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Some Topics We’ve Covered 
Decision trees 
  entropy, overfitting 
Probability basics 
  rv’s, manipulating probabilities, 
  Bayes rule, MLE, MAP,  
  conditional indep. 
Instance-based learning  
  nearest nbr., density estimation, 
  Bayes optimal classifier 
Naïve Bayes  
  conditional indep, # of parameters 
  to estimate,  
Logistic regression 
  form of P(Y|X) implied by N. Bayes, 
  generative vs. discriminative 

Linear Regression 
  minimizing sum sq. error ~ MLE 
  regularization ~ MAP, non-linear 
Neural Networks 
  gradient descent,  
  learning hidden representations 
Model Selection 
  overfitting, bias-variance 
Clustering 
  k-means, mixture Gaussians, EM 
Hidden Markov Models 
  time series model, backward-forward 
Bayesian Networks 
  factored representation of joint 
  distribution, encoding conditional 
  independence assumptions 
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Four Fundamentals for ML 

1.  Learning is an optimization problem 

2.  Learning is a parameter estimation problem 

3.  Error arises from three sources 

4.  Practical learning requires modeling assumptions, 
such as … 



Learning is an optimization problem 
–  many algorithms are best understood as optimization algs 
–  what objective do they optimize, and how? 
–  naïve Bayes?  logistic regression?  linear regression? 



Learning is parameter estimation 
–  the more training data, the more accurate the estimates 
–  to measure accuracy of learned model, we must use test (not 

train) data 
–  cross validation 



Error arises from three sources 
–  Bayes optimal error, bias, variance 



Bias and Variance 
given some estimator Y for some parameter θ, we note 

Y is a random variable (why?) 

the bias of estimator Y :  
the variance of estimator Y : 

consider when  
•  θ is the probability of “heads” for my coin  
•  Y = proportion of heads observed from 3 flips 



Practical learning requires making 
assumptions 

–  Why? 
–  form of the f:X  Y, or P(Y|X), or P(…) to be learned 
–  priors on parameters   MAP, regularization 
–  Conditional independence  Naive Bayes, Bayes nets 



Four Fundamentals for ML 

1.  Learning is an optimization problem 
–  many algorithms are best understood as optimization algs 
–  what objective do they optimize, and how? 

2.  Learning is a parameter estimation problem 
–  the more training data, the more accurate the estimates 
–  MLE, MAP, M(Conditional)LE, … 
–  to measure accuracy of learned model, we must use test (not 

train) data 
3.  Error arises from three sources 

–  Bayes optimal error, bias, variance 

4.  Practical learning requires modeling assumptions 
–  Why? 
–  form of the f:X  Y, or P(Y|X) to be learned 
–  priors on parameters:  MAP, regularization 
–  Conditional independence:  Naive Bayes, Bayes nets, HMM’s 


