Machine Learning

10-701/15-781, Spring 2008

Support Vector Machines

Reading: Chap. 6&7, C.B book

Outline

Maximum margin classification

Constrained optimization

Lagrangian duality
Kernel trick

Non-separable cases
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What is a good Decision sels
Boundary? '
e Consider a binary classification
task with y = £1 labels (not 0/1 as
before).
- © Class 2
e When the training examples are ©
linearly separable, we can set the - o
parameters of a linear classifier o
so that all the training examples = ©
are classified correctly = =
e Many decision boundaries! = =
e Generative classifiers Class 1
e Logistic regressions ...
e Are all decision boundaries
equally good?
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What is a good Decision sels
Boundary? o




Not All Decision Boundaries Are
Equal!
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e Why we may have such boundaries?
e Irregular distribution

e Imbalanced training sizes
e outliners
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e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term,>tl'\en we can write the decision boundary as:
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Classification and Margin

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

wx+b=0
e Margin

wix+b > +c for all x in class 2
wix+b < —c for all x in class 1

@)
B @ Class 2 o more compactly:
979 (Whx+b)y, >c
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Class 1 d/ A/d'+ The margin between two points
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e The margin is:
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e Here is our Maximum Margin Classification problem:
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Maximum Margin Classification,
con'd.

e The optimization problem:

e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)

e So we instead work on this cleaner problem:

y.(wW'x +b)>1, Vi
e The solution to this leads to the famous -

-- believed by many to be the best "off-the-shelf" supervised learning
algorithm

Support vector machine

e A convex quadratic programming probl
with linear constrains:

y.(wW'x +b)>1, Vi
1

e The attained margin is now given by M

e Only a few of the classification constraints are relevant = support vectors

e Constrained optimization W "ﬂco“”“’}

e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above is its dual form.

=> deeper insight: support vectors, kernels ...
= more efficient algorithm
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Lagrangian Duality :
e The Primal Problem
_ min,  f(w)
primat st. g (w)<0, i=1,.. k
h(w)=0, i=1,...,]
The generalized Lagrangian:
k !
L(w,a,f)= W)+ a,g W)+ Bh(w)
i=1 i=1
the o's (2, 20) and f's are called the Lagarangian multipliers
Lemma: o) if isfi imal .
max, . o L’(w,a,ﬁ)_{/(w if wsatisfies primal constraints
0 o/w
A re-written Primal:
min max, ;.0 L(wa,pf)
e00
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Lagrangian Duality, cont. o

e Recall the Primal Problem:

min,, max, ;..o £(w.a,p)

e The Dual Problem:
MaX, 4.0 min  £L(w,a, f3)

e Theorem (weak duality):

d"=max, ,,omin, L(w,a f) < min max,,, .o £(wa,p)=p

e Theorem (strong duality):
Iff there exist a saddle point of .£(w,«, ), we have /

d*zp*
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A sketch of strong and weak sels
duality s
\
e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.
d” =max,.,min, f(w)+a'g(w) < min max,., f(w)+a'g(w)=p"

Sw) fw)

Lagrangian Duality

e The Primal Problem
min,  f(w)
s.t. gw) <0, i=1,...k
h(w)=0, i=1,...,1

The generalized Lagrangian:

L(wa,p)=f(w) +Za,-g,- (w) +Zﬁ,-h,- (w)

the o's («20) and f's are called the Lagarangian multipliers

Primal:

Lemma:

f(w) if wsatisfies primal constraints
max, 4, so L(wa,p)=

) o/w

A re-written Primal:
mlnw maxa,ﬂ,alzo .é)(W, o, ﬁ)




Lagrangian Duality, cont.

e Recall the Primal Problem:

min max,, 5, -0 L(w,a,p)

e The Dual Problem:
max,, 4 .o Min,, L(w,a, f)

e Theorem (weak duality):

d"=max, , ,.omin, L(wa, f) < min max,,, ., £(wa,p)=p

e Theorem (strong duality):
Iff there exist a saddle point of £(w,«, ), we have
d* — p*

A sketch of strong and weak
duality s

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d = max, .o min,, f'(w) +a’g(w) < min, max,, .o fwW)+agw)=p"
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A sketch of strong and weak
duality

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.
d" =max,.omin, f(w)+a'g(w) < min, max,.q f(w)+a’g(w)=p’
How 19 svkve. ;17
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A sketch of strong and weak
duality s

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d = max, .o min,, f'(w) +a’g(w) < min, max,, . fwW)+agw)=p"
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The KKT conditions

|
e |If there exists some saddle point of .£ then the saddle point

satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

i£(w,05,ﬂ):o, i=1,...n
ow,

a‘;f(w,a,ﬂ)_o, =11

ag,w)=0, i=1..k
gw <0, i=1..k
a,20, i=1..k

e Theorem: If w*, " and f* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.

Solving optimal margin classifier

e Recall our opt problem:
1

w,b H"VH

y.(W'x, +b) =21, Vi

max

e This is equivalent to
.
w,b SwWw
-2 (*)
1-y.(W'x, +b) <0, Vi
e Write the Lagrangian:

min
S.t

L(w,b,a)= ; wiw— iai [y,. (w'x, +b) —1]
i=1

e Recall that (*) can be reformulated as min, , max, ., £(w,b,a)
Now we solve its dual problem: max, ., min,, £(w,b,a)
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The Dual Problem &
max, .o min,, , £(w,b, )
e We minimize .£ with respect to w and b first:
vV, Lwba)= wfiaiyixi =0, (*)
i=1
vV, L(wb,a)= ia[yi =0, (*%)
i=1
Note that (*) implies: W= ial_y[x[ (%)
i=1
e Plus (***) back to .£ , and using (**), we have:
m 1 m »_
L(w,b,a) = leai 3 Z:laia_l.y,.y/.(x,.’x/.)
=] i,j=
[ X X ]
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The Dual problem, cont. &

e Now we have the following dual opt problem:

m 1 m i
max, 7 (a) = leai ) _Zlaiaiyfy/' (x/x,)
i= i,j=
st. 20, i=1..k

m

Z a.y, =0.
i=1

e This s, (again,) a quadratic programming problem.
e A global maximum of g can always be found.
e But what's the big deal??
e Note two things: ”

1. wcanberecovered by = Zaiy,X, See next ...
i=1

.
2. The "kernel" X; X; More later ...
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Support vectors

¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!

ag,(w)=0, i=1..k

Class 2 Call the training data points
43=0.6 @10=0 whose ¢;'s are nonzero the
o / support vectors (SV)
W =0
=
—o O =0
bs=0 ¢ O - wX—b— 1.
= @,=0.8
o,=0 o ’—0( . 17_")
2 - og=1.4 wix+b=1 W’Z/ 7 X
=0
O el 05=0 wix4+b=0
wix4b=—

Support vector machines

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w= Zaiyixi

ieSV

e For testing with a new data z

e Compute T T
wz+b= Za[yl.(xi Z)+b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly

12



Interpretation of support vector
machines

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of kNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples X/, ) (= yly )

e We make decisions by comparing each new example z with
only the support vectors:

y*= sign( > ay, (X,.TZ)+ bj
ieSV

Non-linearly Separable Problems

&5 ©
‘/ O Class 2
X
W e

= X O
] @ g

= ¢ wix+b=1

T —
Class 1 — wix+b=0
w"x—l—b: -1

o We allow “error” & in classification; it is based on the output of
the discriminant function w’x-+b

e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane 5
e Now we have a slightly different opt problem:
. 1 ’ m
min,, —w'w+CY &
T2 i1
ot y(wW'x, +b)21-¢, Vi
©£20, Vi
e ¢ are “slack variables” in optimization
e Note that =0 if there is no error for x;
e ¢ is an upper bound of the number of errors
e C: tradeoff parameter between error and margin
e0o
o000
e000
eo0o
o0
[ J

The Optimization Problem

e The dual of this new constrained optimization problem is

2,y (6X,),
i j=

st. 0<e,<C, i=1...k

i ay, = 0.
i=1

e, 7S
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o;
now

e Once again, a QP solver can be used to find o
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Extension to Non-linear Decision
Boundary

\
e So far, we have only considered large-margin classifier with a

linear decision boundary

e How to generalize it to become nonlinear? X

o Key idea: transform x; to a higher dimensional spgce t¢ “make
life easier” ¥ —~
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?
e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)

Transforming the Data

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional

e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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The Kernel Trick E: (%

e Recall the SVM optimization problem

max, J(a)= ia —fia,a,yy(X,X,)
1/1
K (¥ 1(9)
t 0<ea <C, i=1,..., k
e = ¢') $ 1)
Zaiyizo'
i=1

e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x;)=¢(x,)" ¢(x,)

An Example for feature mapping
and kernels o

e Consider an input x=[x,x,] L ( X' X )
e Suppose ¢(.) is given as follows

¢ﬂxl j =1, \/§x1 , \/Exz , x12 , x22 , \/lexz

e An inner product in the feature space is

<¢@ Dq{il D> = | +2ux+25R + () + (XL)(L )

—f 2
= (T 28 LSRR
e So, if we define the kernel function as foII WS, there is no
need to carry out ¢(.) explicitly

K(x,x')= (1 + xTx‘)2

16
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More examples of kernel sess
o0
functions o2
e Linear kernel (we've seen it)
K(x,x')=x"x'
e Polynomial kernel (we just saw an example)r
Ufh(x) =
K(x,x'):(1+x7x'y’ t 1&( )
where p =2, 3, ... To get the fea oncatenate all pth order
polynomial terms of the components of x (weighted appropriately)
e Radial basis kernel
Kxx) =exp{ - x|
In this case the feature space consists of functions and results in a non-
parametric classifier.
[ X X ]
0000
o000
e
SVM examples o

274 order polynomial

s s 0 05 1 s s 4 -5 @0 05 1 15

4" order polynomial 8" order polynomial




Examples for Non Linear SVMs —
Gaussian Kernel

Gaussian

Cross-validation error

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors
# of training examples

Leave-one-out CV error =

H1 @
°

s
§ \.
§< HoOR
S WeXx=b=+1

L 1
® \g\ By
99 w-x=b=0
w-h:—l

Q

‘\_\\ .
% \.)_\ y )
,t'i\ i
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Summary

e Max-margin decision boundary

e Constrained convex optimization
e Duality

D wx b

<.
e Support vectors
| fckrg;) /
e Kernels
)’
o
; 3
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