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Reading: Chap. 12.3-4, C.B book
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Outline :

e Probabilistic PCA (breif)

e Factor Analysis (somewhat detail)

e ICA (will skip)

e Distance metric learning from very little side info (a very cool
method)
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Recap of PCA :
e Popular dimensionality reduction technique
e Project data onto directions of greatest variation
m To
w u=arg maxlz:(yfu)2 ulTy,
[ % ml u 4| . 1
L . % =2 [=uy, e RE
. ol =argmaxu™| =Y .7 lu :
ST g [mgy.y.) i,
x x =arg max(uTCov(y)u)
u, i =UX
Y1 /
T
e Consequence: 3/ L .
e X; are uncorrelated such that the covariance matrix EZY(,Y(,T is l
i=1 Yq
I £ T J T
e Truncationerror 3 —%"), (Ukuk )z > 7 (ukuk ): s,
1 1
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Recap of PCA :

e Popular dimensionality reduction technique
e Project data onto directions of greatest variation

Useful tool for visualising patterns and clusters
within the data set, but ...

Need centering

Does not explicitly model data noise
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Probabilistic Interpretation? -
continuous ‘9:(717( continuous
continuous continuous
regression ?
Probabilistic PCA o

e PCA can be cast as a probabilistic model
Y, =AX, +u+e, g, ~N0,o°l)
with g-dimensional latent variables X, ~ V(0O, 1)
e The resulting data distribution is
y, ~ N(u, AN +c°1)

e Maximum likelihood solution is equivalent to PCA

1
ML _ ML 21\1/2
u = 2V A" =U, (T, -o%l)
n
Diagonal 7 contains the top g sample covariance eigen-values and U,

contains associated eigenvectors

Tipping and Bishop, J. Royal Stat. Soc. 6, 611 (1?99).
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Factor analysis

e An unsupervised linear regression model

{ ! +
pX) =4 (x0,1) Moo e b ()
PYX) = A (y; u+AX, ) 7\ ] g)h

where A is called a factor loading matrix, and ¥ is diagonal. %

W

F— Ax

e Geometric interpretation

e To generate data, first generate a point within the manifold then ai
Coordinates of point are components of latent variable.

Relationship between PCA and
FA o2

e Probabilistic PCA is equivalent to factor analysis with equal
noise for every dimension, i.e., s~ isotropic Gaussian #(0,c°1)

e In factor analysis ¢, ~ /(0,¥) for a diagonal covariance
matrix ‘¥

e An iterative algorithm (eg. EM) is required to find parameters
if precisions are not known in advance
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Factor analysis s
e An unsupervised linear regression model
pX)=4(x0,1)
PYX) = (y; 1+ AX,P)
where A is called a factor loading matrix, and ¥ is diagonal
e Geometric interpretation
v "//
e To generate data, first generate a point within the manifold then add noise.
Coordinates of point are components of latent variable.
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Marginal data distribution &

¢ A marginal Gaussian (e.g., p(x)) times a conditional Gaussian
(e.g., ply|x)) is a joint Gaussian

e Any marginal (e.g., p(y) of a joint Gaussian (e.g., p(X,y)) is
also a Gaussian

e Since the marginal is Gaussian, we can determine it by just computing its mean

and variance. (Assume noise uncorrelated with data.)
<ﬂ><AXtMTQ>
E[Y]=E[u+AX+W]  whereW ~.#(0,¥)

= u+AE[X]+E[W]
=u+0+0=pu

var[v]= EFY—u)(Y—u)T] | 1(v)
=E|(u+AX+W = )+ AX+W - ) (5
— Ef(ax+ wyax+w ] e~ (& Gor {))
= AE[XXT A" + E]ww ] = N M)
= AN +¥ ’
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FA = Constrained-Covariance
Gaussian

\
e Marginal density for factor analysis (y is p-dim, x is A-dim):

p(y10)=H(y; 1, AN +F)

e So the effective covariance is the low-rank outer product of
two long skinny matrices plus a diagonal matrix:

N

e In other words, factor analysis is just a constrained Gaussian
model. (If were not diagonal then we could model any
Gaussian and it would be pointless.)
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Review:
A primer to multivariate Gaussian

e Multivariate Gaussian density:

1 _
p(XIﬂ,E)=WeXP{-é(X-ﬂ)T2 H(x- 1)

)

e A joint Gaussian:

YPLJ ({Xl}l Z)—/V({Xl}{ul} {211 212})
X\-‘[l] p X5 = X |t || 2 Zap

e How to write down p(x,), p(X;|X,) or p(x,|x;) using the block
elements in zand £?
° F%rzr])ylljls_io&?exr?[b%' 'Z_,;)
p(X;) =N (X, M7, V]") P(X1‘Xz) = (X |My,, Vi)
m3' = My =ty + 24555 (X, = 145)
V7' =2z Vip =2y _2122?2221
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Review: sect
Some matrix algebra '

e Trace and derivatives tr[A]dif Zaﬁ
e Cyclical permutations '
- tr[ABC]=tr[CAB]=tr[BCA]
0
atr[BA]:
0
A tr[x Ax] a—tr[xx A] xx"
e Determinants and derivatives
0 T
a—Alog\A\ =A
00
4
- . - - - ...
FA joint distribution o

)X V)=

e Model

p(X)=4(x0,1) J Vb
plyx) = (y;u+Ax,‘P)

e Covariance between x and y Pty)

Cov[X, Y] = E[(x =0 - o) |= E[X(u+ Ax+ W - ] |
=E[XXTAT + XW' ]
=AT

e Hence the joint distribution of x and y:

Ap-r G ]

e Assume noise is uncorrelated with data or latent variables.
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Inference in Factor Analysis 5 ™22

© T PIER]
e Apply the Gaussian conditioning formulas to th@'})intwm
distribution we derived above, where

_— prety)
S =2, =A
%, = (AAT + )

we can now derive the posterior of the latent variable x given

observation y, p(xly) = # (x| my,, Vy,) , where Y Zd-,,.
. ) d
My, = 44y + 2122212 (Y~ 1) Vi =%y - 21255550 : di}
= B &
= AT (AN + W) (y - ) —1-AT(AAT+ W) A -[%f.,(
Applying the matrix inversion lemma (E,/,‘//—xe) L_pp 1/,‘(//7(;/;/,:) eIon! ;ﬂ
= V=(+AwiA) My, = Vip AT (y - )

Here we only need to invert a matrix of size |x|x|x|, instead of |y|x|y].
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Geometric interpretation: HHH
inference is linear projection o

e The posterior is:
p(X‘Y) = (X;Myp, Vip)

Vuz = (l + AT\IF]A) 1 My, = Vuz/\T p! (y—mu)

e Posterior covariance does not depend on observed data y!
e Computing the posterior mean is iustq‘ linear operation:
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EM for Factor Analysis

\
e Incomplete data log likelihood function (marginal density of y)

£(0,D) = —g log|AAT +¥| —%Z (v, — ) (AN + ) (y, — 1)

1 .
= —% Iog‘AAT + ‘P‘ —Etr[(AAT + lI’) IS], whereS= > (y, - i)y, -1)"
n
e Estimating m is trivial: M :%z Y,
e Parameters A and ¥ are coupled nonlinearly in log-likelihood

e Complete log likelihood

£(0,0)=>"log p(x,.y,)=>_log p(x,)+log p(y, | X,)

77ﬁlog\l\flz,\{xn7ﬁlog\‘lf\—12(yn—Axn)r‘f”l(yanxn)
2 24 2 24
:7glog\‘lf\—%Ztr[xnx[]fgtr[S‘P’l], where S = %Z(yanxn)(y,,—Ax,,)T

—_—
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E-step for Factor Analysis

e Compute (£(6.0)),

(€0.0))=~50gl¥| - S ol x7) -5l
(8)= 2 0w ~Yal XN =AXT )T + ALY )
(X,)=ELX, 1,
(XX )=Var[X, |y, ]+ E[X, |y, X, |y, ]

e Recall that we have derived:

4 .
Vip = (l +A"Y IA) Myp = Vi AT 7 (Y - 1)

= )

My, =VieA"¥ 7 (y, — )  and <XanT> =Vig+m,,,mL,,
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M-step for Factor Analysis -
\
e Take the derivates of the expected complete log likelihood
wrt. parameters.
e Using the trace and determinant derivative rules:
R E O CEAIR N G
% ,%< > pri :<S>
a%<l£>:6%[7%Iog“i"7%;tr[<Xanr>],gtr[<S> ]j Nyl
__%\P"%[%;(yﬂy[—y,,<X,,T>/\T AXT )yT +AXXTINT) j )
LA NS) = 8 [ S|
(X X ]
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Comparison of PCA and FA -

o PCA

Y2
&
=

Y1
Y, =Ux,

u=arg max(uTCov(y)u)

T=
ul yl
T
- Uz Y; -
X = 2Y, =U;y, eR"
U Y
Eric Xing

Y, =AX +u+e,
&, ~N(O,¥)
(Xo)=m,, = VA" (y, - )

and (X, X])=Vyp+m, m]

Xnl¥n' Xl

1

i)

n

20
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Comparison of

PCA and FA

e PCA
u=arg max(uTCov(y)u)

T
UI y|

T=
_ u
X = 2.y|

T =
uk yl

e SVD on a KxK matrix

o “Covariant under rotation: Ay

e /Principle axis can be found
incrementally

e FA

(Xo)=myy, = VA (y, — )

and <X,,X[> =V +m,, m,

Xnl¥n
=U]y, eR" ]1

w2 Sixx)

n n

P =(s)

e Invert a gxq matrix

° Xlovariant under rescaling: diag(«)y

£ Neither of the factors found by a two-
factor model is necessarily the same as
that found by a single factor model, and

Eric Xing 21
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Example: o
Original data matrix —Correlation matrix ¥ Factor Hwatrix
Variables Variables Factors
Vi Vp - . Vg ViV, .. Vg F, F, F,
v Spd Str End
Obs 0, V1 >p
0, 2 100m | 87 .07 |.14
| Correlation | High | .51 .34 | .34
v..| coefficients 110m | .63 .32 |.05
10 N
L | — 400m | 74 .06 |.38
Observational < Discus| 22/ 79 | 06
B | T'até“ | 1 > JS:\?;"n 31.82| .10
On Decisions pole  [~025f00.15
«Factoring method 1500m .241.40 1.50
« # of factors to retain .02] .12 | .89
« Factor rotation Factor
Eric Xing |0adings 22
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Decathlon example

100 Meters
400 Meters ~

Pole Vault
1500 Meters

Eric Xing 23

Model Invariance and
Identifiability

e There is degeneracy in the FA model.

e Since A only appears as outer product AAT, the model is
invariant to rotation and axis flips of the latent space.

e We can replace A with AQ for any orthonormal matrix Q and
the model remains the same: (AQ)(AQ)"™=A(QQTN)AT=AAT.

e This means that there is no “one best” setting of the
parameters. An infinite number of parameters all give the ML
score!

e Such models are called un-identifiable since two people rboth
fitting ML parameters to the identical data will n e/' ’-

guaranteed to identify the same parameters. <
.

R

Eric Xing 24
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Why FA :
e Latent trajectories
discrete discrete continuous
discrete continuous continuous
Mixture model Mixture model Factor analysis
e.g., mixture of multinomials e.g., mixture of Gaussians

g

I g
2333 LR R

(for discrete sequential data, e.g., text) (for continuous sequential data,
e.g., speech signal)

Eric Xing 25
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Independent Components sels
Analysis (ICA) -
e ICA is similar to FA, except it assumes the latent source has non-
Gaussian density.
e Hence ICA can extract higher order moments (not just second
order).
e |tis commonly used to solve blind source separation (cocktail party
problem).
= »’\
FA ICA
Eric Xing 26
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The simple “Cocktail Party”
Problem e
Mixing matrix A
5 @ o=
Observations
Sources / D= 5
” iql x = As

n sources, m=n observations

We skip more details and next introduce a more interesting new algorithm!

ICA versus PCA (and FA) s

e Similarity
e Feature extraction
e Dimension reduction

e Difference

e PCA uses up to second order moment of the data to produce
uncorrelated components

e ICA strives to generate components as independent as possible

= = £ E— g 0 w »
Eric Xing 28
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Semi-supervised Metric Learning

Original data Projected data

Xing et al, NIPS 2003

What is a good metric? o

e What is a good metric over the input space for learning and
data-mining

e How to convey metrics sensible to a human user (e.qg., dividing traffic along
highway lanes rather than between overpasses, categorizing documents
according to writing style rather than topic) to a computer data-miner using a
systematic mechanism?

Eric Xing 30
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Issues in learning a metric

!
e Data distribution is self-informing (E.g., lies in a sub-manifold)

e Learning metric by finding an embedding of data in some space.
Con: does not reflect (changing) human subjectiveness.
Explicitly labeled dataset offers clue for critical features

e Supervised learning
Con: needs sizable homogeneous training sets.

What about side information? (E.g., x and y look (or read)
similar ...)

e Providing small amount of qualitative and less structured side information is often
much easier than stating explicitly a metric (what should be the metric for writing
style?) or labeling a large set of training data.

Can we learn a distance metric more informative than

Euclidean distance using a small amount of side information?

Eric Xing 31

eoo
o000
eeo0o
eoo
. . . p
Distance Metric Learning .
Side information:
Suppose for some set of points {z;}", C R", we are given:
S: (xi,z;) €S if x; and x; are similar
D: (x;,x;) €D if 2; and x; are dissimilar
Distance metric learning:
Learn a distance metric of the form
d(z,y) = da(z,y) = llz —ylla = V/(z - y)TAlz —y),
such that pairs of points (2;,2;) in S have small squared distance.
. In general, A parameterizes a family of Mahalanobis distances over R".
. Learning A is equivalent to finding a rescaling of a data: = — A%z
Eric Xing 32

16



Optimal Distance Metric

\
e Learning an optimal distance metric with respect to the side-

information leads to the following optimization problem:

n'}éiln Z(:r:z-,:cj)es \|lzi — ][4 (1)
st Y(ayzp)ep |l — 2jlla 2 1, (2)
A>0. (3)

e This optimization problem is convex. Local-minima-free algorithms exist.

e Xing et al 2003 provided an efficient gradient descent + iterative constraint-
projection method

Eric Xing
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Examples of learned distance sels
metrics o

e Distance metrics learned on three-cluster artificial data:

3-class data (original) 3-class data projection (Diag A) 3-class data projection (Full A)

(a) (b}

Figure 2: (a) Original data. (b) Rescaling corresponding to learned diagonal A. (c) Resealing
corresponding to full A.

Eric Xing 34
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Application to Clustering

e Artificial Data I: a difficult two-class dataset

Original 2-class data Projected 2-class data

P
-10 **
20 0
Gy -0 = 0
(@)
1. K-means: Accuracy = 04975
2. Constrained K-means: Accuracy = 0.5060
3. K-means + metric: Accuracy = 1
4. Constrained K-means + metric: Accuracy = 1
Eric Xing 35
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Application to Clustering o
e Atrtificial Data Il: two-class data with strong irrelevant feature
Original data Projected data
(@)
1. K-means: Accuracy = 0.4993
2. Constrained K-means: Accuracy = 0.5701
3. Kamneans + metric: Accuracy = 1
4. Constrained K-means + metric: Accuracy = 1
Eric Xing 36
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Application to Clustering

e 9 datasets from the UC Irvine repository

Boston housng (N=506, C=13, g=13) loncaphene (N=351, C=2, a=M) Ins prants (N=150, C=1, g=4)
| ; > ; , : ‘ > .
08} 5 08 . 06
0E&} s a6 a6
a4} o4 04
ozf oz 53
O Kemaw Ke=254 - Ke=187 " kemtan Ke=116
wine {N=163, C=3, d+12) Balance (N=525, £=3, d=4) breast cancer (N=559, 2. 4=30)
: s : ; : 1 ; 2 :
08 " 08| g
o 08 06
04 04
o2 ax
K127 ey Ke=400 P ke Ke=250
sy bean (N=47. G=4, d4=15) protisn (N=115. C=6. d=20) diabetes (N=T60, C=2, 4=1)
1 y X 1 ) ’ 1 ’ ]
oat o8 H ae
o6} o6 a6 1
o4y o4 a4
02| 02 a2
O hesat Ho=34 O ko2 = O Koot Kce611
Eric Xing 37
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Accuracy vs. amount of side- HHH
information °s

e Two typical examples of how the quality of the clusters found
increases with the amount of side-information.

Performance on Protein dataset Performance on Wine dataset
- La
] e e AEER f_:::::—:.—.f—_—_—_—_—;:ﬁ:
/
i
as 2| /
L £ ;
g g i
. €0 i
g g i
h
i
5
A
5 5 5
ratio of constraints ratio of constraints
Eric Xing 38
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Take home message

e Distance metric learning is an important problem in machine
learning and data mining.

e A good distance metric can be learned from small amount of
side-information in the form of similarity and dissimilarity
constraints from data by solving a convex optimization
problem.

e The learned distance metric can identify the most significant
direction(s) in feature space that separates data well,
effectively doing implicit Feature Selection.

e The learned distance metric can be used to improve
clustering performance.

Eric Xing 39

Additional Details:
Independent Components Analysis (ICA)

e ICA is similar to FA, except it assumes the latent source has non-
Gaussian density.

e Hence ICA can extract higher order moments (not just second
order).

e |tis commonly used to solve blind source separation (cocktail party
problem).

= ST
FA ICA

Eric Xing 40
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The simple “ Cocktail Party” 3
8
Problem 5
Mixing matrix A
| =
S (E Xy
Observations
Sources D=
s &
2 Eq x=As
n sources, m=n observations
Eric Xing 41
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Motivation g
Two ISndependent Mixture at two Mics
ources
X (t) = ay;8; (1) + a8, (1)
X () = 35 (1) + 85,5, (1)
a; ... Depend on the distances of the microphones from the speakers
Eric Xing 42
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Motivation :
2
_20 2[;0 4Ei]O 6[;0 8Ei]O 1000
2
_20 2[;0 4EiJO 6[;0 8EiJO 1000
Get the Independent Signals out of the Mixture
Eric Xing 43
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Blind Source Separation e

e Suppose that there are k unknown independent sources

s(t) =[s,(t),...,s, )]"  with E[s(t)]=1

e A data vector x(t) is observed at each time point t, such that

X(t) = As(t)

where A is an ’ k full rank scalar matrix

Eric Xing 44
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Blind source separation

Independent Observed Recovered
: components : sequences independent
: components

51

{52

5 S8

s

H o - Uy
h De-mixing
: I_. process

Mixing
process
: A
i Blind
: Source
Eric Xing A5
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ICA versus PCA (and FA) :
e Similarity
e Feature extraction
e Dimension reduction
e Difference
e PCA uses up to second order moment of the data to produce
uncorrelated components
e ICA strives to generate components as independent as possible
e o 5 - “

Eric Xing
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Problem formulation

e The goal of ICA is to find a linear mapping W such that the unmixed
sequences u

u(t) = Wx(t) = WAs(t) o =
Sl Q:lf w .
are maximally statistically
independent ina

e Find some

V=WA=PC

where C is a diagonal matrix and P is a permutation matrix.

Eric Xing 47

Principle of ICA: Nongaussianity

e The fundamental restriction in ICA is that the independent
components must be nongaussian for ICA to be possible.

e This is because gaussianity is invariant under orthogonal
transformation and hence make the matrix A not identifiable
for gaussian independent components.

Eric Xing 48
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Measures of nongaussianity (1)

e Kurtosis
* Kurt(y) = E {y4} ~3 (E {yZ})2

e Kurtosis can be very sensitive to outliers, when its value has to be estimate from
a measured sample.

e Mutual information

e Negative Entropy

FastICA — Preprocessing H

e Centering:
e Make the x-s mean 0 variables

e Whitening

e Transform the observed vector x linearly so that it has unit variance:
E{xx} =T

e One can show that:

%5 =ED 1/2ETx = As

where | {XXT} = EDET

Eric Xing 50

25



FastIiCA algorithm

e Initialize the weight matrix W
e lteration:

W+ =W + diag(e;)[diag(8) + E{g(uuT }JW
where
Bi = —E{u;g(u)}, 0 = =1/

e Repeat until convergence W

e The ICAs are the components of W™®x(t)

Eric Xing 51

Summary

e There has been a wide discussion about the application of
Independence Component Analysis (ICA) in Signal Processing,
Neural Computation and Finance.

e Firstintroduced as a novel tool to separate blind sources in a mixed
signal.

e The Basic idea of ICA is to reconstruct from observation sequences
the hypothesized independent original sequences.

Eric Xing 52
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