Machine Learning

10-701/15-781, Spring 2008

000
Principal Components Analysis 0000
Modified from www.cs.princeton.edu/picasso/mats/Lecturel_jps.ppt . . . ’
cs. . : 000
o0
[
- Reading: Chap 12.1, CB book
eseo
Factor or Component Analysis: sese
Why? oo

e We study phenomena that can not be directly observed
e ego, personality, intelligence in psychology
e Underlying factors that govern the observed data

e We want to identify and operate with underlying latent
factors rather than the observed data
e E.g. topics in news articles
e Transcription factors in genomics

e We want to discover and exploit hidden relationships
e ‘“beautiful car” and “gorgeous automobile” are closely related
e So are “driver” and “automobile”
e But does your search engine know this?
e Reduces noise and error in results
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Factor or Component Analysis,
Why? (cond.)

e \We have too many observations and dimensions
e To reason about or obtain insights from
e Tovisualize
e Too much noise in the data
e Need to “reduce” them to a smaller set of factors
e Better representation of data without losing much information

e Can build more effective data analyses on the reduced-dimensional space:
classification, clustering, pattern recognition

e Combinations of observed variables may be more

effective bases for insights, even if physical meaning is
obscure
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The goal:

e Discover a new set of factors/dimensions/axes based on
which to represent, describe or evaluate the data
e For more effective reasoning, insights, or better visualization
e Reduce noise in the data
e Typically a smaller set of factors: dimension reduction
e Better representation of data without losing much information

e Can build more effective data analyses on the reduced-dimensional space:
classification, clustering, pattern recognition

e Factors are combinations of observed variables
e May be more effective bases for insights, even if physical meaning is obscure

e Observed data are described in terms of these factors rather than in terms of
original variables/dimensions
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Basic Concept

e Areas of variance in data are where items can be best discriminated
and key underlying phenomena observed
e Areas of greatest “signal” in the data

e [f two items or dimensions are highly correlated or dependent
e They are likely to represent highly related phenomena

e If they tell us about the same underlying variance in the data, combining them to
form a single measure is reasonable

Parsimony
Reduction in Error

e So we want to combine related variables, and focus on uncorrelated
or independent ones, especially those along which the observations
have high variance

e We want a smaller set of variables that explain most of the variance
in the original data, in more compact and insightful form
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Basic Concept o

e What if the dependences and correlations are not so strong or
direct?

e And suppose you have 3 variables, or 4, or 5, or 10000?

e Look for the phenomena underlying the observed
covariance/co-dependence in a set of variables

e Once again, phenomena that are uncorrelated or independent, and especially
those along which the data show high variance

e These phenomena are called “factors” or “principal
components” or “independent components,” depending on the
methods used

e Factor analysis: based on variance/covariance/correlation
e Independent Component Analysis: based on independence
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An example:
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Principal Component Analysis T
e Most common form of factor '
analysis
PC2 o1

e The new variables/dimensions

e Are linear combinations of the original
ones

e Are uncorrelated with one another
Orthogonal in original dimension space

e Capture as much of the original
variance in the data as possible

e Are called Principal Components
e Orthogonal directions of greatest
variance in data

e Projections along PC1
discriminate the data most along
any one axis
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Principal Component Analysis

e First principal component is
the direction of greatest
variability (covariance) in the

PC 2 data

PC1
e Second is the next orthogonal
(uncorrelated) direction of
greatest variability

e  So first remove all the variability along
the first component, and then find the
next direction of greatest variability

e Andsoon...
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Computing the Components N

C
e Data points are vectors in a multidimensional space 1())(

e Projection of vector x onto an axis (dimension) uis u

e Direction of greatest variability is that in which the average square of

the projection is greatest
T

e le_usuchthat E(u)?) over all x Yok K

is maximized l l/ J
e  Matrix representation:
I'WJ'G\A('X>°Q7\1'1" )
e (we subtract the mean along each dirﬁension,

and center the original axis system at the

centroid of all data points, for simplicity)
e This direction of u is the direction of the

first Principal Component Vg
5 A
\41'3X{ _M. M_L—i\(f
..—-)\T’
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Computing the Components g
" = € @ |
e E(Z(u™x)?) =E ((u™X) (u™X)") = E (uT™XXT
e The covariance matrix C = XX' contains the correlations
(similarities) of the original axes based on how the data
values project onto them Moy WTCU.
Nt ue)

e So we are looking for w that maximizes uTCu, subject to t
being unit-length

e [tis maximized when w is the principal eigenvector of the
matrix C, in which case

e u'Cu=u"w=Axif uis unit-length, where A is the principal eigenvalue of
the correlation matrix C

e The eigenvalue denotes the amount of variability captured along that dimension

b CJ/L =>\V\ ‘V\:v = ’]/t'l 5&:7>\1 - /\)./\_‘
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Why the Eigenvectors?

Maximise u™XXTu
s.t uu=1

Construct Langrangian u™X™u —au'u

Vector of partial derivatives set to zero
XXTu—2u=(XxXx"-a)u=0

As u # 0 then u must be an eigenvector of XX™ with eigenvalue
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Eigenvalues & Eigenvectors

e Eigenvectors (for a square mxm matrix S)

Sy = v

Example

6 —2\ (1Y _ (2 _ {1
(right) eigenvector  eigenvalue (4 0) (2) B (4) -2 (2)
veR™£0 reR
e How many eigenvalues are there at most?

Sv=Xlv <= (S—A)v=0

only has a non-zero solution if |S — AI| =0

this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Eigenvalues & Eigenvectors

e For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

SViya = Ay 2V o.and 4 # 4, = vy ev, =0
e All eigenvalues of a real symmetric matrix are real.
for complex 4,if [S—Al|=0andS=8" = 1 e R

e All eigenvalues of a positive semidefinite matrix are non-

negative

YW e sﬁ”@Swz O;)hen ifSv=Av=>1>0
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Eigen/diagonal Decomposition

e Let S € R™*™be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

e Theorem: Exists an eigen decomposition

g _ UAUT diagonal

distinct
eigen-
values

(cf. matrix diagonalization theorem)
e Columns of U are eigenvectors of S
e Diagonal elements of A are eigenvalues of S

A = diag(A1, ..., Am)s As = Ay
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Computing the Components

e Similarly for the next axis, etc.

e S0, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples project to them

A

e Geometrically: centering followed by rotation

Linear transformation
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PCs, Variance and Least-Squares

e The first PC retains the greatest amount of variation in the

sample

e The ki PC retains the kth greatest fraction of the variation in

the sample

¢ The ki largest eigenvalue of the correlation matrix C is the

variance in the sample along the ki PC

L
e The least-squares view: PCs are a series of linear least~ Z_I7\“ W

(o yi= T

. . {
squares fits to a sample, each orthogonal to all previous ones

Eric Xing
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How Many PCs?

e For n original dimensions, sample covariance matrix is nxn, and has

up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
25 4

20 4

.
o

Variance (%)
=
o
|

&
L

o
I

PCl1 PC2 PC3 PC4 |PC5 PC6 PC7 PC8 PC9

-1
You do lose some information, but if the eigenvalues are small, you don’t "W X

lose much

. n dimensions in original data

° calculate n eigenvectors and eigenvalues

° choose only the first p eigenvectors, based on their eigenvalues

final h nl imension
EricxiT-lq al data set has only p dimensions

W Erﬁa ﬁﬂr
G2 Amet .,( [

I k=t wd
,(|I

(
X:*® =) \/ 7( }5
PC10 : K :‘I'X

Y- -
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Application:
Latent Semantic Analysis

e Motivation
e Lexical matching at term level inaccurate (claimed)

e Polysemy — words with number of ‘meanings’ — term matching returns irrelevant
documents — impacts precision

e Synonomy — number of words with same ‘meaning’ — term matching misses
relevant documents — impacts recall

e LSA assumes that there exists a LATENT structure in word
usage — obscured by variability in word choice

e Analogous to signal + additive noise model in signal
processing
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[ X X ]
0000
[ X XX
[
[ X J
e vector opace vioae o
e Represent each document by a high-dimensional vector in the
space of words
T learning
3| journal
1| intelligence
Jourmal of Arfificial Imelligence a et
0| agent
: 1 internet
g | webwatcher
of the jowril s alss publiched by Wowgan a pet3
Kafman....
l[ volume
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(X X J
0000
( X XX
- a2
The Corpora Matrix :
Doc 1 Doc 2 Doc 3
Word 1 3 0 0
Word 2 0 8 1
X = Pweras 0 1 3
Word 4 2 0 0
Word 5 12 0 0
0 0 0
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Feature Vector Representation e
“H i
i document o'
document o i
N
";]3
Figure 4.2  Cosine measure of document similarity.
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Problems

\
e Looks for literal term matches

e Terms in queries (esp short ones) don't always capture user’s information need
well

e Problems:

e Synonymy: other words with the same meaning
Car and automobile

e No associations between words are made in the vector space representation.
Sirntruu (d" q) > COS(/—/ (d'l q_))

e Polysemy: the same word having other meanings
Apple (fruit and company)
e The vector space model is unable to discriminate between different meanings of

the same word. .
sim,,...(d, g)< cos(£(d, q))

e What if we could match against ‘concepts’, that represent
related words, rather than words themselves
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Example of Problems

B Adobe Acrobat - [Isi-orig.pdf =10] %
T File Edit Document Took View Window Help =l=|x]
NMeGHS MK Mes DEM G2 A@@E 000
o B
% -
T Sample Term by Document matrix 1
ﬁ ACCEES deresimeant retrieval infermation theory database indexing compuier REL MATCH
B Doc | * . * ‘ s | = ‘ R
7.
& Doc2 =" x x* M
H
% Doc 3 % X x* R | ™M
Iy
?{} Query: "IDF in computer-based information look-up”
T Talble 1
|1 e Y e 6 e o _F‘
-- Relevant docs may not have the query terms
- but may have many “related” terms
-- Irrelevant docs may have the query terms
-> but may not have any “related” terms
Eric Xing 24
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Latent Semantic Indexing (LSI)

(Deerwester et al., 1990)

\
e Uses statistically derived conceptual indices instead of

individual words for retrieval

e Assumes that there is some underlying or latent
structure in word usage that is obscured by variability in
word choice

e Key idea: instead of representing documents and
gueries as vectors in a t-dim space of terms

e Represent them (and terms themselves) as vectors in a lower-dimensional space
whose axes are concepts that effectively group together similar words

e Uses SVD to reduce document representations, " Te‘zlnr. Ao"" o
. v-
e The axes are the Principal Components from SVD aet]
Moo | 3.4 1
H <
e So whatis SVD? ke | o gn
hhand, vl 32 “
f"," vz o2k
Eric Xing ' 25

Example

e Suppose we have keywords

e Car, automobile, driver, elephant

e We want queries on car to also get docs about drivers
and automobiles, but not about elephants

e What if we could discover that the cars, automobiles and drivers axes are
strongly correlated, but elephants is not

e How? Via correlations observed through documents

e Ifdocs A & B don’t share any words with each other, but both share lots of words
with doc C, then A & B will be considered similar

e E.g Ahas cars and drivers, B has automobiles and drivers

e When you scrunch down dimensions, small differences
(noise) gets glossed over, and you get desired behavior

Eric Xing 26
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Latent Semantic Indexing

v
—
cc

Document

Term

X T A D'
(m x n) (m x k) (k x k) (k x n)
This is our compressed
representation of a
K - document
k=1

Eric Xing 27

Recall: Eigen/diagonal decomposition

e Let S € R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

e Theorem: Exists an eigen decomposition
diagonal
s—UAUu' %

(cf. matrix diagonalization theorem)
e Columns of U are eigenvectors of S
¢ Diagonal elements of A are eigenvalues of S

A = diag(A1, ..., Am)s As = Ay

Eric Xing 28
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Singular Value Decomposition

For an mx n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UzV'
TN

mxm/|| mxn Vis nxn

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of A™A.
nwn

Eigenvalues 4, ... A, of AAT are the eigenvalues of ATA.

S

Eric Xing

> =diag (al,,,ar ) <:1‘Singular values.

SVD and PCA

e The first root is called the prinicipal eigenvalue which has an
associated orthonormal (uTu = 1) eigenvector u

e Subsequent roots are ordered such that A,> x, >... >, with
rank(D) non-zero values.

e Eigenvectors form an orthonormal basis i.e. u'u; = &;
e The eigenvalue decomposition of XXT = UzUT

e where U =[u, u,, ..., uyl and & =diag[r ;, A5, ..., Ayl
e Similarly the eigenvalue decomposition of XTX = VzVT
e The SVD is closely related to the above X=U 12 VT

e The left eigenvectors U, right eigenvectors V,

e singular values = square root of eigenvalues.

Eric Xing 30
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Example

0.5606 -0.3717 -0.3919 4().‘»4(\2 0.1029
0.4878  0.1566 0. 0.1981 -0.1094
2 -0.3997 -0.5142 0.0102 - 57
0.0049 -0.0279 -G 0.4193
-0.0914 0.1596 -0.2045 -0.3701

term ch2 | ch3 | ch4 |[ch5 ch6 | ch7 | ch8 | ch9

20.3657 -0.2684 -0.0174 0.2711
1667 -0.1303 04376 03844 -0.3066 0.1230
controllability | 1 1 0 0 1 0 0 1 203096 -03579 03127 -0.2406 -03122 -0.2611
20.4232 0.0277 0.4305 -0.3800 0.5114 02010
observability 1 0 0 1 1 1
S (7x7) =
realization 1 0 1 0 1 0 1 0 3.9901 0 0 0 0 0 0
022813 0 0 0 0 0
feedback 0 1 0 0 0 1 0 0 0 0 1.6705 0 0 0 0
0 0 013522 0 0 0
controller 0 1 0 0 1 1 0 0 0 0 0 0 1.1818 0 0
0 0 0 0 0 0662 0
observer 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0.6487
transfer o o o o 1 1 0o o | vos- T
function 0.2917 -0.2674 03883 -0.5393 0.3926 -0.2112 -0.4505
polynomial 0 0 0 0 1 0 1 0 03399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346
matrices 0 0 0 0 1 0 1 1 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636
0.4134 5716 -0.0566 0.3383 0.4493 0.3198
02176 51 -0.4369 0.1694 -0.2893 0.3161
ThlS happens to be a rank_’7 matriX 02791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998
-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT
Eric Xing 31
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Low-rank Approximation -

e Solution via SVD

A, =U diag(o,,...,0,,0

T
)Y
N

set smallest r-k

singular values to zero

* -
* * * * * = - £
%* * * % % - w
AL o
k T i
Ak = _ ouv, column notation: sum
i=1 of rank 1 matrices

Eric Xing
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Approximation error

\
e How good (bad) is this approximation?

e It's the best possible, measured by the Frobenius norm of the
error:

min HA_XHF :HA_AkHF = Oy

X:rank (X )=k

where the o; are ordered such that ¢, > 6.
Suggests why Frobenius error drops as k increased.

Eric Xing 33

[ X X ]
0000
[ X XX
. . b
SVD Low-rank approximation °
e Whereas the term-doc matrix A may have m=50000, n=10
million (and rank close to 50000)
e We can construct an approximation A,,, with rank 100.
e Of all rank 100 matrices, it would have the lowest Frobenius error.
Document
§ = * *
2
X T A D’ B sz .
(m x n) (m x k) (k x k) (kxn) W= b AT,
k=1

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.
Eric Xing 34
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Following the Example

term
controllability
observability
realization
feedback
controller

observer

transfer
function

polynomial

matrices

ch2 | ch3 | ch4 | ch5

oo | o

1 0 0
0 0
0 1 0
1 0 0
1 0 0
1 1 0
0 0 0
0 0

0 0 0

ché

ch7

chg

oo | o

This happens to be a rank-7 matrix

-so only 7 dimensions required

Eric Xing

0.3996 -0.1037
0.4180 -G
0.3464 -0.4422

0.5606 -0.3717
0.4878  0.1566
-0.3997 -0.5142 0.0102
0.0049 -0.0279 0.4193
-0.0914  0.1596 -0.2045 -0.3701
2 [-0.3657 -0.2684 -0.0174 0.2711
7 1-0.1303  0.4376 0.3844 -0.3066 0.1230
0.3096 ] -0.3579  0.3127 -0.2406 -0.3122 -0.2611

|_—02058 04230/ 0.0277 0.4305 -0.3800 0.5114 0.2010

-0.3919 4(1,%4\: 0.1029
0.1981 -0.1094

S (7x7) =
3.9901 0 0 0 0 0 0
0 2.2813 0 0 0 0 0
0 0 1.6705 0 0 0 0
0 0 0 13522 0 0 0
0 0 0 0 11818 0 0
0 0 0 0 0 06623 0
0 0 0 0 0 0 0.6487

V (Ix8)= T

-0.2674\ 0.3883 -0.5393 0.3926 -0.2112 -0.4505
0.3399  0.4811) 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351]-0.4582 -0.5788 0.2211 0.4247 0.4346
0.0000 -0.0000]-0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6838 -0.1913 ]-0.1609 02535 0.0050 -0.5229 0.3636
4134 0.5716 |-0.0566 0.3383 0.4493 0.3198
12176 -0.4369  0.1694 -0.2893 03161
0.6442  0.1593 -0.1648 0.5455 0.2998

Singular values = Sqrt of Eigen values of AAT

35

PCs can be viewed as Topics o
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==1 I [Tl

I % 2
] =
— 2 3 ‘ ‘
= 4 a

100 200 300
| Documents
E)

Toplcs

In the sense of having to find quantities that are not observable directly

Similarly, transcription factors in biology, as unobservable causal bridges
between experimental conditions and gene expression

Eric Xing
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Medline data
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A
U2 (9x2) =
Querying
0.4180 -0.0641
0.3464 47441%
03602 0.3776
0.4075 0.3
0.2750  0.16¢
0.2259 -0.
To query for feedback controller, the query vector would 02058 04232
be 52 (2x2) =
- 39901 0
g=[0 0 0 1 1 0 O 0 O] (indicates 0 22813
transpose), V2 (852
0.2917 -0.2674
0.3399 0.4811
0.1889 -0.0351
Let q be the query vector. Then the document-space 20,0000 0.0000
. . . 0.6838 -0.1913
vector corresponding to q is given by: 04134 05716
- 0.2176 -0.5151
q‘*UZ*lnv(SZ) = Dq 02791 02591
Point at the centroid of the query terms’ poisitions in the
new space. . term ch2 | ch3 |ch4 |ch5 |ché |ch7 |ch8 |ch9
For the feedback controller query vector, the result is: cnmolbiiy |1 11 o o 11 Jo Jo |1
Dq = 01376 03678 observability 1 0 0 0 1 1 0 1
realization 1 0 1 0 1 0 1 0
To find the best document match, we compare the Dq feedback o |1 Jo Jo Jo |1 |o |o
vector against all the document vectors in the 2- controller |0 |1 o o |1 |1 o o
dimensional V2 space. The document vector that is nearest ""s"fv" ot v jo v v o Jo
. . . . . transfer
in direction to Dq is the best match. The cosine values function R L L L L N L
for the eight document vectors and the query vector are: polynomial |0 |0 |0 Jo |1 Jo [T O
matrices 0 0 0 0 1 0 1 1
<0.3747 09671 0.1735 -0.9413 0.0851 0.9642 -0.7265 -0.3805
-0.37 0.967 0.173 -0.94 0.08 096 -0.72 -0.38
Eric Xing 38
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K is the number of singular values used
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What LSI can do °
e LSI analysis effectively does
e Dimensionality reduction
e Noise reduction
e Exploitation of redundant data
e Correlation analysis and Query expansion (with related words)
e Some of the individual effects can be achieved with
simpler techniques (e.g. thesaurus construction). LSI
does them together.
e LSI handles synonymy well, not so much polysemy
e Challenge: SVD is complex to compute (O(n?))
e Needs to be updated as new documents are found/updated
Eric Xing 40

20



Summary:

e Principle
e Linear projection method to reduce the number of parameters
e Transfer a set of correlated variables into a new set of uncorrelated variables
e Map the data into a space of lower dimensionality
e Form of unsupervised learning

e Properties

e Itcan be viewed as a rotation of the existing axes to new positions in the space defined by
original variables

e New axes are orthogonal and represent the directions with maximum variability

e Application: In many settings in pattern recognition and retrieval, we
have a feature-object matrix.
e For text, the terms are features and the docs are objects.
e Could be opinions and users ...
e This matrix may be redundant in dimensionality.
e  Can work with low-rank approximation.
e If entries are missing (e.g., users’ opinions), can recover if dimensionality is low.
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