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Factor or Component Analysis

We study phenomena that can not be directly observed 
ego, personality, intelligence in psychology
Underlying factors that govern the observed data

We want to identify and operate with underlying latent 
factors rather than the observed data  

E.g. topics in news articles
Transcription factors in genomics

We want to discover and exploit hidden relationships
“beautiful car” and “gorgeous automobile” are closely related
So are “driver” and “automobile”
But does your search engine know this?
Reduces noise and error in results
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Factor or Component Analysis, 
cond.

We have too many observations and dimensions
To reason about or obtain insights from
To visualize
Too much noise in the data
Need to “reduce” them to a smaller set of factors
Better representation of data without losing much information
Can build more effective data analyses on the reduced-dimensional space: 
classification, clustering, pattern recognition

Combinations of observed variables may be more 
effective bases for insights, even if physical meaning is 
obscure
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The goal:

Discover a new set of factors/dimensions/axes against 
which to represent, describe or evaluate the data

For more effective reasoning, insights, or better visualization
Reduce noise in the data
Typically a smaller set of factors: dimension reduction 
Better representation of data without losing much information
Can build more effective data analyses on the reduced-dimensional space: 
classification, clustering, pattern recognition

Factors are combinations of observed variables 
May be more effective bases for insights, even if physical meaning is obscure
Observed data are described in terms of these factors rather than in terms of 
original variables/dimensions
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Basic Concept
Areas of variance in data are where items can be best discriminated 
and key underlying phenomena observed

Areas of greatest “signal” in the data

If two items or dimensions are highly correlated or dependent
They are likely to represent highly related phenomena
If they tell us about the same underlying variance in the data, combining them to 
form a single measure is reasonable

Parsimony
Reduction in Error

So we want to combine related variables, and focus on uncorrelated
or independent ones, especially those along which the observations 
have high variance

We want a smaller set of variables that explain most of the variance
in the original data, in more compact and insightful form
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Basic Concept
What if the dependences and correlations are not so strong or 
direct? 

And suppose you have 3 variables, or 4, or 5, or 10000?

Look for the phenomena underlying the observed 
covariance/co-dependence in a set of variables

Once again, phenomena that are uncorrelated or independent, and especially 
those along which the data show high variance

These phenomena are called “factors” or “principal 
components” or “independent components,” depending on the 
methods used

Factor analysis: based on variance/covariance/correlation
Independent Component Analysis: based on independence
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An example:
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Principal Component Analysis
Most common form of factor 
analysis

The new variables/dimensions
Are linear combinations of the original 
ones
Are uncorrelated with one another

Orthogonal in original dimension space
Capture as much of the original 
variance in the data as possible
Are called Principal Components

Orthogonal directions of greatest 
variance in data
Projections along PC1 
discriminate the data most along 
any one axis
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Principal Component Analysis

First principal component is 
the direction of greatest 
variability (covariance) in the 
data
Second is the next orthogonal 
(uncorrelated) direction of 
greatest variability

So first remove all the variability along 
the first component, and then find the 
next direction of greatest variability

And so on …Original Variable A
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Computing the Components
Data points are vectors in a multidimensional space
Projection of vector x onto an axis (dimension) u is uTx
Direction of greatest variability is that in which the average 
square of the projection is greatest

I.e. u such that E((uTx)2) over all x
is maximized
(we subtract the mean along each dimension, 
and center the original axis system at the 
centroid of all data points, for simplicity)
This direction of u is the direction of the 
first Principal Component



6

Eric Xing 11

Computing the Components
E(Σi(uTxi)2)  = E ((uTX) (uTX)T) = E (uTXXTu)

The matrix C = XXT contains the correlations (similarities) of 
the original axes based on how the data values project onto 
them

So we are looking for w that maximizes uTCu, subject to u
being unit-length

It is maximized when w is the principal eigenvector of the 
matrix C, in which case

uTCu = uTλu = λ if u is unit-length, where λ is the principal eigenvalue of 
the correlation matrix C
The eigenvalue denotes the amount of variability captured along that dimension
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Why the Eigenvectors?

Maximise uTXXTu
s.t uTu = 1 

Construct Langrangian uTXXTu – λuTu

Vector of partial derivatives set to zero
xxTu – λu = (xxT – λI) u = 0

As u ≠ 0 then u must be an eigenvector of XXT with eigenvalue λ
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Computing the Components
Similarly for the next axis, etc. 
So, the new axes are the eigenvectors of the matrix of 
correlations of the original variables, which captures the 
similarities of the original variables based on how data 
samples project to them

Geometrically: centering followed by rotation
Linear transformation
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PCs, Variance and Least-Squares
The first PC retains the greatest amount of variation in the 
sample

The kth PC retains the kth greatest fraction of the variation in 
the sample

The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PC

The least-squares view: PCs are a series of linear least 
squares fits to a sample, each orthogonal to all previous ones 
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How Many PCs?
For n original dimensions, correlation matrix is nxn, and has up to n 
eigenvectors. So n PCs.
Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 

You do lose some information, but if the eigenvalues are small, you don’t 
lose much

n dimensions in original data 
calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors, based on their eigenvalues
final data set has only p dimensions
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Application: 
Latent Semantic Analysis

Motivation
Lexical matching at term level inaccurate (claimed)
Polysemy – words with number of ‘meanings’ – term matching returns irrelevant 
documents – impacts precision
Synonomy – number of words with same ‘meaning’ – term matching misses 
relevant documents – impacts recall

LSA assumes that there exists a LATENT structure in word 
usage – obscured by variability in word choice
Analogous to signal + additive noise model in signal 
processing
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The Vector Space Model
Represent each document by a high-dimensional vector in the 
space of words
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...000...

...0012Word 5

...002Word 4

...310Word 3

...180Word 2

...003Word 1

...Doc 3Doc 2Doc 1

X =

The Corpora Matrix 
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Feature Vector Representation
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Problems

Looks for literal term matches
Terms in queries (esp short ones) don’t always capture user’s 
information need well

Problems:
Synonymy: other words with the same meaning

Car and automobile

No associations between words are made in the vector space 
representation.

Polysemy: the same word having other meanings
Apple (fruit and company)

The vector space model is unable to discriminate between different 
meanings of the same word.
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Example of Problems

-- Relevant docs may not have the query terms
but may have many “related” terms

-- Irrelevant docs may have the query terms
but may not have any “related” terms

Eric Xing 22

Latent Semantic Indexing (LSI)

Uses statistically derived conceptual indices instead of 
individual words for retrieval
Assumes that there is some underlying or latent
structure in word usage that is obscured by variability in 
word choice
Key idea: instead of representing documents and 
queries as vectors in a t-dim space of terms

Represent them (and terms themselves) as vectors in a lower-dimensional space 
whose axes are concepts that effectively group together similar words
Uses SVD to reduce document representations, 
The axes are the Principal Components from SVD

So what is SVD?

(Deerwester et al., 1990)
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Example

Suppose we have keywords
Car, automobile, driver, elephant

We want queries on car to also get docs about drivers 
and automobiles, but not about elephants

What if we could discover that the cars, automobiles and drivers axes are 
strongly correlated, but elephants is not
How? Via correlations observed through documents
If docs A & B don’t share any words with each other, but both share lots of words 
with doc C, then A & B will be considered similar
E.g A has cars and drivers, B has automobiles and drivers

When you scrunch down dimensions, small differences 
(noise) gets glossed over, and you get desired behavior
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Latent Semantic Indexing
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Eigenvalues & Eigenvectors
Eigenvectors (for a square m×m matrix S)

How many eigenvalues are there at most?

only has a non-zero solution if

this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though S is real.

eigenvalue(right) eigenvector

Example
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For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

All eigenvalues of a real symmetric matrix are real.

All eigenvalues of a positive semidefinite matrix are non-
negative

ℜ∈⇒==− λλλ TSS and 0 if ,complex for IS

0vSv if then ,0, ≥⇒=≥ℜ∈∀ λλSwww Tn

02121212121 =•⇒≠= vvvSv λλλ  and ,},{},{},{

Eigenvalues & Eigenvectors
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Let                      be a square matrix with m linearly 
independent eigenvectors (a “non-defective” matrix)

Theorem: Exists an eigen decomposition

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Unique 
for 

distinct 
eigen-
values
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Singular Value Decomposition

TVUA Σ=

m×m m×n V is n×n

For an m× n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii λσ =

( )rdiag σσ ...1=Σ Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.
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SVD and PCA
The first root is called the prinicipal eigenvalue which has an 
associated orthonormal (uTu = 1) eigenvector u 
Subsequent roots are ordered such that λ1> λ2  >… > λM  with 
rank(D) non-zero values.

Eigenvectors form an orthonormal basis i.e. ui
Tuj = δij

The eigenvalue decomposition of XXT = UΣUT

where U = [u1, u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 

Similarly the eigenvalue decomposition of XTX = VΣVT

The SVD is closely related to the above X=U Σ1/2 VT

The left eigenvectors U, right eigenvectors V, 

singular values = square root of eigenvalues.
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term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

U (9x7) = 
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029 
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094 
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857 
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629 
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023 
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676 
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230 
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611 
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) = 
3.9901 0 0 0 0 0 0 

0 2.2813 0 0 0 0 0 
0 0 1.6705 0 0 0 0 
0 0 0 1.3522 0 0 0 
0 0 0 0 1.1818 0 0 
0 0 0 0 0 0.6623 0 
0 0 0 0 0 0 0.6487

V (7x8) = 
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505 
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462 
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346 

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636 
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839 
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330 
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998This happens to be a rank-7 matrix

-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT

T

Example
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Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

T
kk VUA )0,...,0,,...,(diag 1 σσ=

column notation: sum 
of rank 1 matrices

T
ii

k

i ik vuA ∑ =
=

1
σ

k
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Approximation error
How good (bad) is this approximation?
It’s the best possible, measured by the Frobenius norm of the 
error:

where the σi are ordered such that σi ≥ σi+1.
Suggests why Frobenius error drops as k increased.

1
)(:

min +
=

=−=− kFkF
kXrankX

AAXA σ
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SVD Low-rank approximation
Whereas the term-doc matrix A may have m=50000, n=10 
million (and rank close to 50000)
We can construct an approximation A100 with rank 100.

Of all rank 100 matrices, it would have the lowest Frobenius error.

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.

=

X 
(m x n)

Document
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rm * *

T 
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term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

U (9x7) = 
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029 
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094 
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857 
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629 
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023 
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676 
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230 
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611 
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) = 
3.9901 0 0 0 0 0 0 

0 2.2813 0 0 0 0 0 
0 0 1.6705 0 0 0 0 
0 0 0 1.3522 0 0 0 
0 0 0 0 1.1818 0 0 
0 0 0 0 0 0.6623 0 
0 0 0 0 0 0 0.6487

V (7x8) = 
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505 
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462 
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346 

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636 
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839 
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330 
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998This happens to be a rank-7 matrix

-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT

T

Following the Example
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In the sense of having to find quantities that are not observable directly

Similarly, transcription factors in biology, as unobservable causal bridges 
between experimental conditions and gene expression

PCs can be viewed as Topics

Eric Xing 36

To query for feedback controller, the query vector would 
be 
q = [0 0 0 1 1 0 0 0 0]' (' indicates 
transpose),

Let q be the query vector. Then the document-space 
vector corresponding to q is given by: 

q'*U2*inv(S2) = Dq
Point at the centroid of the query terms’ poisitions in the 
new space.
For the feedback controller query vector, the result is: 

Dq = 0.1376 0.3678

To find the best document match, we compare the Dq 
vector against all the document vectors in the 2-
dimensional V2 space. The document vector that is nearest 
in direction to Dq is the best match. The cosine values
for the eight document vectors and the query vector are: 

-0.3747 0.9671 0.1735 -0.9413 0.0851 0.9642 -0.7265 -0.3805

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

termterm ch2ch2 ch3ch3 ch4ch4 ch5ch5 ch6ch6 ch7ch7 ch8ch8 ch9ch9

controllabilitycontrollability 11 11 00 00 11 00 00 11

observabilityobservability 11 00 00 00 11 11 00 11

realizationrealization 11 00 11 00 11 00 11 00

feedbackfeedback 00 11 00 00 00 11 00 00

controllercontroller 00 11 00 00 11 11 00 00

observerobserver 00 11 11 00 11 11 00 00
transfer 
function
transfer 
function 00 00 00 00 11 11 00 00

polynomialpolynomial 00 00 00 00 11 00 11 00

matricesmatrices 00 00 00 00 11 00 11 11

-0.37 0.967 0.173 -0.94 0.08 0.96 -0.72 -0.38

U2 (9x2) = 
0.3996 -0.1037 
0.4180 -0.0641 
0.3464 -0.4422 
0.1888 0.4615 
0.3602 0.3776 
0.4075 0.3622 
0.2750 0.1667 
0.2259 -0.3096 
0.2958 -0.4232

S2 (2x2) = 
3.9901 0 

0 2.2813

V2 (8x2) = 
0.2917 -0.2674 
0.3399 0.4811 
0.1889 -0.0351 
-0.0000 -0.0000 
0.6838 -0.1913 
0.4134 0.5716 
0.2176 -0.5151 
0.2791 -0.2591

Querying
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Medline data
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Within .40
threshold

K is the number of singular values used
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What LSI can do

LSI analysis effectively does
Dimensionality reduction
Noise reduction
Exploitation of redundant data
Correlation analysis and Query expansion (with related words)

Some of the individual effects can be achieved with 
simpler techniques (e.g. thesaurus construction). LSI 
does them together.

LSI handles synonymy well, not so much polysemy

Challenge: SVD is complex to compute (O(n3))
Needs to be updated as new documents are found/updated
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Summary:
Principle

Linear projection method to reduce the number of parameters 
Transfer a set of correlated variables into a new set of uncorrelated variables
Map the data into a space of lower dimensionality
Form of unsupervised learning

Properties
It can be viewed as a rotation of the existing axes to new positions in the space defined by 
original variables
New axes are orthogonal and represent the directions with maximum variability

Application: In many settings in pattern recognition and retrieval, we 
have a feature-object matrix.

For text, the terms are features and the docs are objects.
Could be opinions and users …
This matrix may be redundant in dimensionality.
Can work with low-rank approximation.
If entries are missing (e.g., users’ opinions), can recover if dimensionality is low.


