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Factor or Component Analysis o

e We study phenomena that can not be directly observed
e ego, personality, intelligence in psychology
e Underlying factors that govern the observed data

e We want to identify and operate with underlying latent
factors rather than the observed data
e E.g. topics in news articles
e Transcription factors in genomics

e We want to discover and exploit hidden relationships
e ‘“beautiful car” and “gorgeous automobile” are closely related
e So are “driver” and “automobile”
e But does your search engine know this?
e Reduces noise and error in results
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Factor or Component Analysis,
cond.

e \We have too many observations and dimensions
e To reason about or obtain insights from
e Tovisualize
e Too much noise in the data
e Need to “reduce” them to a smaller set of factors
e Better representation of data without losing much information

e Can build more effective data analyses on the reduced-dimensional space:
classification, clustering, pattern recognition

e Combinations of observed variables may be more

effective bases for insights, even if physical meaning is
obscure
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The goal:

e Discover a new set of factors/dimensions/axes against
which to represent, describe or evaluate the data
e For more effective reasoning, insights, or better visualization
e Reduce noise in the data
e Typically a smaller set of factors: dimension reduction
e Better representation of data without losing much information

e Can build more effective data analyses on the reduced-dimensional space:
classification, clustering, pattern recognition

e Factors are combinations of observed variables
e May be more effective bases for insights, even if physical meaning is obscure

e Observed data are described in terms of these factors rather than in terms of
original variables/dimensions
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Basic Concept

e Areas of variance in data are where items can be best discriminated
and key underlying phenomena observed
e Areas of greatest “signal” in the data

e [f two items or dimensions are highly correlated or dependent
e They are likely to represent highly related phenomena

e If they tell us about the same underlying variance in the data, combining them to
form a single measure is reasonable

Parsimony
Reduction in Error

e So we want to combine related variables, and focus on uncorrelated
or independent ones, especially those along which the observations
have high variance

e We want a smaller set of variables that explain most of the variance
in the original data, in more compact and insightful form
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Basic Concept o

e What if the dependences and correlations are not so strong or
direct?

e And suppose you have 3 variables, or 4, or 5, or 10000?

e Look for the phenomena underlying the observed
covariance/co-dependence in a set of variables

e Once again, phenomena that are uncorrelated or independent, and especially
those along which the data show high variance

e These phenomena are called “factors” or “principal
components” or “independent components,” depending on the
methods used

e Factor analysis: based on variance/covariance/correlation
e Independent Component Analysis: based on independence
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An example:
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Principal Component Analysis

e Most common form of factor
analysis

e The new variables/dimensions

e Are linear combinations of the original
ones

e Are uncorrelated with one another
Orthogonal in original dimension space

e Capture as much of the original
variance in the data as possible

e Are called Principal Components
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PC2 PC 1

Orthogonal directions of greatest
variance in data

Projections along PC1
discriminate the data most along
any one axis




Principal Component Analysis

Eric Xing

e First principal component is
the direction of greatest
variability (covariance) in the

PC 2 data

PC1
e Second is the next orthogonal
(uncorrelated) direction of
greatest variability

e  So first remove all the variability along
the first component, and then find the
next direction of greatest variability

e Andsoon...

Computing the Components

e Data points are vectors in a multidimensional space

e Projection of vector x onto an axis (dimension) u is uTx

e Direction of greatest variability is that in which the average
square of the projection is greatest
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I.e. u such that E((u™x)2) over all x

is maximized

(we subtract the mean along each dimension,
and center the original axis system at the
centroid of all data points, for simplicity)

This direction of u is the direction of the

first Principal Component
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Computing the Components

o E(X(uT™)?) =E (™) (u™)7) = E (u™XXu)

e The matrix C = XXT contains the correlations (similarities) of
the original axes based on how the data values project onto
them

e So we are looking for w that maximizes u'Cu, subject to u
being unit-length

e [tis maximized when w is the principal eigenvector of the
matrix C, in which case

e u'Cu=u"w=Axif uis unit-length, where A is the principal eigenvalue of
the correlation matrix C

e The eigenvalue denotes the amount of variability captured along that dimension
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Why the Eigenvectors?

Maximise u™XXTu

s.t uu=1

Construct Langrangian u™X™u —au'u

Vector of partial derivatives set to zero
XXTu—2u=(XxXx"-a)u=0

As u # 0 then u must be an eigenvector of XX™ with eigenvalue
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Computing the Components g
\

e Similarly for the next axis, etc.

e SO, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples project to them

A
e Geometrically: centering followed by rotation
Linear transformation
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PCs, Variance and Least-Squares | :

e The first PC retains the greatest amount of variation in the
sample

e The k" PC retains the kth greatest fraction of the variation in
the sample

e The k™" largest eigenvalue of the correlation matrix C is the
variance in the sample along the kh PC

e The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones
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How Many PCs?

e For n original dimensions, correlation matrix is nxn, and has up to n
eigenvectors. So n PCs.
e Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
25 4

PCl1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCl10

You do lose some information, but if the eigenvalues are small, you don’t
lose much

. n dimensions in original data

. calculate n eigenvectors and eigenvalues

. choose only the first p eigenvectors, based on their eigenvalues

final data set has only p dimensions

.
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Application:
Latent Semantic Analysis

e Motivation
e Lexical matching at term level inaccurate (claimed)

e Polysemy — words with number of ‘meanings’ — term matching returns irrelevant
documents — impacts precision

e Synonomy — number of words with same ‘meaning’ — term matching misses
relevant documents — impacts recall

e LSA assumes that there exists a LATENT structure in word
usage — obscured by variability in word choice

e Analogous to signal + additive noise model in signal
processing
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The Vector Space Model 5
e Represent each document by a high-dimensional vector in the
space of words
T learning
3| journa
1| intelligence
Journal of Arfificial Infelligence 0 text
ﬁ 0| agent
: 1| internet
g | webwatcher
af the jowrial s alsa published by Mlowgan d F[ls
Kafman....
.1 volume
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The Corpora Matrix :
Doc 1 Doc 2 Doc 3
Word 1 3 0 0
Word 2 0 8 1
X = [ 0 1 3
Word 4 2 0 0
Word 5 12 0 0
0 0 0

Eric Xing
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Feature Vector Representation e
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Figure 4.2 Cosine measure of document similarity.
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Problems o
e Looks for literal term matches
e Terms in queries (esp short ones) don’t always capture user’s
information need well
e Problems:
e Synonymy: other words with the same meaning
Car and automobile
e No associations Isim,,...(d, q) > cos(Z(d, q) 2 vector space
representation.
Pol . the si . TN ) *
* Folysemy: e SSHntm(d, q)< cos(Z(d, (}'))'gs
Apple (fruit and curnipary)
e The vector space model is unable to discriminate between different
meanings of the same word.
Eric Xing 20
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Example of Problems ocs
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!
B Adobe Acrobat - [Isi-orig.peF o] x|
T Fle Edit Document Took View Window Help =lelx|
NMeGHS MK Mes DEM G2 A@@E 000
o 8
? Sample Term by Document matrix 1
i
ﬁ HOCEES deresimeant retrieval infermation theory database indexing 2 compuier REL MATCH
B nw..‘\‘.‘ “ R
7.
& Doc x* x x* M
E‘ ‘
% Doc 3 % x* | x* R | M
n
?‘j Query: "IDF in compurter-based information look-up”
T Talile 1
| e s Y e 6 e o _J:J
-- Relevant docs may not have the query terms
-> but may have many “related” terms
-- Irrelevant docs may have the query terms
-> but may not have any “related” terms
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Latent Semantic Indexing (LSI)
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(Deerwester et al., 1990)

e Uses statistically derived conceptual indices instead of

individual words for retrieval
e Assumes that there is some underlying or latent

structure in word usage that is obscured by variability in

word choice

e Key idea: instead of representing documents and
gueries as vectors in a t-dim space of terms

e Represent them (and terms themselves) as vectors in a lower-dimensional space

whose axes are concepts that effectively group together similar words
e Uses SVD to reduce document representations,
e The axes are the Principal Components from SVD

e So what is SVD?

Eric Xing
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Example

e Suppose we have keywords
e Car, automobile, driver, elephant

e We want queries on car to also get docs about drivers
and automobiles, but not about elephants

e What if we could discover that the cars, automobiles and drivers axes are
strongly correlated, but elephants is not

e How? Via correlations observed through documents

e Ifdocs A & B don’t share any words with each other, but both share lots of words
with doc C, then A & B will be considered similar

e E.g Ahas cars and drivers, B has automobiles and drivers

e When you scrunch down dimensions, small differences
(noise) gets glossed over, and you get desired behavior

Latent Semantic Indexing s

Document

£
@
'_
X T A D'
(m x n) (m x k) (k x k) (k x )
This is our compressed
representation of a
K document
W= 2d AT,
k=1
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Eigenvalues & Eigenvectors

e Eigenvectors (for a square mxm matrix S)

Sy = v

Example

6 —2\ 1y _ /2y _ (1
(right) eigenvector  eigenvalue (4 0) (2) B (4) 2 <2)
veR™£0 rxeR
e How many eigenvalues are there at most?

Sv=Xlv <= (S—-A)v=0

only has a non-zero solution if |S — AXI| =0

this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Eigenvalues & Eigenvectors

e For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

SViya = Ay 2V o.and 4 # 4, = vy ev, =0
e All eigenvalues of a real symmetric matrix are real.
for complex 4,if [S—Al|=0andS=8" = 1 e R

e All eigenvalues of a positive semidefinite matrix are non-
negative

vweR", W' Sw>0, thenif Sv=Av=12>0

Eric Xing 26
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Eigen/diagonal Decomposition

e Let S € R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

Theorem: Exists an eigen decomposition
diagonal
S—UAUut Y

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of A are eigenvalues of S

A = diag(A1, ..., Am)s As 2> Ay

Eric Xing 27

Singular Value Decomposition

For an mx n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UzV'
1

mxm || mxn Vis nxn

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues 2, ... A, of AAT are the eigenvalues of ATA.

Y

> =diag(o,...0,) ————Singular values.

Eric Xing

14



[ X X ]
0000
0000
00
VD PCA '
an o
e The first root is called the prinicipal eigenvalue which has an
associated orthonormal (uTu = 1) eigenvector u
e Subsequent roots are ordered such that A,> », >... >, with
rank(D) non-zero values.
e Eigenvectors form an orthonormal basis i.e. u;"u; = &;
e The eigenvalue decomposition of XXT = UzUT
e where U=[u;, u,, ..., uy,]and & =diag[r ;, A ,, ..., Al
e Similarly the eigenvalue decomposition of XTX = VzVT
e The SVD is closely related to the above X=U g2 VT
e The left eigenvectors U, right eigenvectors V,
e singular values = square root of eigenvalues.
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xample o
) 0.3996 -0.1037 0.5606 -0.3717 -0.3919 {0.3482 0.1029
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094
0.3464 -0. -0.3997 -0.5142 0.2787 0.0102 -0.2857
0.1888 0.0049 -0.0279 -0.2087 0.4193 -0.6629
0.3602 3 -0.0914 0.1596 -0.2045 -0.3701 -0.1023
term ch2 ' ch3 |ch4 |ch5 | ch6 | ch7 | ch8 | ch9 04075 03622 -0.3657 -0.2684 -0.0174 02711 0.5676
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230
controllability | 1 1 0 0 1 0 0 1 0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010
observability 1 0 0 0 1 1 0 1
realization 1 0 1 0 1 0 1 0 ° (1 f;):n 0 0 0 0 0 0
0 2.2813 0 0 0 0 0
feedback 0 1 0 0 0 1 0 0 0 0 1.6705 0 0 0 0
0 0 0 1.3522 0 0 0
controller 0 1 0 0 1 1 0 0 0 0 0 0 11818 0 0
0 0 0 0 0 0.6623 0
observer 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0.6487
transfer o o o o 1 1 0o 0 v T
function 0.2917 -0.2674 03883 -0.5393 0.3926 -0.2112 -0.4505
polynomial 0 0 0 1 0 1 0 0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346
matrices 0 0 0 0 1 0 1 1 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636
04134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330
Thls happens to be a rank_7 matrix 0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998
-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT
Eric Xing 30
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Low-rank Approximation

e Solution via SVD

A =U diag(al,...,Gk,O,...,O)VT

set smallest r-k
singular values to zero

P

k
Ak =Y o V! column notation: sum
i=1 ! of rank 1 matrices
Eric Xing 31

Approximation error

e How good (bad) is this approximation?

e It's the best possible, measured by the Frobenius norm of the
error:

min [A-X]; =[A-A]; =0,

X:rank (X )=k

where the o; are ordered such that ¢, > c;,,.
Suggests why Frobenius error drops as k increased.

Eric Xing 32
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SVD Low-rank approximation

e Whereas the term-doc matrix A may have m=50000, n=10

million (and rank close to 50000)

e We can construct an approximation A, with rank 100.

Document

Term

X

Of all rank 100 matrices, it would have the lowest Frobenius error.

(mxn)

T
(m x k)

A

(k x k)

DT
(K x n)

K
W= Z‘dkﬂkfk
k=1

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.

Eric Xing

33

Following the Example

term ch2 ' ch3 |ch4 |ch5 | ch6 | ch7 | ch8 | ch9
controllability | 1 1 0 0 1 0 0 1
observability 1 0 0 0 1 1 0 1
realization 1 0 1 0 1 0 1 0
feedback 0 1 0 0 0 1 0 0
controller 0 1 0 0 1 1 0 0
observer 0 1 1 0 1 1 0 0
ransier o 0o o o 1 1 0o 0
polynomial 0 0 0 1 0 1 0
matrices 0 0 0 0 1 0 1 1

This happens to be a rank-7 matrix
-so only 7 dimensions required

Eric Xing

0.3996

Singular values = Sqrt of Eigen values of AAT

-0.1037 0.5606 -0.3717 -0.3919 10.3482 0.1029
0.4180 -0.0641 0.4878 0.1 0.5771  0.1981 -0.1094
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676
0.2750 0.1667 -0.13 0.4376 0.3844 -0.3066 0.1230
0.2259 -0.3096 - -0.2406 -0.3122 -0.2611
0.2958 -0.4232 5 -0.3800 0.5114 0.2010
S (7x7)

3.9901 0 0 0 0 0 0

0 2.2813 0 0 0 0 0

0 0 1.6705 0 0 0 0

0 0 0 1.3522 0 0 0

0 0 0 0 1.1818 0 0

0 0 0 0 0 0.6623 0

0 0 0 0 0 0 0.6487

V (7x8) T
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346
-0.0000 -0.0000 -0.0000 -0.0000 0000 -0.0000 0.0000
0.6838 -0.1913 -0.1609 0. ).0050 -0.5229 0.3636
04134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998
34
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PCs can be viewed as Topics

1o i oL -
20 E 20k ]
30 g 30 .
a0 . 40 - o 1 ‘ | H |
. . = @ 2
E s0 | b £ solm | é
ko] — = g s 1]
s0 50 * U1
100 =200 300
70 B 7oL = Documents
s0 - g so - g
20 1 20 —
100 b & 100kL e
100 =200 300 2 a
Documents Topics

In the sense of having to find quantities that are not observable directly

Similarly, transcription factors in biology, as unobservable causal bridges
between experimental conditions and gene expression
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H U2 (9x2) = . .
uerying o, |8
0.4180 -0.0641
03464 04422
To query for feedback controller, the query vector would
be 52 (2x2)
- 59901 0
g=[0 0 0 1 1 0 O 0 O] (indicates 0 22813
transpose), V2 (5x2) =
0.2917 -0.2674
0.3399 04811
0.1889 -0.0351
Let q be the query vector. Then the document-space 0000 4
. . . 0.6838
vector corresponding to q is given by: 04134
. 0.2176 -0.5
q‘*UZ*lnv(SZ) = Dq 02791 02591
Point at the centroid of the query terms’ poisitions in the
new space. . term ch2 | ch3 |ch4 |ch5 |ch6 |ch7 |ch8 |ch9
For the feedback controller query vector, the result is: cnmolbiiy |1 11 o o 11 Jo Jo |1
Dq = O 1 37() 03678 observability 1 0 0 0 1 1 0 1
realization 1 0 1 0 1 0 1 0
To find the best document match, we compare the Dq feedback o |1 Jo Jo Jo |1 |o |o
vector against all the document vectors in the 2- controller |0 |1 o o |1 |1 o o
dimensional V2 space. The document vector that is nearest Dh‘"f"" ot v jo v v o Jo
. . . . . transfer
in direction to Dq is the best match. The cosine values function R L L L L N L
for the eight document vectors and the query vector are: polyomial |0 |0 |0 JO |t |0 |1 |0
matrices 0 0 0 0 1 0 1 1
<0.3747 09671 0.1735 -0.9413 0.0851 0.9642 -0.7265 -0.3805
-0.37 0.967 0.173 -0.94 0.08 096 -0.72 -0.38
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Medline data
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What LS| can do o
e LSI analysis effectively does
e Dimensionality reduction
e Noise reduction
e Exploitation of redundant data
e Correlation analysis and Query expansion (with related words)
e Some of the individual effects can be achieved with
simpler techniques (e.g. thesaurus construction). LSI
does them together.
e LSI handles synonymy well, not so much polysemy
e Challenge: SVD is complex to compute (O(n3))
e Needs to be updated as new documents are found/updated
Eric Xing 39
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Summary: :

e Principle
e Linear projection method to reduce the number of parameters
e Transfer a set of correlated variables into a new set of uncorrelated variables
e Map the data into a space of lower dimensionality
e Form of unsupervised learning

e Properties

e It can be viewed as a rotation of the existing axes to new positions in the space defined by
original variables

e New axes are orthogonal and represent the directions with maximum variability

e Application: In many settings in pattern recognition and retrieval, we
have a feature-object matrix.
e For text, the terms are features and the docs are objects.
e Could be opinions and users ...
e This matrix may be redundant in dimensionality.
e  Can work with low-rank approximation.
e If entries are missing (e.g., users’ opinions), can recover if dimensionality is low.
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