Midterm Review

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 1, 2010

See practice exams at:

http://www.cs.cmu.edu/~tom/10601_sp09/601-sp09-midterm-solutions.pdf

http://select.cs.cmu.edu/class/10701-F09/exams.html

Midterm is open book, open notes, NO computers

Covers all material presented up through today's class.

Some Topics We've Covered

Decision trees

entropy, overfitting

Probability basics

rv's, manipulating probabilities, Bayes rule, MLE, MAP, conditional indep.

Instance-based learning

nearest nbr., density estimation, Bayes optimal classifier

Naïve Bayes

conditional indep, # of parameters to estimate,

Logistic regression

form of P(Y|X) implied by N. Bayes, generative vs. discriminative

Linear Regression

minimizing sum sq. error ~ MLE regularization ~ MAP, non-linear

Neural Networks

gradient descent, learning hidden representations

Model Selection

overfitting, bias-variance

Clustering

k-means, mixture Gaussians, EM

Hidden Markov Models

time series model, backward-forward

Bayesian Networks

factored representation of joint distribution, encoding conditional independence assumptions

representation decision optimization convergence other of P(Y|X) surface objective guarantee? assumptions?

Naïve Bayes

Logistic Regr.

Linear Regr.

Neural net

Dec. Tree

Gaussian

Mixture model

HMM

Bayes Net

kNN

Four Fundamentals for ML

- 1. Learning is an optimization problem
- 2. Learning is a parameter estimation problem
- 3. Error arises from three sources
- 4. Practical learning requires modeling assumptions, such as ...

Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?
- naïve Bayes? logistic regression? linear regression?

Learning is parameter estimation Addings learned f.

the more training data, the more accurate the estimates.

- to measure accuracy of learned model, we must use test (not plate)

train) data

cross validation NBayes P(YIX, ... Xn) + TTP(xily)

Error arises from three sources

Bias and Variance

given some estimator Y for some parameter θ , we note Y is a random variable (why?)

the bias of estimator Y: $E[Y] - \theta$ — PY is whased then E[Y]=0

the <u>variance</u> of estimator Y : $E[(Y - E[Y])^2]$

expectation is over different draws of training data

consider when

- θ is the probability of "heads" for my coin
- Y = proportion of heads observed from 3 flips

Practical learning requires making assumptions

- Why?
- form of the f:X \rightarrow Y, or P(Y|X), or P(...) to be learned
- priors on parameters → MAP, regularization
- Conditional independence → Naive Bayes, Bayes nets

Four Fundamentals for ML

1. Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?

2. Learning is a parameter estimation problem

- the more training data, the more accurate the estimates
- MLE, MAP, M(Conditional)LE, ...
- to measure accuracy of learned model, we must use test (not train) data

3. Error arises from three sources

Bayes optimal error, bias, variance

4. Practical learning requires modeling assumptions

- Why?
- form of the f:X \rightarrow Y, or P(Y|X) to be learned
- priors on parameters: MAP, regularization
- Conditional independence: Naive Bayes, Bayes nets, HMM's