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Class Registration s

e |[F YOU ARE ON THE WAITING LIST: This class is now fully
subscribed. You may want to consider the following options:

o Take the class when it is offered again in the Fall semester;

o Come to the first several lectures and see how the course develops. We will
admit as many students from the waitlist as we can, once we see how many
registered students drop the course during the first two weeks.
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Machine Learning 10-701/15-781

e Class webpage:
e http://www.cs.cmu.edu/~epxing/Class/10701/
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Machine Learning
19701712781, Spring 2010

Eric Xing Tom Mitchell, Aarti Singh
School of Compater Scivace, Carsegie Meolloa Usiveruty

« Timae: Monda\r and Wednesday from 10:30-11:50am
« Location H
. Ilu:uu!mns Tmursdays NSH 1305, 5:00-6:30pm

- Class begins on Manday
YOU ARE ON THE WA
rollnwlng nplloﬂs
o Cowmat 10 the st severnl lectures 36 see how the ourse develops. We wil Bt a5 many Students from the watist
25 we Can, NCe we sex how many registened sSudents drop the course duning the st two weeks.
5 Twke the class when € 15 offered sgan in the Fal semester;

s8e you in class
ING LIST: If the class is fully subscribed, you may want to consider the

« The class mailing list is 10701-announcades, If you wish to emall only the instructors, the email
is 10701 -instructorsiics

« If you are registered for the course, you have sutomatically been added to the mall group. If
y¥ou sre for some reason NOT receiving these announcements, you can subscribe via the 10701-
announce list page

2. frer o page @ et | Pretmted Mt O e -

EricXing @ €MU; 20062010

Logistics

e Text book

e Chris Bishop, Pattern Recognition and Machine Learning (required)

e Tom Mitchell, Machine Learning

e David Mackay, Information Theory, Inference, and Learning Algorithms
e Mailing Lists:

e To contact the instructors: 10701-instr@cs.cmu.edu
e Class announcements list: 10701-announce@cs.cmu.edu.

o TA:
e Amr Ahmed, GHC 6605, Office hours: TBA
e Field Cady, Office hours: TBA
e Nilao, NSH 4622, Office hours: TBA

Class Assistant:
e Michelle Martin, GHC 8001, x8-5527
e Sharon Cavlovich, GHC, x8-5196
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Logistics

e 5 homework assignments: 30% of grade
e Theory exercises
e Implementation exercises

e Final project: 20% of grade
e Applying machine learning to your research area
NLP, IR, Computational biology, vision, robotics ...
e Theoretical and/or algorithmic work
a more efficient approximate inference algorithm
a new sampling scheme for a non-trivial model ...

e 3-stage reports

e Two exams: 25% of grade each

e Theory exercises and/or analysis: dates will be set by next week (no “ticket
already booked”, “l am in a conference”, etc. excuse ...)

e Policies ...

© Eric Xing @ CMU, 2006-2010 5

What is Learning s

Learning is about seeking a predictive and/or executable understanding of
natural/artificial subjects, phenomena, or activities from ...

e}
9 Apoptosis + M@

Grammatical rules
Manufacturing procedures Inference
Natural laws

NAS
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Machine Learning
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Machine Learning '

e Study of algorithms that
improve their performance P
atsome task T

with experience E

well-defined learning task: <P,T,E>

© Eric Xing @ CMU, 2006-2010 8




Fetching a stapler from inside an
office --- the Stanford STAIR robot

real time

© Eric Xing @ CMU, 2006-2010 9

Machine Learning - Practice 4

Evolution
© Eric Xing @ CMU, 2006-2010
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Natural language processing and
speech recognition

e Now most pocket Speech Recognizers or Translators are running
on some sort of learning device --- the more you play/use them, the
smarter they become!

—-t—

Fig. 1.2 Isalated Word Problem
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Object Recognition

e Behind a security camera,
most likely there is a computer B
that is learning and/or
checking!

© Eric Xing @ CMU, 2006-2010 12




Robotic Control |

e Now cars can find their own ways!

D FiInsH |

@ CMU, 2006-2010

Robotic Control Il -

e The best helicopter pilot is now a computer!
e it runs a program that learns how to fly and make acrobatic maneuvers by itself!
e no taped instructions, joysticks, or things like that ...




Text Mining

¢ We want:
e Reading, digesting, and
categorizing a vast text
database is too much for
human!
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E Reading
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Paradigms of Machine Learning

I
e Supervised Learning

o Given D={X,,Y,}, leamn F(-:0) , st:Y,=F(X,) D™ ={X,} = {v,}

e Unsupervised Learning
e Given D={X,} , leamn F(-;0) ,st:Y,=F(X,) D"EW={XJ-} = {YJ.}

e Reinforcement Learning
e Given D = {env,actions, rewards, simulator/trace/real game}

policy:e,r > a

learn , s.t. {env,new realgame}= a,,a,,a,...

utility:a,e >r

e Active Learning
e Given D~G() , learn F()|DandD™ ~G'() st. D =G'(),policy, {Y, ]

© Eric Xing @ CMU, 2006-2010 19

Machine Learning - Theory 443

For the learned F(; @)

e Consistency (value, pattern, ...)
e Bias versus variance

e Sample complexity

Learning rate

Convergence

Error bound

Confidence

e Stability

.. m> %(111|H| +1n(1/5))

© Eric Xing @ CMU, 2006-2010 20




Machine Learning

Machine Learning seeks to develop theories and computer systems for

e representing;

e classifying, clustering and recognizing;

e reasoning under uncertainty;

e predicting;

e and reacting to

° ...

complex, real world information, based on the system's own experience with data,
and (hopefully) under a explicit model or mathematical framework, that

can be formally characterized and analyzed

can take into account human prior knowledge

can generalize and adapt across data and domains
can operate automatically and autonomously

and can be interpreted and perceived by human.

© Eric Xing @ CMU, 2006-2010 21

Growth of Machine Learning o

e Machine learning already the preferred approach to
e Speech recognition, Natural language processing
e Computer vision
e Medical outcomes analysis
e Robot control

All software

e This ML niche is growing (why?)

© Eric Xing @ CMU, 2006-2010 22




Growth of Machine Learning

\
e Machine learning already the preferred approach to

e Speech recognition, Natural language processing
e Computer vision

Medical outcomes analysis
Robot control

All software

e This ML niche is growing
e Improved machine learning algorithms
e Increased data capture, networking
e Software too complex to write by hand
e New sensors /10 devices
e Demand for self-customization to user, environment

© Eric Xing @ CMU, 2006-2010 23

Inference
Prediction
Decision-Making under uncertainty

-> Statistical Machine Learning
-> Function Approximation: F(|6)?

© Eric Xing @ CMU, 2006-2010 24




Classification

e sickle-cell anemia

© Eric Xing @ CMU, 2006-2010 25

Function Approximation -

e Setting:
e Set of possible instances X
e Unknown target function f: X—>Y
e Set of function hypotheses H={ h | h: XY }

e Given:

e Training examples {<x;,y;>} of unknown target function f

e Determine: 8 (0] 00 0
e Hypothesis h € H that best approximates f @
. o 0@

© Eric Xing @ CMU, 2006-2010 S 2




A Tax-Fraud detection problem: o

e What F to use? Query Data
* Hypothesis T T TR
No Married |80K ?
e How to use?
© Eric Xing @ CMU, 2006-2010 27

Apply Model to Query Data -

Query Data
Start from the root of tree. T e e B
I Status  Income Cheat

No Married |80K ?

Married

NO

© Eric Xing @ CMU, 2006-2010 28




Apply Model to Test Data

Query Data

Refund Marital Taxable

-7 Status  Income Cheat

-7 No Married |80K ?

Married

NO

© Eric Xing @ CMU, 2006-2010
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Apply Model to Test Data

Query Data

Refund Marital Taxable

Status  Income Cheat

_»|No Married |80K ?

Married

NO

© Eric Xing @ CMU, 2006-2010
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Apply Model to Test Data

Query Data

Refund Marital Taxable
Status  Income Cheat

© Eric Xing @ CMU, 2006-2010
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Apply Model to Test Data

Query Data

Refund Marital Taxable

Status  Income Cheat

80K ?

© Eric Xing @ CMU, 2006-2010
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Apply Model to Test Data

Query Data

Refund Marital Taxable
Status  Income Cheat

Yes .

NO
Single, Djorced

NO -
< 80K
NO YES

© Eric Xing @ CMU, 2006-2010 33
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0000
o000
o000

A hypothesis for TaxFraud o

e Input: a vector of attributes
e  X=[Refund,MarSt,TaxInc]

e Output;
e Y= Cheating or Not

) e Each internal node: test one
e H as a procedure:

attribute X
e Each branch from a node:
Yes No selects one value for X;

NG e Each leaf node: predict Y

Single, Dj¥orced Married

o

NO YES

© Eric Xing @ CMU, 2006-2010 34




YY)
e0e00
[ X X
. . . [ LX)
A Tree to Predict C-Section Risk o
e Learned from medical records of 1000 wonman |
Negative examples are C-sections
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
© Eric Xing @ CMU, 2006-2010 35
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. o000
Expressiveness o

e Decision trees can express any function of the input attributes.
e E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB

e e B 1 ) |
e 1 B i 1 |
L e B i ) |

e Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x) but
it probably won't generalize to new examples

e Prefer to find more compact decision trees

© Eric Xing @ CMU, 2006-2010 3%




Decision Tree Learning

——
Tid  Attribl Attrib2 Attrib3 Class

1 | ves Large 125k [No

2 |No Medium | 100K No h
3 |No Small 70K No

4 | ves Medium | 120k | No

5 |No Large 95K Yes

6 |No Medium | 60K No

7 | ves Large 220K No Learn

8 |No Small 85K Yes Model

9 |No Medium | 75K No

10 | No Small 90K Yes

\/

pilly Decision
Tid Attribl  Attrib2  Attrib3  Class Model Tree
11 No Small 55K ?
12 Yes Medium 80K ?
13 | Yes Large 110K 2
14 No Small 95K ?
15 No Large 67K ?
© Eric Xing @ CMU, 2006-2010 37

Example of a Decision Tree

N\ N S
0\,\0@ o‘\& &
\Q'Q \Q'Q 0&\(\ o
> > o \o
o > o < Splitting Attributes
Tid Refund Marital Taxable 2
Status Income Cheat L ,‘
/, '
1 Yes Single 125K No
2 |[No Married | 100K No
3 No Single 70K No
4 |Yes Married | 120K No
5 [No Divorced | 95K Yes
6 [No Married |60K No
7 Yes Divorced 220K No
8 No Single 85K Yes
9 ([No Married | 75K No NO YES
10 [No Single 90K Yes
Training Data Model: Decision Tree

© Eric Xing @ CMU, 2006-2010 38




Another Example of Decision
Tree

N A\ S
(\db \'\G'b 000
ego Q ° \.\(\ 6(9 .
> i 000 > Married D 'Smgled‘
Tid Refund Marital Taxable lvorce
Status  Income Cheat
NO
1 Yes Single 125K No
2 No Married | 100K No
3 No Single 70K No
4 |Yes Married | 120K No > 80K
5 No Divorced |95K Yes
, NO YES
6 No Married |[60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 [No Married | 75K No There could be more than one tree that
10 |No Single | 90K Yes fits the same data!
Trammg Data © Eric Xing @ CMU, 2006-2010 39

Top-Down Induction of DT

Main loop:
1. A « the “best” decision attribute for next node
2 Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

[<1]

. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?

[29+, 35-]

Al=7 [29+, 35-] A2=7

[21%,5-) [E+, 30-] (18+4,33-] [114,2-]
© Eric Xing @ CMU, 2006-2010 40




e00
o000
o000
eo0o
: o0
Tree Induction :
e Greedy strategy.
e Split the records based on an attribute test that optimizes certain
criterion.
e [ssues
e Determine how to split the records
How to specify the attribute test condition?
How to determine the best split?
e Determine when to stop splitting
© Eric Xing @ CMU, 2006-2010 41
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Tree Induction :

e Greedy strategy.

e Split the records based on an attribute test that optimizes certain

criterion.

e Issues

e Determine how to split the records
How to specify the attribute test condition?
How to determine the best split?

e Determine when to stop splitting

© Eric Xing @ CMU, 2006-2010
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cece
[ LX)
How to Specify Test Condition? o
e Depends on attribute types
e Nominal
e Ordinal
e Continuous
e Depends on number of ways to split
e 2-way split
e Multi-way split
- . . [ X X )
Splitting Based on Nominal selt
Attributes ot

e Multi-way split: Use as many partitions as distinct values.

Family ﬁ Luxury
Sports|

e Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Sports, @ . OR {Family, @
Luxury} {Family} Luxury {Sports}

© Eric Xing @ CMU, 2006-2010 44




Splitting Based on Ordinal
Attributes

!
e Multi-way split: Use as many partitions as distinct values.

Small ﬁ Large
Mediu

e Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Small, @ OR {Medium, @
Medium} {Large} Large} {Small}
e Whataboutthisspit? o (S
Large} {Medium}

- . . (X X J
Splitting Based on Continuous eecs

Attributes °s

e Different ways of handling

e Discretization to form an ordinal categorical attribute
Static — discretize once at the beginning

Dynamic — ranges can be found by equal interval bucketing, equal
frequency bucketing (percentiles), or clustering.

e Binary Decision: (A< v)or (A>V)
consider all possible splits and finds the best cut
can be more compute intensive

© Eric Xing @ CMU, 2006-2010 46




Splitting Based on Continuous

Attributes

A

PN

Taxable
Income
> QNK?
4448
- scet
Tree Induction :

e Greedy strategy.

e Split the records based on an attribute test that optimizes certain

criterion.

e Issues

e Determine how to split the records
How to specify the attribute test condition?

How to determine the best split?

e Determine when to stop splitting

© Eric Xing @ CMU, 2006-2010 48




[ X X J
[ X X X
[ X XX
- - H
How to determine the Best Split .
\
e Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"
000000 000000
00000 oo0000
Patrons?
MNone Some Full French Italian Thai Burger
o000 00 (o] o oo o0
o0 0000 L) o oo o0
Homogeneous, Non-homogeneous,
Low degree of impurity High degree of impurity
e Greedy approach:
e Nodes with homogeneous class distribution are preferred
e Need a measure of node impurity:
© Eric Xing @ CMU, 2006-2010 49
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- H
How to compare attribute? o

e Entropy

e Entropy H(X) of a random variable X

H(X)=— Z P(z = i)log, P(x = i)

e H(X) is the expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

° Why’?

Information theory:

Most efficient code assigns -log,P(X=i) bits to encode the message X=I,
So, expected number of bits to code one random X is:

N
- Z Pz =4)log, P(z = 1)

© Eric Xing @ CMU, 2006-2010 50




o000
e000
eeoo

- 8:
How to compare attribute? :
e Conditional Entropy
e Specific conditional entropy H(X|Y=V) of X given Y=v :
N
H(X|y=j)=~) Plx=ily=j)log, P(z = ily = j)
=1
e Conditional entropy H(X]Y) of X given Y :
HX|Y)=~ > Py=j)log, H(X|y =)
JEVal(y)
e Mututal information (aka information gain) of X and Y :
I(X;Y) = HX)-HX|Y)=H(Y)-HY|X)
= H(X)+HY) - H(X,Y)
© Eric Xing @ CMU, 2006-2010 51
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Sample Entropy o

Entopy(S)

00 iy T
r‘.“

S is a sample of training exambles

p, is the proportion of positive examples in S

p. is the proportion of negative examples in S

Entropy measure the impurity of S

H(S) = —pylogypy — p-logyp—
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Examples for computing Entropy

N
H(X) ==Y P(z=1i)log, P(x = i)
i=1

C1 0 P(C1)=0/6=0 P(C2)=6/6=1
C2 6 Entropy =—0log 0-1log1=—0-0=0
Ci1 1 P(C1)=1/6 P(C2) =5/6
C2 5 Entropy = - (1/6) log, (1/6) — (5/6) log, (1/6) = 0.65
C1 2 P(C1) = 2/6 P(C2) = 4/6
C2 4 Entropy = - (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92
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Information Gain °e

e [nformation Gain:

GAIN_, = Entropy(p) - (zrr]] Entropy(i))

Parent Node, p is split into k partitions; n; is number of records in partition i

[21+4,5-] [84,30-]

Gain(S,A) = mutual information between A and target class variable over sample S

e Measures Reduction in Entropy achieved because of the split. Choose the split that achieves
most reduction (maximizes GAIN)

e UsedinID3 and C4.5

e Disadvantage: Tends to prefer splits that result in large #of partitions, each being small but
pure
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@ @ & & C=[3+,7-] C=[3+,7]
Tid Refund Marital Taxable Ent=0.8813 Ent=08813
1 Yes Single 125K No + -
2 [No Married | 100K No C=[0+3] C=[3+4] C=[2+,2-] C=[1+1] C=[0+4]
3 No Single 70K No Ent=0 Ent=0.9852 Ent=1 Ent=1 Ent=0
4 Yes Married |120K No Gain(C,Refund) Gain(C,M)
=.8813-(.3x0+.7x.9852) =.8813-(.4x1+.2x1+.4x0)
5 [No Divorced | 95K Yes =.1906 =.2813
6 No Married |60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 |No Married | 75K No Which one should be at the root?
10 |No Single 90K Yes .
g =Choose the best classifier!
Training Data
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Induction oo

e Stop expanding a node when all the records belong to the
same class

e Stop expanding a node when all the records have similar
attribute values

e Early termination (to be discussed later)
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Decision Tree Based
Classification

e Advantages:
e Inexpensive to construct
e Extremely fast at classifying unknown records
e Easy to interpret for small-sized trees
e Accuracy is comparable to other classification techniques for many simple data
sets
e Example: C4.5
e Simple depth-first construction.
e Uses Information Gain
e Sorts Continuous Attributes at each node.
e Needs entire data to fit in memory.

e Unsuitable for Large Datasets.
Needs out-of-core sorting.

e You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
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Which Tree Should We Output? o

s

e |D3 performs heuristic
2% search through space of
decision trees

;{l\?g ;(QT\R e |t stops at smallest

acceptable tree. Why?

N T
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Practical Issues of DT

e Underfitting and Overfitting

e Missing Values

Will be covered in recitation! E;‘,25-
(@

—— Training set
—-- Testset 7

0 50 100 150 200 250 300
Number of nodes
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Summary: what you should know: °

o Well posed function approximation problems:
e Instance space, X
e Sample of labeled training data { <x;, y,>}
e Hypothesis space, H={f: X>Y}

e Learning is a search/optimization problem over H
e Various objective functions
minimize training error (0-1 loss)
among hypotheses that minimize training error, select smallest (?)

e Decision tree learning
e Greedy top-down learning of decision trees (ID3, C4.5, ...)
e Overfitting and tree/rule post-pruning
e Extensions...
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Questions to think about (1)

\
e |D3 and C4.5 are heuristic algorithms that search through the

space of decision trees. Why not just do an exhaustive

search?
eses
_ _ ecet
Questions to think about (2) o

e Consider target function f: <x1,x2> - vy, where x1 and x2 are
real-valued, y is boolean. What is the set of decision surfaces
describable with decision trees that use each attribute at most
once?
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Questions to think about (3)

!
e Why use Information Gain to select attributes in decision

trees? What other criteria seem reasonable, and what are the
tradeoffs in making this choice?
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Additional material: o
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

e E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616

trees
3
-y ecel
Notes on Overfitting o

e Overfitting results in decision trees that are more complex
than necessary

e Training error no longer provides a good estimate of how well
the tree will perform on previously unseen records

e Which Tree Should We Output?

e Occam'’s razor: prefer the simplest hypothesis that fits the data
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Occam’s Razor

\
e Given two models of similar generalization errors, one should

prefer the simpler model over the more complex model

e For complex models, there is a greater chance that it was
fitted accidentally by errors in data

e Therefore, one should include model complexity when
evaluating a model
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Minimum Description Length §§'

(MDL) :

y
X1 1 X y
X 0 X1 ?
X2 0 Xz ?
3 X3 ?
X4 1
X4 ?
X
n X, | 2

e Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
e Costis the number of bits needed for encoding.
e Search for the least costly model.

e Cost(Data|Model) encodes the misclassification errors.

e Cost(Model) uses node encoding (number of children) plus splitting
condition encoding.
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How to Address Overfitting :
e Pre-Pruning (Early Stopping Rule)
e Stop the algorithm before it becomes a fully-grown tree
e Typical stopping conditions for a node:
Stop if all instances belong to the same class
Stop if all the attribute values are the same
e More restrictive conditions:
Stop if number of instances is less than some user-specified threshold
Stop if class distribution of instances are independent of the available
features (e.g., using y 2 test)
Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).
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How to Address Overfitting... :

e Post-pruning
e Grow decision tree to its entirety
e Trim the nodes of the decision tree in a bottom-up fashion

e If generalization error improves after trimming, replace sub-tree by a leaf
node.

e Class label of leaf node is determined from majority class of instances in
the sub-tree

e Can use MDL for post-pruning
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. . . . eo00
Handling Missing Attribute 443
e00
')
Values o
] ] " " ] |‘
e Missing values affect decision tree construction in
three different ways:
e Affects how impurity measures are computed
e Affects how to distribute instance with missing value to child nodes
e Affects how a test instance with missing value is classified
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Computing Impurity Measure g
Tid Refund Marital Taxable Before Splitting:
Status  Income Class Entropy(Parent)
1 |Yes L 25« [ =-0.310g(0.3)-(0.7)log(0.7) = 0.8813
2 |No Married |100K No Class [ Class
3 [No Single | 70K No = Yes||=No
. Refund=Yes 0 3
4 |Yes Married | 120K No
; Refund=No 2 4
5 |[No Divorced |95K Yes Refund=> 1 0
6 |No Married |60K No )
7 |Yes |Divorced [220k  |No Split on Refund:
8 [No Single  |85K Yes Entropy(Refund=Yes) = 0
9 [No Married | 75K No Entropy(Refund=No)
10 |2 Single |90K  |Yes = -(2/6)log(2/6) — (4/6)log(4/6) = 0.9183
\ L Entropy(Children)
Missing =0.3(0) + 0.6 (0.9183) = 0.551
value

o cresing IR DE,09 x (0.8813 — 0.551) = 0.3303 _




Distribute Instances o

Tid Refund Marital Taxable
Status Income Class

Tid Refund Marital Taxable

1 |Yes Single [125K  |No Status  Income Class
2 No Married |100K No 10 |2 Single 90K Yes
3 |[No Single 70K No
4 Y Married | 120K N
5 [No Divorced [95K Yes Yes No
6 No Married |60K No
7 |Yes |Divorced 220k  [No Class=Yes [0+ 3/ | |Class=Yes |2+6/9
8 |No Single 85K  |Yes Class=No | 3 Class=No 4
9 No Married |75K No . .
Probability that Refund=Yes is 3/9
Yes No Probability that Refund=No is 6/9
Assign record to the left child with
Class=Yes | 0 Cheat=Yes | 2 weight = 3/9 and to the right child
Class=No 3 Cheat=No 4 with Weight =6/9
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Classify Instances s

New record: Married | Single Divorced | Total
Tid Refund Marital | Taxable

Status Income Class Class=No 3 1 0 4

— _ Class=Yes 6/9 1 1 2.67
P T
- Total [ 3.67 2 1 6.67
Yes ‘.““ 0 T

NO
Single,
Divorced

Probability that Marital Status
= Married is 3.67/6.67

Probability that Marital Status
={Single,Divorced} is 3/6.67
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