

Modeling document collections

- A document collection is a dataset where each data point is itself a collection of simpler data.
 - Text documents are collections of words.
 - Segmented images are collections of regions.
 - User histories are collections of purchased items.
- Many modern problems ask questions of such data.
 - Is this text document relevant to my query?
 - Which documents are about a particular topic?
 - How have topics changed over time?
 - What does author X write about? Who is likely to write about topic Y? Who wrote this specific document?
 - Which category is this image in? Create a caption for this image.
 - What movies would I probably like?
 - and so on.....

Eric Xing

Connecting Probability Models to Data (Generative Model) P(Data | Parameters) Probabilistic Model P(Parameters | Data) (Inference)

Motivation for modeling latent topical aspects

- Dimensionality reduction
 - A VSM lives in a very high-dimensional feature space (usually larger vocabulary, V)
 - Sparse representation of documents (|V| >> actual number of appeared words in any given document) --- often too spurious for many IR tasks
- Semantic analysis and comprehension
 - A need to define conceptual closeness,
 - to capture relation between features,
 - to distinguish and infer features from heterogeneous sources ...

Eric Xino

Latent Semantic Indexing

(Deerwester et al., 1990)

Classic attempt at solving this problem in information retrieval

- Uses SVD to reduce document representations
- Models synonymy and polysemy
- Computing SVD is slow
- Non-probabilistic model

Fric Xino

a

Latent Semantic Structure

Distribution over words

$$P(\mathbf{w}) = \sum_{\ell} P(\mathbf{w}, \ell)$$

Inferring latent structure

$$P(\ell \mid \mathbf{w}) = \frac{P(\mathbf{w} \mid \ell)P(\ell)}{P(\mathbf{w})}$$

Prediction

$$P(w_{n+1} \mid \mathbf{w}) = \dots$$

Eric Xing

Why this is Useful?

- Q: What is it about?
- A: Mainly MT, with syntax, some learning

Mixing A Hierarchica for Statistical Proportion

- Q: give me similar document?
 - Structured way of browsing the collection
- Other tasks
 - Dimensionality reduction
 - TF-IDF vs. topic mixing proportion
 - · Classification, clustering, and more ...

A Hierarchical Phrase-Based Model for Statistical Machine Translation

we present a saussucarphiase-doses Translation model that uses hierarchical phrases—phrases that contain sub-phras The model is formally a synchronous context-free grammar but is learned from a bleat without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

Eric Xing

13

A generative model for documents

$$P(w_i) = \sum_{j=1}^T P(w_i|z_i=j) P(z_i=j)$$

Eric Xing

Probabilistic LSI

- A "generative" model
- Models each word in a document as a sample from a mixture model.
- Each word is generated from a single topic, different words in the document may be generated from different topics.
- A topic is characterized by a distribution over words.
- Each document is represented as a list of mixing proportions for the components (i.e. topic vector θ).

Eric Xing

LDA

- · Generative model
- Models each word in a document as a sample from a mixture model.
- Each word is generated from a single topic, different words in the document may be generated from different topics.
- A topic is characterized by a distribution over words.
- Each document is represented as a list of mixing proportions for the components (i.e. topic vector).
- The topic vectors and the word rates each follows a Dirichlet prior --- essentially a Bayesian pLSI

Eric Xino

Bayesian inference

• A possible query:

$$p(\pi_n \mid D) = ?$$
$$p(z_{n,m} \mid D) = ?$$

Close form solution?
$$p(\pi_n \mid D) = \frac{p(\pi_n, D)}{p(D)}$$

$$= \frac{\sum_{(z_{n,m})} \int \left(\prod_n \left(\prod_m p(x_{n,m} \mid \phi_{z_n}) p(z_{n,m} \mid \pi_n) \right) p(\pi_n \mid \alpha) \right) p(\phi \mid G) d\pi_{-i} d\phi}{p(D)}$$

$$p(D) = \sum_{\{z_{n,m}\}} \int \cdots \int \left(\prod_{n} \left(\prod_{m} p(x_{n,m} \mid \phi_{z_{n}}) p(z_{n,m} \mid \pi_{n}) \right) p(\pi_{n} \mid \alpha) \right) p(\phi \mid \mathcal{G}) d\pi_{1} \cdots d\pi_{N} d\phi$$

 Sum in the denominator over Tⁿ terms, and integrate over n k-dimensional topic vectors

ric Xing

Approximate Inference

- Variational Inference
 - Mean field approximation (Blei et al)
 - Expectation propagation (Minka et al)
 - Variational 2nd-order Taylor approximation (Xing)
- Markov Chain Monte Carlo
 - Gibbs sampling (Griffiths et al)

Eric Xing

Collapsed Gibbs sampling

(Tom Griffiths & Mark Steyvers)

- Collapsed Gibbs sampling
 - Integrate out π

For variables $\mathbf{z} = z_1, z_2, ..., z_n$ Draw $z_i^{(t+1)}$ from $P(z_i | \mathbf{z}_{-i}, \mathbf{w})$ $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, ..., z_n^{(t)}$

Eric Xing

31

Gibbs sampling

- Need full conditional distributions for variables
- Since we only sample z we need

 $P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto P(w_i | z_i = j, \mathbf{z}_{-i}, \mathbf{w}_{-i}) P(z_i = j | \mathbf{z}_{-i})$ $= \frac{n_{-i,j}^{(w_i)} + \beta}{n_{-i,j}^{(\cdot)} + W\beta} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,\cdot}^{(d_i)} + T\alpha}$

 $n_i^{(w)}$ number of times word w assigned to topic j

 $n_j^{(d)}$ number of times topic j used in document d

Eric Xing

```
Gibbs sampling
                             iteration
         MATHEMATICS
         KNOWLEDGE
          RESEARCH
            WORK
         MATHEMATICS
          RESEARCH
            WORK
    8
          SCIENTIFIC
         MATHEMATICS
    10
           WORK
          SCIENTIFIC
    11
         KNOWLEDGE
    12
            JOY
    50
```



```
Gibbs sampling
                                                  iteration
                                                  1
                                                            2
                                                            \frac{z_i}{?}
               MATHEMATICS
                KNOWLEDGE
                  RESEARCH
                    WORK
               MATHEMATICS
                  RESEARCH
        6
7
8
9
                     WORK
                 SCIENTIFIC
               MATHEMATICS
       10
                    WORK
                 SCIENTIFIC
       11
                KNOWLEDGE
       12
                      JOY
       50
                                                     P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}
```


Result on PNAS collection

- PNAS abstracts from 1997-2002
 - 2500 documents
 - Average of 170 words per document
- Fitted 40-topics model using both approaches
- Use low dimensional representation to predict the abstract category
 - Use SVM classifier
 - 85% for training and 15% for testing

Classification Accuracy

Category	Doc	BL	AX
Genetics	21	61.9	61.9
Biochemistry	86	65.1	77.9
Immunology	24	70.8	66.6
Biophysics	15	53.3	66.6
Total	146	64.3	72.6

-Notable Difference -Examine the low dimensional representations below

Eric Xino

Research topics

Nature papers from 1900-2000

1900

A. Ahmed and E.P. Xing, Submitted 2007

44

To Generate an Image ...

Automatic annotation

True caption
birds tree
Corr-LDA
birds nest leaves branch tree

GM-LDA water birds nest tree sky

GM-Mixture tree ocean fungus mushrooms coral

True cantion

True caption
fish reefs water
Corr-LDA
fish water ocean tree coral

GM-LDA water sky vegetables tree people

GM-Mixture fungus mushrooms tree flowers leaves

Eric Xing

55

Conclusion

- GM-based topic models are cool
 - Flexible
 - Modular
 - Interactive
- There are many ways of implementing topic models
 - Directed
 - Undirected
- Efficient Inference/learning algorithms
 - GMF, with Laplace approx. for non-conjugate dist.
 - MCMC
- Many applications
 - ..
 - Word-sense disambiguation (with WeiHao Lin and Alex Hauptman)
 - Word-net (with Amr)
 - Network inference (with Fan Guo and Steve Fienberg)

Eric Xino