Machine Learning
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: L (X X
Expectation Maximization 0000
(Y XX
L X
o0
o
.0
0.. :
uE, o
oo :;.:0
o ’ Reading: Chap. 9, C.B book
[ X X ]
0000
0000
. [
Clustering e

®
* . o®
.'.i .I 20
L) - 0
e el
b 2%
o%




Unobserved Variables

e A variable can be unobserved (latent) because:

e itis animaginary quantity meant to provide some simplified and abstractive view
of the data generation process
e.g., speech recognition models, mixture models ...
e itis areal-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis areal-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models, con'd g
\
e A density model p(x) may be multi-modal.
e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs) | ¢
e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector: i
p(z,)=multi(z, : 7) = [ L(z, "

k

e JXis a conditional Gaussian variable with a class-specific mean/covariance

1 ~
p(x,12f =1,p,5) = Wem{-é(xn 1) (X, - )
k

) (X.2)>P pixiz)

e The likelihood of a sample:

mixture component
mixture proportion

poolun) =3, p* =1mplxl 2 =L ux) T ——=
- Zz,, Hk ((”k )z”k N(x,: #k’z/«)z"k ): Zk TN 1,2 4)
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
Y(?ly

)
p(Xn‘/uiz):Zkﬂ-kN(X’l:ukizk) g"—/ﬁw
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mixture proportion  mixture component
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e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

Why is Learning Harder? e

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms.

¢(0;D) =log p(x,z|0) =log p(z|6,)+log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log ) p(x,z|0)=log > p(z|6,)p(x|z,6,)
Z Z 4 Z
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Gradient Learning for mixture
models

\
e We can learn mixture densities using gradient descent on the

log likelihood. The gradients are quite interesting:

£(6)=l0g p(x|6) =109 Y. 7, p,(X6,)
k

ot 1 5/0/(()(‘9/()
20 p(x|0) ;”* 00
alog p, (X6,)
- 0
(x| 6) P (X(6,) 20
- p.(X(6,) dlog p, (X(6,) o,
“Xm o) o6, 2o,

Tk

e In other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.
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Parameter Constraints ;Aw%‘L o

e Often we have constraints on the parameters, e.g. X,7, =1, £
being symmetric positive definite (hence ;> 0).
e We can use constrained optimization, or we can

reparameterize in terms of unconstrained values.

e For normalized weights, use the softmax transform: Ty, = Zeipx(g(f/)‘)
J J

e For covariance matrices, use the Cholesky decomposition:
ST=ATA LN
where A is upper diagonal with positive diagonal:
A =exp(4,)>0 A,=n; (j>/) A;=0(j</)
the parameters y, 4, ;€ R are unconstrained.

e Use chain rule to compute ot ot

o' oA
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ldentifiability

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“‘meaning” of latent variables.

/
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Toward the EM algorithm

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector

-0

p(z,) = multi(z, : 7) = [ 1(z, )"

X is a conditional Gaussian variable with a class-specific
mean/covariance

1 -
p(x, 2y =1, 1,%) :WWP{'%(X” 1) S (%, - )}
k

e The likelihood of a sample:
P(,[ee.Z) =", p(z* =1]7)p(x,| 2 =1, 1,%)

= ZZ” Hk((”k)z‘& N(X, :/”wEk)Z; )=Zk”kN(Xv|ﬂwEk)
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Toward the EM algorithm

e Recall MLE for completely observed data

e Data log-likelihood

0

£(0;D) =log Hp(zn X,) = |09H p(z, [7)p(X, | 2, 11,0)
= Zlog Hﬂk + Elog HN(x s o—)
= ZZZ |0@ ZEZ @(X wy +C

e MLE T e =argmax, £(0;D),
:[lk‘MLE =argmax,, £(6;D)

) 2 7%,
= Hue :ﬁ
n

n

6 e =argmax_ £(6; D)

e What is we do not know z,?
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Expectation-Maximization (EM)
Algorithm H

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |tis much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EMis an lterative algorithm with two linked steps:

e E-step: fill-in hidden values using inference, p(zx, ).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

Eric Xing 14
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e Start:
e "Guess" the centroid g and coveriance 2, of each of the K clusters
e Loop
e Foreach point n=1to N,
compute its cluster label:
t \T 5 -1(t t
2 = argmax(x, — ) £, (x, ~ ")
e For each cluster k=1:K
S(7 (1)
l(l+1) o Zné(zn 'k)X” Z(Ul) o
ko= ko T
2..0(z.K)
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Expectation-Maximization |
Wome | Mk, 2|
e Start:
e "Guess" the centroid 4 and coveriance %, of each of the K clusters
e Loop
” i L=1 i L=4 3
[ ..' l'..n‘ . - L) L] i L] . 4
'. _.'-:. O g %
(@ (c) (d) (&)
L=6 .@ L=8 '{-3 L=10 @ L=12 '(3 .
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Example: Gaussian mixture
model

o A mixture of K Gaussians:
e Zis a latent class indicator vector

p(z,) =multi(z, :7) = [ 1(z, )"

k
e Xis a conditional Gaussian variable with a class-specific mean/covariance

1
pX, 12 =1, u,%) = WQXP{'%(XH 1) 2 (x, _/Uk)}
k

e The likelihood of a sample:
PG| 2) =Y, p(z," =1 m)p(x.| 2, =1, 1, %)
Y T NG 20 )= 3, 2N a2,
e The “complete” likelihood
(X, 25 =1u,%) = p(z," =1] 7) p(x,| 2, =1, 1, ) = T N (X,| 4, Z,)
PO 2| D) = [TIm N a1 2O

k
But this is itself a random variable! Not good as objective function

Eric Xing
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Example: Gaussian mixture
model

e The complete log likelihood:

C ¢@:0)-10g TTp(z,, %) =10g[ | p(z, 1 7)P(x, |2, 21,0)
PR) n n

= Dlog [T# + Xlog TIN(x, 1, 0)*
k

n k

= 227k logm, - 2 27X L (x - 1 )P +C
n k n k

N 207
e The expected complete log likelihood

(€0:x,2)) = Llog p(z,|7)) ..+ 2log p(x, |z, 4. %))

plzlx)

-0

- Zz<z,,“>log7rk—% Zﬂzﬂ((xn—uk)rz;l(xﬂ—,uk)+log\2k\+6')
n k n k
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E-step

e We maximize</c (9)> iteratively using the following
iterative procedure:

N
— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., z) given
current est. of the parameters (i.e., zand ).
* *) (1)
k k k 9 N(X 1| H 12 )
7, :<Zn> o =Pz =1x, 4" 350 = k(f) ; k(?‘) k(r)
7 E7[/‘ N(an| /Ll/' ’Z/ )
1 -
Here we are essentially doing inferenc ?(Zv‘ = lx)
P(Zy=tx)
I
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M-step 2
e We maximize</c (0)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under N
current results of the expected value of the hidden variables
7, =argmax(/.(e)), = 2(/.(0))=0,Vk, st Dz, =1
k
2 (zk) ()
- = M R
Z k(f)X
wy =argmax(/(0)), = uf™ :Lk" Fact:
2 r (*) .
n " DIOg‘A ‘7 n
Z k(t) x — (#+1) X — (#+1)\T oA!
Z:(:argmax</(0)>, = ZE(MJ _ 4 Tn (X, — 1 k(z)( =ML ) o Ax ]
2, A

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their

Eric Xing corresponding "sufficient statistics") 2
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Compare: K-means o
|
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
e In the K-means “E-step” we do hard assignment:
2" =argmax(x, — i) 7 (x, = u)
e In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
L = Zﬂb‘(z,f”,k)xﬂ
| > 5z k)
3 3. kg *3
r ::v‘ . ,: ..-.;.'3 ' :-‘;:3 . ) .:.;.9 .
@) (@] ] [E)] (e] m
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IRAS Sky Survey Atlas o
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AutoClass Discovery in the IRAS
Star Atlas

e From subtle differences between their infrared spectra, two
subgroups of stars were distinguished, where previously no
difference was suspected.

e The difference is confirmed by looking at their positions on this map
of the galaxy. .
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Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(6;D)=log> p(x,z|0)=log> p(z|6,)p(x|z,6,)

is difficult!

e \What shall we do?

Eric Xing 24
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Complete & Incomplete Log
Likelihoods

\
e Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s).

If Zcould be observed, then ot

{(0,x,z)=logp(x,z|0)
e Usually, optimizing 4() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:
4.(0;x)=log p(x |6) =log " p(x,z|6)

e This objective won't decouple
Eric Xing 25

Expected Complete Log
Likelihood o

e For any distribution ¢(z), define expected complete log likelihood:

def
(t(6:x.2)), = L g(z|x.0)log p(x, 7|0)
A deterministic function of @

Linear in £() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality 2-07¥ t =79
£(0,x)=log p(x|6) z '
=log > p(x,z|6) ¥
, (p(x,z|e) ‘ /
,IOQZ‘,V(Z|X oz 1) >) 272 ?7(’97{
> g(z|x) IogM £(0;x)=(£,(6; x, zf}}jm-é

z 9(z|x)
Eric Xing = Z%H(x)[fgr(y‘i(v) - ﬂg Z‘(Q}X} .
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Lower Bounds and Free Energy

\
e For fixed data x, define a functional called the free energy:

F(g.0)= Zq(z|x>log”( ')</<e;x)

g(z|x)
e The EM algorithm is coordinate-ascent on F:
e E-step: gt =argmax F(¢g,0")
q
e M-step: o = arg mHaX /:(qﬂl,gf)
=
Jta.s)
Eric Xing Q&i? -

E-step: maximization of expected
LW.rt. g o2

Q':
=
\/

e Claim: g™ =arg mng(qﬁ*) =p(z|x,0") 1. b )

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 48,x)>F(¢,0)
px,z|6")

p(z‘x 0 )‘ﬂb“

fzﬁ(zwwlogpuw*)

=log p(x|0")=£(6"; x)
e Can also show this result using variational calculus or the fact

that g x)- F(g.0)=KL(g || pz| x.0))

F(p(z‘x,O’),O’ Zp(z‘x 6")log

Eric Xing 28
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E-step = plug in posterior
expectation of latent variables

e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:

mh(x ,2) exp{z 0.f(x, z)}

e Special cases: if p(X] Z) are GLIMs, then £(x,2) =1 (2)E(X)

» The expected complete log likelihood under ;71 — p(7 | x,0")

is
<4(0";x,z)>¢1 = Zc/(z | x,0")log p(x,z|6")—A(6)
_Zgr<f(x z)>q(zw , —A©)
P~ LIMZQT<,7I (Z)>q(z‘x o E(x)-A(9)

M-step: maximization of expected
Lw.rt. 6 o

e Note that the free energy breaks into two terms:

p(x.z|6)
g(z|x)
=>.9(z|x)log p(x,z|0)~> g(z| x)logg(z | x)

F(g,0)=> g(z|x)log

=({4(0:x.2)),+H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to @ for fixed ¢
we only need to consider the first term:
F+1 . o
0" =arg mgx(!c @;x, z)>q,4 =arg maaqu(z | x)log p(x,z|6)

e Under optimal ¢", this is equivalent to soIvingza standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,6).

Eric Xing 30
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Summary: EM Algorithm

\
e A way of maximizing likelihood function for latent variable

models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
o E-step: QM =argmax F(qlg")
g
o M-step: 0" =arg mglx F(q’” ,0")

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.

Eric Xing 31
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EM Variants oo
e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.

Eric Xing 32
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A Report Card for EM
e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood
e Some bad things about EM:
e can get stuck in local minima
e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step
e is a maximum likelihood/MAP method
Eric Xing 33
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