Midterm Review

Machine Learning 10-701

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

March 1, 2010

See practice exams at: http://www.cs.cmu.edu/~tom/10601_sp09/601-sp09-midtermsolutions.pdf http://select.cs.cmu.edu/class/10701-F09/exams.html

Midterm is open book, open notes, NO computers

Covers all material presented up through today's class.

Some Topics We've Covered

Decision trees

entropy, overfitting

Probability basics

rv's, manipulating probabilities, Bayes rule, MLE, MAP, conditional indep.

Instance-based learning

nearest nbr., density estimation, Bayes optimal classifier

Naïve Bayes

conditional indep, # of parameters to estimate,

Logistic regression form of P(Y|X) implied by N. Bayes, generative vs. discriminative

Linear Regression

minimizing sum sq. error ~ MLE regularization ~ MAP, non-linear

Neural Networks

gradient descent,

learning hidden representations

Model Selection

overfitting, bias-variance

Clustering

k-means, mixture Gaussians, EM

Hidden Markov Models

time series model, backward-forward

Bayesian Networks

factored representation of joint distribution, encoding conditional independence assumptions

representation	decision	optimization	convergence	other
of P(Y X)	surface	objective	guarantee?	assumptions?

Naïve Bayes

Logistic Regr.

Linear Regr.

Neural net

Dec. Tree

Gaussian Mixture model

HMM

Bayes Net

kNN

Four Fundamentals for ML

- 1. Learning is an optimization problem
- 2. Learning is a parameter estimation problem
- 3. Error arises from three sources
- 4. Practical learning requires modeling assumptions, such as ...

Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?
- naïve Bayes? logistic regression? linear regression?

Soppose want A(x) = Y, P(Y/x) Learning is parameter estimation the more training data, the more accurate the estimates to measure accuracy of learned model, we must use test (not $\mathcal{P}(\mathcal{A}_{\mathcal{A}} | \mathcal{A})$ train) data 一下十(大,大)的 cross validation NBayes P(Y/x, ... X,) = TTP(x, 1) P(Y|X, D) R (Y|X, D) R params training examps: x'y', $x^2y^2 \dots x^ky^k$ Solarsmax IP(x')data likelihood $(\theta) = \frac{k}{1!} P(x^ky^k|\theta)$ $K = \frac{k}{1!} P(x^ky^k|\theta)$ P(datal) ILE = Cond. I. kelihood = TTPC// x = 1 arsmax datelikelihood (0) = TTPC// P(x^k) P(x^k) P(x^k) P(x^k)) MLE = avg max (P(d) data) = P(data | 0)

Error arises from three sources

learning fo(x) means picking O Bayes optimal error, bias, variance Inescapable error even of know N.V. because Perfectly P(Y)X sample of training data is drawy EPATEO randomly from P(x, y) E[@-E[@] Usually simpler models exhibit higher bias, lower variance more data > lower variance little data data 3 students/dassroom 1-fs 20000 s/d

Bias and Variance , Destimate

given some estimator Y for some parameter θ , we note Y is a random variable (why?)

the bias of estimator Y: $E[Y] - \theta - FY$ is in based then $E[Y] = \theta$ the <u>variance</u> of estimator Y : $E[(Y - E[Y])^2]$ A A expectation is over different draws of training data

consider when

- θ is the probability of "heads" for my coin
- Y = proportion of heads observed from 3 flips

Practical learning requires making assumptions

- Why?
- form of the f:X \rightarrow Y, or P(Y|X), or P(...) to be learned
- priors on parameters \rightarrow MAP, regularization
- Conditional independence \rightarrow Naive Bayes, Bayes nets

Four Fundamentals for ML

- 1. Learning is an optimization problem
 - many algorithms are best understood as optimization algs
 - what objective do they optimize, and how?
- 2. Learning is a parameter estimation problem
 - the more training data, the more accurate the estimates
 - MLE, MAP, M(Conditional)LE, ...
 - to measure accuracy of learned model, we must use test (not train) data
- 3. Error arises from three sources
 - Bayes optimal error, bias, variance
- 4. Practical learning requires modeling assumptions
 - Why?
 - form of the f:X \rightarrow Y, or P(Y|X) to be learned
 - priors on parameters: MAP, regularization
 - Conditional independence: Naive Bayes, Bayes nets, HMM's