newton-Raphson

© Eric Xing @ CMU, 2006-2010 66

Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
Constrained optimization:
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Question: can we do coordinate along one direction at a time 
(i.e., hold all α[-i] fixed, and update αi?)
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The SMO algorithm

Repeat till convergence

1. Select some pair αi and αj to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J(α) with respect to αi and αj, while holding all the other 
αk 's (k ≠ i; j) fixed.
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k ( ; j)

Will this procedure converge?

Convergence of SMO
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Let s hold α3 ,…, αm fixed and reopt J w.r.t. α1 and α2
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Convergence of SMO
The constraints:

The objective:

© Eric Xing @ CMU, 2006-2010 1111

j

Constrained opt:

Cross-validation error of SVM
The leave-one-out cross-validation error does not depend on 
the dimensionality of the feature space but only on the # of y p y
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave =

© Eric Xing @ CMU, 2006-2010 1212
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Advanced topics in Max-Margin 
Learning
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Point rule or average rule

Can we predict vec(y)?

Outline

The Kernel trick

Maximum entropy discrimination

Structured SVM, aka, Maximum Margin Markov 
Networks 

© Eric Xing @ CMU, 2006-2010 1414
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(1) Non-linear Decision Boundary
So far, we have only considered large-margin classifier with a 
linear decision boundaryy
How to generalize it to become nonlinear?
Key idea: transform xi to a higher dimensional space to “make 
life easier”

Input space: the space the point xi are located
Feature space: the space of φ(xi) after transformation

Why transform?

© Eric Xing @ CMU, 2006-2010 1515

y
Linear operation in the feature space is equivalent to non-linear operation in input 
space
Classification can become easier with a proper transformation. In the XOR 
problem, for example, adding a new feature of x1x2 make the problem linearly 
separable (homework)

Non-linear Decision Boundary

© Eric Xing @ CMU, 2006-2010 1616
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Transforming the Data
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Feature spaceInput space
Note: feature space is of higher dimension 
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Note: feature space is of higher dimension 
than the input space in practice

The Kernel Trick
Recall the SVM optimization problem

mm 1

The data points only appear as inner product
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p y pp p
As long as we can calculate the inner product in the feature 
space, we do not need the mapping explicitly
Many common geometric operations (angles, distances) can 
be expressed by inner products
Define the kernel function K by )()(),( j

T
ijiK xxxx φφ=
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An Example for feature mapping 
and kernels

Consider an input x=[x1,x2]
Suppose φ( ) is given as followsSuppose φ(.) is given as follows

An inner product in the feature space is
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So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly

⎠⎝ ⎦⎣⎠⎝ ⎦⎣ 22 xx
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More examples of kernel 
functions

Linear kernel (we've seen it)

')'( xxxx TK

Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order 
polynomial terms of the components of x (weighted appropriately)

')',( xxxxK =

( )pTK ')',( xxxx += 1
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Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel
Feature mapping, but “without paying a cost”

E.g., polynomial kernelg p y

How many dimensions we’ve got in the new space?
How many operations it takes to compute K()?

Kernel design, any principle?
K(x,z) can be thought of as a similarity function between x and z
This intuition can be well reflected in the following “Gaussian” function

© Eric Xing @ CMU, 2006-2010 2121

This intuition can be well reflected in the following Gaussian  function
(Similarly one can easily come up with other K() in the same spirit)

Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many 
dimension φ(x) is?

Kernel matrix
Suppose for now that K is indeed a valid kernel corresponding 
to some feature mapping φ, then for x1, …, xm, we can pp g φ, 1, , m,
compute an m×m matrix               , where

This is called a kernel matrix!

Now, if a kernel function is indeed a valid kernel, and its 
elements are dot-product in the transformed feature space, it 

t ti f

© Eric Xing @ CMU, 2006-2010 2222

must satisfy:
Symmetry K=KT

proof

Positive –semidefinite
proof? 
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Mercer kernel 

© Eric Xing @ CMU, 2006-2010 2323

SVM examples

© Eric Xing @ CMU, 2006-2010 2424
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Examples for Non Linear SVMs –
Gaussian Kernel

© Eric Xing @ CMU, 2006-2010 2525

(2) Model averaging
Inputs x, class y = +1, -1
data D = { (x1 y1)   (x y ) }data D = { (x1,y1), …. (xm,ym) }

Point Rule:

learn  fopt(x) discriminant function
from F = {f} family of discriminants

classify   y = sign fopt(x)

© Eric Xing @ CMU, 2006-2010 2626

E.g., SVM
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Model averaging
There exist many f with near optimal performance

Instead of choosing fopt, 
average over all f in F

Q(f) = weight of  f

© Eric Xing @ CMU, 2006-2010 2727

How to specify:
F = { f } family of discriminant functions?

How to learn  Q(f) distribution over F?

Bayesian learning:

Recall Bayesian Inference

Bayes Predictor (model averaging):

Bayes Learner

© Eric Xing @ CMU, 2006-2010 2828

What p0?

Recall in SVM: 
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How to score distributions?

Entropy
Entropy H(X) of a random variable XEntropy H(X) of a random variable X

H(X) is the expected number of bits needed to encode a randomly drawn 
value of X (under most efficient code)

© Eric Xing @ CMU, 2006-2010 2929

Why?

Information theory:
Most efficient code assigns -log2P(X=i) bits to encode the message X=I, 
So, expected number of bits to code one random X is:

Given data set                            , find

Maximum Entropy Discrimination

solution Q correctly classifies D

© Eric Xing @ CMU, 2006-2010 3030

solution QME correctly classifies D
among all admissible Q, QME has max entropy
max entropy             "minimum assumption" about f
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Introducing Priors
Prior Q0( f )

Minimum Relative Entropy 
Discrimination

p

© Eric Xing @ CMU, 2006-2010 3131

Convex problem: QMRE unique solution
MER             "minimum additional assumption" over Q0 about f

Convex problem: QME unique 

Solution: Q ME  as a projection

uniformα=0
Theorem: Q0

QME

admissible Q

αME

© Eric Xing @ CMU, 2006-2010 3232

αi ≥ 0 Lagrange multipliers

finding QM : start with αi = 0 and follow gradient of unsatisfied 
constraints
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Solution to MED

Theorem (Solution to MED):
– Posterior Distribution:

– Dual Optimization Problem:

© Eric Xing @ CMU, 2006-2010 3333

Algorithm: to computer αt , t = 1,...T

start with αt = 0 (uniform distribution)

iterative ascent on J(α) until convergence

Examples: SVMs
Theorem

For f(x) =wTx + b, Q0(w) = Normal( 0, I ), Q0(b) = non-informative prior,
the Lagrange multipliers α are obtained by maximizing J(α) subject 
to 0≤αt ≤C and ∑t αtyt = 0, where

© Eric Xing @ CMU, 2006-2010 3434

Separable D SVM recovered exactly
Inseparable D SVM recovered with different 
misclassification penalty
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SVM extensions
Example: Leptograpsus Crabs (5 inputs, Ttrain=80, Ttest=120)

Linear SVM

Max Likelihood Gaussian

© Eric Xing @ CMU, 2006-2010 3535

MRE Gaussian

(3) Structured Prediction
Unstructured prediction

Structured prediction
Part of speech tagging

© Eric Xing @ CMU, 2006-2010 3636

“Do you want sugar in it?”    ⇒ <verb pron verb noun prep pron>

Image segmentation
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OCR example

x y

brace
Sequential structure

y

© Eric Xing @ CMU, 2006-2010 3737

a-z a-z a-z a-z a-zy

x

Inputs: 
a set of training samples                           , where 

Classical Classification Models

g p
and 

Outputs:
a predictive function        :   

Examples:
SVM:

© Eric Xing @ CMU, 2006-2010 3838

Logistic Regression:

where 
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Structured Models

Assumptions:

Linear combination of features

space of feasible outputs
discriminant function

© Eric Xing @ CMU, 2006-2010 3939

Linear combination of features

Sum of partial scores: index p represents a part in the structure

Random fields or Markov network features:

Discriminative Learning Strategies

Max Conditional Likelihood
We predict based on:
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And we learn based on:

Max Margin:
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Max Margin:
We predict based on:

And we learn based on:
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E.g. Max-Margin Markov 
Networks

Convex Optimization Problem:

Feasible subspace of weights: 

© Eric Xing @ CMU, 2006-2010 4141

Predictive Function:

OCR Example

We want:
argmax wT f( word) = “brace”argmaxword w f( , word) = brace

Equivalently:
wT f( ,“brace”) > wT f(             ,“aaaaa”)
wT f( ,“brace”) > wT f(             ,“aaaab”)
… a lot!

© Eric Xing @ CMU, 2006-2010 42Eric Xing 42

wT f( ,“brace”) > wT f(              ,“zzzzz”)
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Brute force enumeration of constraints:

Min-max Formulation

The constraints are exponential in the size of the structure

Alternative: min-max formulation 
add only the most violated constraint

© Eric Xing @ CMU, 2006-2010 43Eric Xing 43

Handles more general loss functions
Only polynomial # of constraints needed
Several algorithms exist …

Results: Handwriting Recognition

Length: ~8 chars
L tt 16 8 i l

30
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te

r) raw
pixels

quadratic
kernel

cubic
kernel

Letter: 16x8 pixels 
10-fold Train/Test
5000/50000 letters
600/6000 words 

Models:
Multiclass-SVMs*
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33% error reduction over multiclass SVMs

better
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M3 nets 

*Crammer & Singer 01

0

5

MC–SVMs M^3 nets

Te
st

 e
r33% error reduction over multiclass SVMs
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Discriminative Learning Paradigms

SVM                      SVM                      
b r a c e

M3N                      M3N                      

?

b r a c e

MEDMED MED MN
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?                       MED                      MED                      MED-MN
= SMED + Bayesian M3N

See [Zhu and Xing, 2008]

Summary
Maximum margin nonlinear separator

Kernel trick
Project into linearly separatable space (possibly high or infinite dimensional)
No need to know the explicit projection function

Max-entropy discrimination
Average rule for prediction, 
Average taken over a posterior distribution of w who defines the separation 
hyperplane
P(w) is obtained by max-entropy or min-KL principle, subject to expected 
marginal constraints on the training examples

© Eric Xing @ CMU, 2006-2010 4646

Max-margin Markov network
Multi-variate, rather than uni-variate output Y
Variable in the outputs are not independent of each other (structured input/output)
Margin constraint over every possible configuration of Y (exponentially many!)


