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Bayesian Networks o000
_ o000
Learning and Inference ::0
®

Reading: Chap. 8, C.B book,
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Recap of BN Representation -

e Joint probability dist. on multiple variables:

P(X1'X2’X3’X4’x5'x6)
= PXIP(X, | X)P(Xg | X3 XR)P(X, [ Xy, Xo, X5)P(Xg | Xy, X5, Xa0 X )P(Xe | Xy, X0 X5, Xy, Xo)
e If Xi's are independent: (P(Xi|')= P(X))
P(X11X21X31X41X51xs)
=P(X)P(X,)P(X;)P(X,)P(Xs)P(Xe) =] [P(X))

e If Xi's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,

P(xl* XZY X3, x4* x5* XG)
= P(Xy) P(Xal X1) P(Xgl Xp) P(Xyl X1) P(Xs| X4) P(Xe| Xz, Xs)

2
© Eric Xing @ CMU, 2006-2010




Inference and Learning &

e We now have compact representations of probability
distributions: BN

e A BN M describes a unique probability distribution P

e Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(# |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of #/
need to do inference to impute the missing data.
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Learning BNs o
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
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MLE for general BN parameters o

I
e If we assume the parameters for each CPD are globally

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

¢(6;D)=1log p(D|6) = log H(H P [ X s, ﬂi)J = Z[Zlog PO [ Xz ﬂi)]
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B X,=1,X;=0
O X,=0,X5=1

Example: decomposable
likelihood of a directed model H

e Consider the distribution defined by the directed acyclic GM:

P(x18) = p(X | G) P(X, | X, 6) P(X3 | %1, 63) P(Xg | X0 X5, 6))

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

PGS S
s %
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E.g.: MLE for BNs with tabular
CPDs

e Assume each CPD is represented as a table (multinomial)

where def i
Oy = p(X; = jl X, = k)

Note that in case of multiple parents, X, will have a composite
state, and the CPD will be a high-dimensional table

The sufficient statistics are counts of family configurations
def

— i oyk
My = Zn XniXnz,

e The log-likelihood is  £(6:0)=log [T = > 1 1098,

iJ.k iJ.k

e Using a Lagrange multiplier N
_ o=

to enforce . 6, =1, we get: ijk S N

ijk
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What if some nodes are not
observed?

e Consider the distribution defined by the directed acyclic GM:

P(X180) = p(X | 6) P(Xz | X, ) P(X3 | X, 63) P(X4 | %o, X5, 61)

e Need to compute p(xy|xy) = inference
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Probabilistic Inference .

e Computing statistical queries regarding the network, e.g.:
e Isnode Xindependent on node Y given nodes ZW ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if Z=false?
e Whatis the likelihood of some full assignment?
e What is the most likely assignment of values to all or a subset the nodes of the network?

e General purpose algorithms exist to fully automate such
computation
e Computational cost depends on the topology of the network
e Exactinference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling
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Inferential Query 1: eete

Likelihood oo

e Most of the queries one may ask involve evidence

e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,, X,, ..., X,}

e Without loss of generality X ={X,,1, ..., X,.},
o Write X,,;=X\X, as the set of hidden variables, X,, can be & or X

e Simplest query: compute probability of evidence

P(X,) = > P(Xps s X)) = 2 2 P (Ko X X,)

e this is often referred to as computing the likelihood of x,
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Inferential Query 2: seis
Conditional Probability oo

|
e Often we are interested in the conditional probability

distribution of a variable given the evidence

PXuxv) _ P(Xu.Xxy)

P(X, | Xy =X%y)= P(xy) B ZP(XH =Xy Xy)

o this is the a posteriori belief in X, given evidence X,
e We usually query a subset Y of all hidden variables X,,={Y,Z}
and "don't care" about the remaining, Z:

P(lev):ZP(szzzlxv)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.
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Applications of a posteriori Belief |z

e Prediction: what is the probability of an outgome given the starting
condition :
i i

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
?
. A i
e the query node an ancestor of the evidence

e Learning under partial observation

e fillin the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM
e probabilistic inference can combine evidence form all parts of the network
© Eric Xing @ CMU, 2006-2010




Inferential Query 3: seis
Most Probable Assignment oo

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence X,, and ignoring (the values of) other variables Z:

Y’ |x, =arg max, P(Y|x,)=argmax, Z P(Y,Z=1z]|x,)

e this is the maximum a posteriori configuration of Y.
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Complexity of Inference -

Thm:
Computing P(X,=x4| x,) in an arbitrary BN is NP-hard

e Hardness does not mean we cannot solve inference

e |Itimplies that we cannot find a general procedure that works
efficiently for arbitrary BNs

e For particular families of BNs, we can have provably efficient
procedures
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Approaches to inference 5
e Exact inference algorithms
e The elimination algorithm v
e The junction tree algorithms v (but will not cover in detail here)
e Approximate inference techniques
e Stochastic simulation / sampling methods \/
o Markov chain Monte Carlo methods y
e Variational algorithms (will be covered in advanced ML courses)
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Marginalization and Elimination o

e A signal transduction pathway:

O~

What is the likelihood that protein E is active?

e Query: Ae)

P(e)=>.>> > P(abcde)

a naive summation needs
to enumerate over an
exponential number of
ferms

e By chain decomposition, we get

=>">> > P(a)P(b|a)P(c|b)P(d|c)P(e|d)
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Elimination on Chains

O~ D>~ o—Coo—CED

e Rearranging terms ...

P(e)=>.>.>.> P(a)P(b|a)P(c|b)P(d |c)P(e|d)
=222 Pc|b)P(d[c)P(e|d)D P(a)P(bla)

© Eric Xing @ CMU, 2006-2010

Elimination on Chains °°

CLO—C o= o= o>

e Now we can perform innermost summation
P(e)=2_>.> P(c|b)P(d[c)P(e|d)D P(a)P(b|a)
=22 > P(c|b)P(d[c)P(e]d)p(b)

e This summation "eliminates" one variable from our
summation argument at a "local cost".
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Elimination in Chains 83
|
DO~ D—Ceo—Coo—CED
e Rearranging and then summing again, we get
P(e)=>.>"> P(c|b)P(d|c)P(e|d)p(b)
=> > P(d|c)P(e|d)> P(c|b)p(b)
=> > P(d|c)P(e|d)p(c)
Elimination in Chains 33

CEO>—CE o>~ —CEo—CD
. ———

e Eliminate nodes one by one all the way to the end, we get

P(e)=_P(eld)p(d)

e Complexity:
e Each step costs O(|Val(X;)|*|Val(Xi,,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")

20
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Inference on General BN via selt
Variable Elimination -

General idea:

e Write query in the form

P(X, e) :Z"'ZZHP(Xi | pa;)

X3 X
e this suggests an "elimination order" of latent variables to be marginalized

e lteratively

e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product

e wrap-up
P(Xlle):%
© Eric Xing @ CMU, 2006-2010 z
a2,
A more complex network e
A food web

What is the probability that hawks are leaving given that the grass condition is poor?

22
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Example: Variable Elimination &
I
o Query: P(A|h)
e Need to eliminate: 8,C,D,E,F,6,H 0 o
e Initial factors: 0 G
P(@)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]e, f) e o
e Choose an elimination order: H6,F,E,D,C,R e 0
e Step 1:
e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., ﬁ)):
fy=p(h=hle, f
my (e, ) = p( | le, f) > D
e This step is isomorphic to a marginalizatioﬁ step: (TS S
m,(e. f)= p(hle, f)s(h=h) GG
h O
© Eric Xing @ CMU, 2006-2010 =
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Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: BCD,EF,6 0 o
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e o
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, )
& G
e Step 2: Eliminate &
e compute
i my(e) = p(gle)=1
g O W
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)m (e)m, (e, f) &
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, f) G, £

© Eric Xing @ CMU, 2006-2010
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Example: Variable Elimination &
|
e Query: (B |h)
e Need to eliminate: BCD,EF 0 o
e |[nitial factors: 0 G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) A
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m, (e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & W
e Step 3: Eliminate F
e compute
m,(e,a) =Y p(f |a)m,(e, f)
f Ce) A
= P(a)P(b)P(c|b)P(d |a)P(e]|c,d)m, (a,e) & W
E
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Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: B8,C,0,F 0 o
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) (2 A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, )
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & G
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m;, (a,e)
e Step 4: Eliminate £
T compue m.(a,c,d)=>p(e|c,d)m,(ae) o
S D

= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

13
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Example: Variable Elimination .
|
e Query: (B |h)
o Need to eliminate: 8,0 0 o
e |Initial factors: 0 G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)P(g|e)P(hle, )
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)P(g|e)m, (e ) L P
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

e Step 5: Eliminate D
e compute m, (a,c)zz p(d |a)me(a,c,d)
d

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2010
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B,C 0 o
e |[nitial factors: Q
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, ) e o
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m,(e, ) Q
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate £ @

e compute m, (a, b) = Z p(C | b)md (a, C)

= P(a)P(b)P(c|d)m, (a,c)
© Eric Xing @ CMU, 2006-2010
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Example: Variable Elimination .
e Query: (B |h)
o Need to eliminate: B 0 o
e Initial factors: 0 G
P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, ) e o
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, ) e 0
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m.(a,b)
e Step 7: Eliminate B2 @
: compute m,(2) = Y. p(b)m, (a,b)
b
= P(a)m,(a)
© Eric Xing @ CMU, 2006-2010 2
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B 0 o
e |[nitial factors: 0 Q
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)m, (e, f) (&) (D
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) OO

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m,(a,b)
= P(a)m, (a)
e Step 8 Wrap-up  p(ah)=p@m,(a), p(h)=> p@m,(a)
p(a)m, (a) :
> p(a)m,(a)
©EricXing@CﬂﬂU 2006-2010
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Complexity of variable sooe
.. . b
elimination :
e Suppose in one elimination step we compute
M (Yareoes Yi) = 2 M (% Yoo ¥)
x k
m’, (x, Y- yk) = H mi(X1Yci)
i=1
This requires
o ke|Val(X)|s[T|Val(Y;)| multiplications
- For each value of x, y;, ..., y;,, we do Amultiplications
o [Val(X)|[T|Val(Y,)| additions
— For each value of y,, ..., y;, we do /Va/(X)/ additions
Complexity is exponential in number of variables in the
intermediate factor .
© Eric Xing @ CMU, 2006-2010
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Understanding Variable i
Elimination o

e A graph elimination algorithm

@ @ @ @ @ @ @ @ @ @ ®@_D —@ @
R
@ O @ 4@ @)

T

32
© Eric Xing @ CMU, 2006-2010

16



Elimination Cliques -
= Baed
@ & OP=EE

0' g -:» -=>

@@ G

m, (e, f) m, m; (e,a) m,(a,c,d)

® @ & —@ = @&—@ = @
“F e,

m,(ac)  m(ab) m, (a)
Understanding Variable
Elimination ot

e A graph elimination algorithm

e Intermediate terms correspond to the cliques resulted from

elimination

e “good” elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-

optimum can often be heuristically found

e Applies to undirected GMs

© Eric Xing @ CMU, 2006-2010
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A clique tree o2
m,(a,c,d)
= p(efc,d)m,(e)m, (ae)
: © Eric Xing @ CMU, 2006-2010 %
. . . [ X X ]
From Elimination to Message secs
Passing o2

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

ﬁ%%@@%?“’ )

m,(a,c,d)

e Messages can be reused

36
© Eric Xing @ CMU, 2006-2010
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From Elimination to Message selt
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

o Messages m.and m, are reused, others need to be recomputed

37
© Eric Xing @ CMU, 2006-2010

The Junction Tree Algorithm o

e Shafer-Shenoy algorithm

e Message from clique /to clique j:

Hisi = Z '//CiH/ukai (Sw)

: . Ci\S; k#j
e Clique marginal t !

p(C) <y, H:ukai (Sw)

38
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A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all

queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,

and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

© Eric Xing @ CMU, 2006-2010
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The Junction tree algorithm for HMM o
e Ajunction tree for the HMM
'//()_’1_:)(1) '//()_/y)’z) '//(.}fzi)ﬁ) l//(y.f_—l_’}/f)
D DD e D O-p OO0 oo O
= yé(y)l% Wcz(yﬂ% c(y)%
2 3 )"
©WOo .U O O
° Rightward pass v(yaXs)  w(ysXs) v(yr.Xr)
Hrsea (yt+1) = z'//(yt ' y‘+1)ﬂt71~>t (yt),u[T (yt+1) s ) YO Yen) s (Vi)
% cor — ==
=20 PVet 1Y) i (Y0 P (Koo | Vi) i
Ve /‘rr(}/r-l)i,|'
= p(Xm | YHI)zay‘,yhlfutflﬁt(Yt) ( "‘_
This is exactly the foyﬁNard algorithm! Y (Vra0 X)

e Leftward pass ...

:ut—let(yt) = ZW(yt' yt+1)lut<—t+1(yt+1)/u[1*(yt+1) B - |
7 Hr (V1) :;:
= Zp(yrA |yr):uf<—f+1 ()’M)P(Xm |)/f+1) l

Y - \
This i§ &xactly the backward algorithm! Y (Yyor Xrr)

© Eric Xing @ CMU, 2006-2010

Heacr (V) V(¥ Yra) Hreri1 (V1)
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Summary 4

e Represent dependency structure with a directed acyclic glraph
e Node <->random variable
e Edges encode dependencies (f
Absence of edge -> conditional independence
e Plate representation
e A BN is a database of prob. Independence statement on variables l

O

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning

41
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