

Outline

- Maximum margin classification
- Constrained optimization
- Lagrangian duality
- Kernel trick
- Non-separable cases

What is a good Decision Boundary?

- Consider a binary classification task with $\mathrm{y}= \pm 1$ labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
- Generative classifiers

- Logistic regressions ..
- Are all decision boundaries equally good?

What is a good Decision Boundary?

Not All Decision Boundaries Are Equal!

- Why we may have such boundaries?
- Irregular distribution
- Imbalanced training sizes
- outliners

- Parameterzing decision boundary
- Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" termıthen we can write the decision boundary as:

Classification and Margin

- Parameterzing decision boundary
- Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

$$
w^{T} x+b=0
$$

- Margin
$w^{T} x+b>+c \quad$ for all x in class 2
$w^{T} x+b<-c \quad$ for all x in class 1
Or more compactly:

$$
\left(w^{T} x_{i}+b\right) y_{i}>c
$$

The margin between two points

$$
\begin{aligned}
m=d^{-}+d^{+} & =\left(x_{1}^{\top} \frac{w}{\| w n}+\frac{b}{\|w\|}\right) \Phi\left(x_{2} w\right. \\
& \left.=\left(x_{1}-x_{2}\right)^{\top} \frac{w}{\|w\|}, \frac{b}{|m|}\right)
\end{aligned}
$$

Maximum Margin Classification

- The margin is:

$$
m=\frac{w^{T}}{\|w\|}\left(x_{i^{*}}-x_{j^{*}}\right)=\frac{2 c}{\|w\|}
$$

- Here is our Maximum Margin Classification problem:

$$
\begin{array}{cc}
& \\
\max _{w} & \frac{2 c}{\|w\|} \\
\text { s.t } & y_{i}\left(w^{T} x_{i}+b\right) \geq c, \forall i
\end{array}
$$

Maximum Margin Classification, con'd.

- The optimization problem:

- But note that the magnitude of c merely scales w and b, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

$$
\begin{array}{ll}
\max _{w, b} & \frac{1}{\|w\|} \\
\text { s.t } & y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i
\end{array}
$$

- The solution to this leads to the famous Support Vector Machines --- believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

- A convex quadratic programming problern with linear constrains:

s.t

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i
$$

- The attained margin is now given by $\frac{1}{\|w\|}$

- Only a few of the classification constraints are relevant \rightarrow support vectors
- Constrained optimization

$$
W=f(x, x, x)
$$

- We can directly solve this using commercial quadratic programming (QP) code
- But we want to take a more careful investigation of Lagrange duality, and the solution of the above is its dual form.
\rightarrow deeper insight: support vectors, kernels ...
\rightarrow more efficient algorithm

Lagrangian Duality

- The Primal Problem

$$
\min _{w} \quad f(w)
$$

Primal:

$$
\begin{array}{ll}
\text { s.t. } & g_{i}(w) \leq 0, \quad i=1, \ldots, k \\
& h_{i}(w)=0, \quad i=1, \ldots, l
\end{array}
$$

The generalized Lagrangian:

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w)
$$

the α^{\prime} s $\left(\alpha_{t} \geq 0\right)$ and β s are called the Lagarangian multipliers
Lemma:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=\left\{\begin{array}{cc}
f(w) & \text { if } w \text { satisfies primal constraints } \\
\infty & 0 / \mathrm{w}
\end{array}\right.
$$

A re-written Primal:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

Lagrangian Duality, cont.

- Recall the Primal Problem:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

- The Dual Problem:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta)
$$

- Theorem (weak duality):

$$
d^{*}=\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) \leq \min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=p^{*}
$$

- Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w, \alpha, \beta)$, we have

$$
d^{*}=p^{*}
$$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.
$d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}$

Lagrangian Duality

- The Primal Problem

Primal:

$$
\begin{array}{ll}
\min _{w} & f(w) \\
\text { s.t. } & g_{i}(w) \leq 0, \quad i=1, \ldots, k \\
& h_{i}(w)=0, \quad i=1, \ldots, l
\end{array}
$$

The generalized Lagrangian:

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w)
$$

the α^{\prime} s $\left(\alpha_{l} \geq 0\right)$ and β s are called the Lagarangian multipliers
Lemma:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=\left\{\begin{array}{cc}
f(w) & \text { if } w \text { satisfies primal constraints } \\
\infty & 0 / \mathrm{w}
\end{array}\right.
$$

A re-written Primal:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

Lagrangian Duality, cont.

- Recall the Primal Problem:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

- The Dual Problem:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta)
$$

- Theorem (weak duality):
$d^{*}=\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) \leq \min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=p^{*}$
- Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w, \alpha, \beta)$, we have

$$
d^{*}=p^{*}
$$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.
$d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.
$d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}$

The KKT conditions

- If there exists some saddle point of \mathcal{L}, then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}} \mathcal{L}(w, \alpha, \beta)=0, & i=1, \ldots, n \\
\frac{\partial}{\partial \beta_{i}} \mathcal{L}(w, \alpha, \beta)=0, & i=1, \ldots, l \\
\alpha_{i} g_{i}(w)=0, & i=1, \ldots, k \\
g_{i}(w) \leq 0, & i=1, \ldots, k \\
\alpha_{i} \geq 0, & i=1, \ldots, k
\end{aligned}
$$

- Theorem: If w^{*}, α^{*} and β^{*} satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

- Recall our opt problem:

$\max _{w, b}$	$\frac{1}{\\|w\\|}$
s.t	$y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i$

- This is equivalent to

$$
\begin{array}{ll}
\min _{w, b} & \frac{1}{2} w^{T} w \tag{*}\\
\text { s.t } & 1-y_{i}\left(w^{T} x_{i}+b\right) \leq 0, \quad \forall i
\end{array}
$$

- Write the Lagrangian:

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2} w^{T} w-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]
$$

- Recall that (${ }^{*}$) can be reformulated as $\min _{w, b} \max _{\alpha, \geq 0} \mathcal{L}(w, b, \alpha)$

Now we solve its dual problem: $\max _{\alpha_{i} \geq 0} \min _{w, b} \mathcal{L}(w, b, \alpha)$

The Dual Problem

$$
\max _{\alpha_{i} \geq 0} \min _{w, b} \mathcal{L}(w, b, \alpha)
$$

- We minimize \mathcal{L} with respect to w and b first:

$$
\begin{gather*}
\nabla_{w} \mathcal{L}(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=0 \tag{*}\\
\nabla_{b} \mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i} y_{i}=0 \tag{**}
\end{gather*}
$$

Note that (*) implies:

$$
w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}
$$

$$
(* * *)
$$

- Plus (${ }^{* * *}$) back to \mathcal{L}, and using (${ }^{* *}$), we have:

$$
\mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)
$$

The Dual problem, cont.

- Now we have the following dual opt problem:

$$
\begin{array}{ll}
\max _{\alpha} \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & \alpha_{i} \geq 0, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{array}
$$

- This is, (again,) a quadratic programming problem.
- A global maximum of α_{i} can always be found.
- But what's the big deal??
- Note two things:

1. w can be recovered by $w=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} \quad$ See next \ldots
2. The "kernel" $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$ More later.

Support vectors

- Note the KKT condition --- only a few α_{i} 's can be nonzero!!

$$
\alpha_{i} g_{i}(w)=0, \quad i=1, \ldots, k
$$

$$
\alpha_{4}=0
$$

$$
\mathbf{w}^{T} \mathbf{x}+b=1
$$

Class $1 \quad \alpha_{3}=0 \quad \mathbf{w}^{T} \mathbf{x}+b=0$

$$
\mathbf{w}^{T} \mathbf{x}+b=-1
$$

Call the training data points whose α_{i} 's are nonzero the support vectors (SV)

$$
y=w x-b-1
$$

$$
w=\sum \alpha_{i} \eta_{i} \vec{x}
$$

Support vector machines

- Once we have the Lagrange multipliers $\left\{\alpha_{i}\right\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$
w=\sum_{i \in S V} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- For testing with a new data \mathbf{z}
- Compute

$$
w^{T} z+b=\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{T} z\right)+b
$$

and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise

- Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights $\left\{\alpha_{i}\right\}$, and to use support vector machines we need to specify only the inner products (or kernel) between the examples $\mathbf{x}_{i}^{T} \mathbf{x}_{j} \quad \mathcal{L}\left(\chi^{\top} x\right)$
- We make decisions by comparing each new example z with only the support vectors:

$$
y^{*}=\operatorname{sign}\left(\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{T} z\right)+b\right)
$$

Non-linearly Separable Problems

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\boldsymbol{w}^{T} \boldsymbol{x}+b$
- ξ_{i} approximates the number of misclassified samples

Soft Margin Hyperplane

- Now we have a slightly different opt problem:

$$
\begin{aligned}
\min _{w, b} & \frac{1}{2} w^{T} w+C \sum_{i=1}^{m} \xi_{i} \\
& y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\xi_{i}, \quad \forall i \\
\text { s.t } & \xi_{i} \geq 0, \quad \forall i
\end{aligned}
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{\mathrm{i}}=0$ if there is no error for \mathbf{x}_{i}
- ξ_{i} is an upper bound of the number of errors
- C : tradeoff parameter between error and margin

The Optimization Problem

- The dual of this new constrained optimization problem is

$$
\begin{aligned}
\max _{\alpha} & \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \underline{\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now
- Once again, a QP solver can be used to find α_{i}

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_{i} to a higher dimensional space to "make life easier"
- Input space: the space the point \mathbf{x}_{i} are located
- Feature space: the space of $\phi\left(\mathbf{x}_{\mathrm{i}}\right)$ after transformation

- Why transform?
- Linear operation in the feature space is equivalent to non-linear operation in input space
- Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of $x_{1} x_{2}$ make the problem linearly separable (homework)

Transforming the Data

Input space

Feature space

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
- The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

- Recall the SVM optimization problem

$$
\begin{aligned}
\max _{\alpha} & \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \frac{\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)}{K\left(X_{i}^{\top} x_{j}\right)} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$

An Example for feature mapping and kernels

- Consider an input $\mathbf{x}=\left[x_{1}, x_{2}\right]$
- Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}
$$

- An inner product in the feature space is

$$
\begin{array}{r}
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right)\right\rangle=1+2 x_{1}^{i} x_{1}^{j}+2 x_{2}^{i} x_{2}^{j}+\left(x_{1}^{i}\right)^{2}\left(x_{1}^{j}\right)^{2}+\left(x_{2}^{i} x_{2}^{j}\right)^{2} \\
\\
=\left(1+x_{1}^{j} x_{j}\right)^{2}
\end{array}
$$

- So, if we define the kernel function as follows, there is no need to carry out $\phi($.$) explicitly$

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}
$$

More examples of kernel functions

- Linear kernel (we've seen it)

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel (we just saw an example)

where $p=2,3, \ldots$ To get the feature vectors we concatenate all p th order polynomial terms of the components of x (weighted appropriately)
- Radial basis kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

In this case the feature space consists of functions and results in a nonparametric classifier.

SVM examples

$4^{\text {th }}$ order polynomial
$8^{\text {th }}$ order polynomial

Cross-validation error

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the \# of support vectors!

$$
\text { Leave - one - out CV error }=\frac{\# \text { support vectors }}{\# \text { of training examples }}
$$

- Constrained convex optimization
- Duality
- Support vectors
- Kernels

K.

