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What is a Bayesian Network? HH
--- example from a signal transduction pathway °

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

TFF X,

Rt

Gene G

()
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Recap of Basic Prob. Concepts o
e Representation: what is the joint probability dist. on multiple
variables?
P(X;, X5, X35, X4, X5, Xe, X7, Xg,)
e How many state configurations in total? --- 28
e Arethey all needed to be represented? e
e Do we get any scientific/medical insight?
e [ ]

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?
e Computing p(HA) would require summing over all 26 configurations of the
unobserved variables
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What is a Bayesian Network?
--- example from a signal transduction pathway

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

Kinase C X;

TFF X,

% X
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BN: Structure Simplifies sece

Representation o
e Dependencies among variables

Receptor A X, X,
e 'E/'_e_m?_r_aﬂ_e_i

X,

__________________________________________________________________________________________

Nucleus

© Eric Xing @ CMU, 2006-2010




Bayesian Network o

a If X{'s are conditionally independent (as described by a BNJ, the
joint can be factored to a product of simpler terms, e.g.,

X %
P(Xy, Xo1 X3y Xy Xs, Xo1 X7, Xe)

[ Kinase C ] X, [ Kinase D ] X [Kmases ]x,
= P(Xy) P(X3) P(Xg| Xy) P(Xyl X5) P(Xs| Xy)
P(Xel X3, X,) P(X7| Xg) P(Xg| X5, Xg)

o Why we may favor a BN?
= Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
« Exploring the graph structure and probabilistic semantics

= Incorporation of domain knowledge and causal (logical) structures
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Specification of a BN o

e There are two components to any GM:
e the qualitative specification
e the quantitative specification
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Bayesian Network: Factorization Theorem | ¢¢

* * P(X1, X X3, Xy, X5, Xg, X7, Xg)
(s % Comodx  [mee Jx = P(Xp) P(X) P(Xq| Xp) P(X4| X3) P(Xs| Xy)

P(Xel X3, X,) P(X7] Xg) P(Xg| X5, X¢)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

PO =[TPX;1X,)

where X_is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Qualitative Specification :

e Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Local Structures & 3

Independencies o

e Common parent B

e Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent” @

e Cascade
e Knowing B decouples A and C CA > B > A,
"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"
[ ]

V-structure
A4 > B O

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease”

e The language is compact, the concepts are rich!
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A simple justification ]

w2
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Graph separation criterion o

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:

X

L e Ce,

original graph ancestral moral ancestral
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Global Markov properties of sooe

DAGs o

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

conditions):
T « Defn: I{6)=all independence
© 2 properties that correspond to d-
© ) separation:
: Yz I(G) = {X LZ|Y :dsep, (X;2]Y)}
' - » D-separation is sound and
B complete
i o © Eric Xing @ CMU, 2006-2010 s
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Example: o
X e Complete the I(G) of this
4 )
graph:
X1
X3
X2

Essentially: A BN is a database of Pr. Independence statements among variables.

16
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Bayesian Network: Conditional 555:
Independence Semantics 4

Structure: DAG

* Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

* Local conditional
distributions (CPD) and the
DAG completely determine
the joint dist.

» Give causality
relationships, and facilitate
a generative process

© Eric Xing @ CMU, 2006-2010

Towards quantitative specification of | se¢:

probability distribution o

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem
For a graph G,
Let 9, denote the family of all distributions that satisfy 1(G),
Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Quantitative Specification s
|
OO
«— p(ABJC)=
Conditional probability tables set

(CPTs) 55

20 075 b0 10.33 P(a,b,C.d):
al 025 b [067 P(a)P(b)P(c|a,b)P(d|c)

ER o a%'! a'bo a'b’
c0 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3

c0 c!
‘ do 0.3 |05

d’ 07 0.5
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Conditional probability density 3E

func. (CPDs) o

P(a,b,c.d) =
A~N(u,, Z;)  B~N(up, &) P(a)P(b)P(c|a,b)P(d|c)

,.wv

\‘s‘

w
ss ‘
~§~

Q

- o /) M Q“ B
C N(A+B,Zc) % ,’;M ‘w“‘ “‘& “‘“&‘ ﬁ R
| g
‘ D~N(u,tC, Z,)
D
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Conditional Independencies o
Label
Features

What is this model
1. When Y is observed?

2. When Y is unobserved?

22
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Conditionally Independent
Observations

Model parameters

@ ___ @ Data = {y,,...y,}

23
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“Plate” Notation oo

’ Model parameters
|

Data = {X,,...X}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

24
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Example: Gaussian Model -
‘ ’ Generative model:
\

P(Xy,-. Xy | 1, ©) =P p(x;|p o)
= p(data | parameters)
= p(D |6)

i=1:n where 0 = {y, o}
= Likelihood = p(data | parameters)
=p(D[6)
=L (8)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (8)

25
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Bayesian models '

i=1:n

26
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Example: modeling text

© Eric Xing @ CMU, 2006-2010

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical

phrases—phrases that contain sub-phrasgs.

The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experimentg
using BLEU as a metric, the hierarchical
Phrase based model achieves arelative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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More examples

Parametric and nonparametric methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

© Eric Xing @ CMU, 2006-2010
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Example, con'd oo

e Evolution

ancestor

T years

Tree Model

29
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Example, con'd '

e Speech recognition

oo epe: a wingle word

i )
" DD [0 Mk Vi U e o =)~ . ~(")
Fomme ¥ ¢ ¢ 4 4 4
1111 @ ®O.-&

ECre;

Hidden Markov Model

30
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Example, con'd

e Genetic Pedigree

31
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BN and Graphical Models -

e A Bayesian network is a special case of Graphical Models

e A Graphical Model refers to a family of distributions on a set of
random variables that are compatible with all the probabilistic
independence propositions encoded by a graph that connects these
variables

e Itis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at
the same time endow the distributions with structured semantics

|
- ()
=
&) Zall|
P(X1:X2:X3.X X5, X 6, X7,Xg) P(X15) = P(X,)P(X)P(X; | X, X,)P(X 4 | X2)P(Xs | X;)

P(X[X3, X)P(X7[X()P(Xg[X5, Xo)

33
© Eric Xing @ CMU, 2006-2010

Two types of GMs '

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(xl* xzv X3, x41 x51 xg, X7, XS)

= P(Xy) P(Xg) P(Xq] X;) P(X,] X5) P(Xs| X5)
P(Xel X3 X5) POGI Xg) P(Xgl X5, Xg)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical
model):

P(le XZY X3, XAY X5v XGY X7, XS)

= UZ exp{E(X)+E(X)+E(Xs, X)+E(Xy, X)+E(Xs, X5)
+ E(Xp, Xg, X)FE(X7, Xe)+E(Xg, Xs, Xe)}

34
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Probabilistic Inference .

e Computing statistical queries regarding the network, e.g.:

Is node X independent on node Y given nodes Z,W ?

What is the probability of X=true if (Y=false and Z=true)?

What is the joint distribution of (X,Y) if Z=false?

What is the likelihood of some full assignment?

What is the most likely assignment of values to all or a subset the nodes of the network?

e General purpose algorithms exist to fully automate such
computation

Computational cost depends on the topology of the network
Exact inference:

The junction tree algorithm
Approximate inference;

Loopy belief propagation, variational inference, Monte Carlo sampling

35
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Learning BNs (or GMs) '

The goal:

Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)

@ & r CEQ 8o

& D
@:> O

(B,E,A,C,R)=(T,FFTF) s f g :(:/513)
(B,E,A,C,R)=(T.FT.T,F) “l0r o
e b| o2 o8
-------- - e b|los o1
(B.EA.CR)=(FTTTF) . |Z B|oot 09
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MLE for general BN parameters o

I
e If we assume the parameters for each CPD are globally

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

¢(6;D)=1log p(D|6) = log H(H P [ X s, ﬂi)J = Z[Zlog PO [ Xz ﬂi)]

[ 1
X 0
X

- ! ! ! E

X I(l =

H &

oy

/\’_\7"'--- =

Tlod

Twr Ty i
o1
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W X,=1,X;=0
O X,=0,X5=1
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Example: decomposable
likelihood of a directed model H

e Consider the distribution defined by the directed acyclic GM:

P(x18) = p(X | G) P(X, | X, 6) P(X3 | %1, 63) P(Xg | X0 X5, 6))

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

PGS S
s %

38
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E.g.: MLE for BNs with tabular
CPDs

e Assume each CPD is represented as a table (multinomial)

where def i
Oy = p(X; = jl X, = k)

Note that in case of multiple parents, X, will have a composite
state, and the CPD will be a high-dimensional table

The sufficient statistics are counts of family configurations
def

— i oyk
My = Zn XniXnz,

e The log-likelihood is  £(6;0)=log [ 65 = > ny log6,
iJ.k iJ.k
e Using a Lagrange multiplier N
_ . Oy =
to enforce Z/ 6, =1, we get: ijk z Ny

ijk
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What if some nodes are not
observed?

e Consider the distribution defined by the directed acyclic GM:

P(X180) = p(X | 6) P(Xz | X, ) P(X3 | X, 63) P(X4 | %o, X5, 61)

e Need to compute p(xy|xy) = inference

© Eric Xing @ CMU, 2006-2010
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Summary 4

e Represent dependency structure with a directed acyclic glraph
e Node <->random variable
e Edges encode dependencies (f
Absence of edge -> conditional independence
e Plate representation
e A BN is a database of prob. Independence statement on variables l

O

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning — next lecture

41
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