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Machine LearningMachine Learning

1010--701/15701/15--781, Spring 2008781, Spring 2008

Logistic RegressionLogistic Regression
---- generative verses discriminative generative verses discriminative 

classifier classifier 

Eric XingEric Xing
Lecture 5, January 30, 2006

Reading: Chap. 3.1.3-4 CB

Generative vs. Discriminative 
Classifiers

Goal: Wish to learn f: X → Y, e.g., P(Y|X)

Generative classifiers (e.g., Naïve Bayes):
Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= xi)

Discriminative classifiers:
Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!
Estimate parameters of P(Y|X) directly from training data
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Consider the a Gaussian 
Generative Classifier 

learning f: X → Y, where
X is a vector of real-valued features, < X1…Xm >
Y is boolean

What does that imply about the form of P(Y|X)?
The joint probability of a datum and its label is:

Given a datum xn, we predict its label using the conditional probability of the label 
given the datum:
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Naïve Bayes Classifier 
When X is multivariate-Gaussian vector:

The joint probability of a datum and it label is:

The naïve Bayes simplification

More generally:

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution

Understanding the predictive distribution

Under naïve Bayes assumption: 

For two class (i.e., K=2), and when the two classes haves the same 
variance, ** turns out to be the logistic function
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The decision boundary

The predictive distribution

The Bayes decision rule:

For multiple class (i.e., K>2), * correspond to a softmax function
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Discussion: Generative and 
discriminative classifiers

Generative:
Modeling the joint distribution 
of all data

Discriminative:
Modeling only points 
at the boundary

How? Regression!

Linear regression 
The data:

Both nodes are observed:
X is an input vector
Y is a response vector 
(we first consider y as a generic 
continuous response vector, then 
we consider the special case of 
classification where y is a discrete 
indicator)

A regression scheme can be 
used to model p(y|x) directly,
rather than p(x,y)
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Logistic regression (sigmoid 
classifier)

The condition distribution: a Bernoulli

where µ is a logistic function

We can used the brute-force gradient method as in LR

But we can also apply generic laws by observing the p(y|x) is 
an exponential family function, more specifically, a 
generalized linear model (see future lectures …)
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Training Logistic Regression: 
MCLE

Estimate parameters θ=<θ0, θ1, ... θm> to maximize the 
conditional likelihood of training data

Training data 

Data likelihood = 

Data conditional likelihood =
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Expressing Conditional Log 
Likelihood

Recall the logistic function:

and conditional likelihood: 

Maximizing Conditional Log 
Likelihood

The objective:

Good news: l(θ) is concave function of θ

Bad news: no closed-form solution to maximize l(θ)
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Gradient Ascent

Property of sigmoid function:

The gradient:

The gradient ascent algorithm iterate until change < ε
For all i,

repeat

How about MAP?
It is very common to use regularized maximum likelihood.

One common approach is to define priors on θ
– Normal distribution, zero mean, identity covariance
Helps avoid very large weights and overfitting

MAP estimate
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MLE vs MAP
Maximum conditional likelihood estimate

Maximum a posteriori estimate

Logistic regression: practical 
issues

IRLS takes O(Nd3) per iteration, where N = number of training 
cases and d = dimension of input x.

Quasi-Newton methods, that approximate the Hessian, work 
faster.

Conjugate gradient takes O(Nd) per iteration, and usually 
works best in practice.

Stochastic gradient descent can also be used if N is large c.f. 
perceptron rule:
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Naïve Bayes vs Logistic 
Regression

Consider Y boolean, X continuous, X=<X1 ... Xm>
Number of parameters to estimate:

NB:

LR:

Estimation method:
NB parameter estimates are uncoupled
LR parameter estimates are coupled

Naïve Bayes vs Logistic 
Regression

Asymptotic comparison (# training examples → infinity)

when model assumptions correct
NB, LR produce identical classifiers

when model assumptions incorrect
LR is less biased – does not assume conditional independence
therefore expected to outperform NB
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Naïve Bayes vs Logistic 
Regression

Non-asymptotic analysis (see [Ng & Jordan, 2002] )

convergence rate of parameter estimates – how many training 
examples needed to assure good estimates?

NB order log n (where n = # of attributes in X)
LR order n

NB converges more quickly to its (perhaps less helpful) 
asymptotic estimates

Rate of convergence: logistic 
regression

Let hDis,m be logistic regression trained on m examples in n 
dimensions. Then with high probability:

Implication: if we want 
for some small constant ε0, it suffices to pick order n 
examples

Convergences to its asymptotic classifier, in order n examples

result follows from Vapnik’s structural risk bound, plus fact that the "VC 
Dimension" of an n-dimensional linear separators is n
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Rate of covergence: naïve Bayes
parameters

Let any ε1, δ>0, and any n ≥ 0 be fixed. 
Assume that for some fixed ρ > 0, 
we have that 

Let

Then we probability at least 1-δ, after m examples:

1. For discrete input, for all i and b

2. For continuous inputs, for all i and b

Some experiments from UCI data 
sets
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Summary
Logistic regression

– Functional form follows from Naïve Bayes assumptions
For Gaussian Naïve Bayes assuming variance
For discrete-valued Naïve Bayes too

But training procedure picks parameters without the 
conditional independence assumption

– MLE training: pick W to maximize P(Y | X; θ)
– MAP training: pick W to maximize P(θ | X,Y)

‘regularization’
helps reduce overfitting

Gradient ascent/descent
– General approach when closed-form solutions unavailable

Generative vs. Discriminative classifiers
– Bias vs. variance tradeoff
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