Machine Learning
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Unobserved Variables

e A variable can be unobserved (latent) because:
e itis animaginary quantity meant to provide some simplified and abstractive view

of the data generation process

e.g., speech recognition models, mixture models ...

e itis areal-world object and/or phenomena, but difficult or impossible to measure

e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis areal-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models, con'd

e A density model p(x) may be multi-modal.

e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector:

p(z,)=multi(z, : 7) = [ 1(z, " i

k
e JXis a conditional Gaussian variable with a class-specific mean/covariance

plx, |z =1, 1,%) = Wexp{-%(xn - 1) 2%, - 1)
k

e The likelihood of a sample:

mixture component

mixture proportion

poolun) =3, p* =1mplxl 2 =L ux) T ——=
- ZZ,, Hk ((”k )z”k N(x,: /’k’zk)z"k ): Zk TN 1,2 4)
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(Xn‘,u,Z) :Zk”kN(X’lﬂwzk)
| S
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e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

Why is Learning Harder? e

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms (at least for directed models).

¢(0;D) =log p(x,z|0) =log p(z|6,)+log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log ) p(x,z|0)=log > p(z|6,)p(x|z,6,)
Z Z 4 Z

X, X X; X X, X,
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Gradient Learning for mixture
models

\
e We can learn mixture densities using gradient descent on the

log likelihood. The gradients are quite interesting:

£(6)=l0g p(x|6) =109 Y. 7, p,(X6,)
k

ot 1 5/0/(()(‘9/()
20 p(x|0) ;”* 00
alog p, (X6,)
- 0
(x| 6) P (X(6,) 20
- p.(X(6,) dlog p, (X(6,) o,
“Xm o) o6, 2o,

Tk

e In other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.
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Parameter Constraints B

e Often we have constraints on the parameters, e.g. X,7, =1, £
being symmetric positive definite (hence ;> 0).
e We can use constrained optimization, or we can

reparameterize in terms of unconstrained values.

e For normalized weights, use the softmax transform: Ty, = Zeipx(g(f/)‘)
J J

e For covariance matrices, use the Cholesky decomposition:
»T=ATA
where A is upper diagonal with positive diagonal:
A =exp(4,)>0 A,=n; (j>/) A;=0(j</)
the parameters y, 4, ;€ R are unconstrained.

e Use chain rule to compute ot ot
or A’
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ldentifiability

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“‘meaning” of latent variables.

/

p:lrameter space

likelihood
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Toward the EM algorithm

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector

-0

p(z,) = multi(z, : 7) = [ 1(z, )"

X is a conditional Gaussian variable with a class-specific
mean/covariance

1 -
p(x, 2y =1, 1,%) :WWP{'%(X” 1) S (%, - )}
k

e The likelihood of a sample:
P(,[ee.Z) =", p(z* =1]7)p(x,| 2 =1, 1,%)

= ZZ” Hk((”k)z‘& N(X, :/”wEk)Z; )=Zk”kN(Xv|ﬂwEk)
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Toward the EM algorithm

e Recall MLE for completely observed data

e Data log-likelihood

0

¢(0;D) =log [ Ip(z,. %,) =log[ ] p(z, | 7)p(X, | 2, 12, 5)
= D.log H;rfﬁ + 2log T IN(x, ;ﬂwo_)z:
n k n k
= 22z logm, - 2 Xz 54 (%, - ) +C
n k n k

e MLE T e =argmax, £(0;D),
:[lk‘MLE =argmax,, £(6;D)

D, 7%,

o — n
= Mome = Z /K
n

6 e =argmax_ £(6; D)

e What is we do not know z,?
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Expectation-Maximization (EM)
Algorithm H

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |tis much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EMis an lterative algorithm with two linked steps:

e E-step: fill-in hidden values using inference, p(zx, ).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.
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e Start:
e "Guess" the centroid g and coveriance 2, of each of the K clusters
e Loop
e Foreach point n=1to N,
compute its cluster label:
t \T 5 -1(t t
200 = argmax(x, - 4")" £, (x, - 1)
e For each cluster k=1:K
S(7 (1)
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Expectation-Maximization g
e Start:
e "Guess" the centroid 4 and coveriance %, of each of the K clusters
e Loop
2 & :' L=1 - L=4 e |
e O =& ﬁ @
[ ..' l'..n‘ . _. L) L] i L] . 4
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(@ (c) (d) (e)
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Example: Gaussian mixture
model

p(z,) =multi(z, :7) = [ 1(z, )"

k
e JXis a conditional Gaussian variable with a class-specific mean/covariance

e A mixture of K Gaussians:
e Zis a latent class indicator vector ;
N

1
pX, 12 =1, u,%) = WQXP{'%(XH 1) 2 (x, _/Uk)}
k

e The likelihood of a sample:
px | )=, p(z“ =1|7)p(x,| 2" =1, 1,%)
= T N 207 )= 3 mN e 50
e The expected complete log likelihood
(€.0:x,2)) = 2log p(z, | 7)),

n

= ZZ<Z:>|097’/( _% ZZ<Z:>((X,7 - 1) 2L (X, _ﬂk)+|09‘2k‘+c)
n k n k

2lx) plzlx)

+ 2.(log p(x;, | 2, 1,%))
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E-step H

e We maximize</c (0)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., z) given
current est. of the parameters (i.e., zand ).

) (1) (1)
N, 2
oD =(zr) = pzf =1 x,u" 10)=-GE O & “k(r) kw))
. D ON(x,,| 1, =)
;

Here we are essentially doing inference
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M-step :
e We maximize</€ (9)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under N
current results of the expected value of the hidden variables
7, =argmax(/.(6)), = 2 (L(0)=0,Yk, st 27, =1
k
k
= S Tt
k(1)
wy =argmax(/(0)), = uf™® :Z”ka" Fact:
Z k0
' alogla?| .
. 2 oy DX = )X = )T N
I, =argmax(/(®)), = ¢ =2 Zkr"“) ‘ NAX_ s
n N oA

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their

Eric Xing corresponding "sufficient statistics")
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Compare: K-means e
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
¢ In the K-means “E-step” we do hard assignment:
2" = argmax(x, — ") 2, (e, ~ ")
e In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
,Lz(f+1) _ Zn 5(2'57‘) ' k)Xﬂ
C Y 620 k)
w3 S RS 4 53 5 a5
;e ot .,: .-_;.‘s. ,: I.’%. ) P gt -
@) (®) : {c) d) (€] m
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IRAS Sky Survey Atlas
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AutoClass Discovery in the IRAS
Star Atlas o

e From subtle differences between their infrared spectra, two
subgroups of stars were distinguished, where previously no
difference was suspected.

e The difference is confirmed by looking at their positions on this map
of the galaxy. :

Eric Xing 22
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Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(0;D)=log) p(x,z|0)=log) p(z|6,)p(x|2,6,)

is difficult!

e What shall we do?

Eric Xing 23

Complete & Incomplete Log
Likelihoods o

e Complete log likelihood
Let X denote the observable variable(s), and Zdenote the latent variable(s).
If Zcould be observed, then .
£.(6,x,2) = log p(x,2|6)

e Usually, optimizing () given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, 4() is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:
4.(0;x)=log p(x|6)=log )’ p(x,z|6)
z

e This objective won't decouple
Eric Xing 24

12



Expected Complete Log
Likelihood

e For any distribution ¢(2), define expected complete log likelihood:

def
<Zc(6;x,z)>q =Y qg(z|x,0)log p(x,z|6)
z
A deterministic function of &
Linear in £() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0,x)=log p(x|6)
=log}_ p(x.210)

p(x,z|6)
oy
0029107 2Ty

plx,z|0)
g(z|x)

>3 g(z| x)log = /(H;X)Z%(@:X,Z)L*Hq

Eric Xing 25

Lower Bounds and Free Energy

e For fixed data x, define a functional called the free energy:
def (X,Z | 9)
F(g.0)= Y g(zx)10g 2225 < £(0: x)
7.00=2.9 g(z1x)

e The EM algorithm is coordinate-ascent on F:

e E-step: q”l =argmax £ (g, o)
g

o M-step: 0" =arg max F(g™,0")

Ffae)

—s
Eric Xing Q ) 26
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E-step: maximization of expected
Lwrt. g

e Claim: qm —arg maXF(q’g"):p(2|X,9")
q

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 46,x)>F¢,0)

pix,z|6")

F 00,07 = 01
(p(2]x,60"),6) gp(z\x )log Pz,
=>"g(z|x)log p(x|6")

=log p(x|6")=£(0"; x)
e Can also show this result using variational calculus or the fact

that (.- Fig.0) - KLigll p(z ] x.0))

Eric Xing 27
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E-step = plug in posterior HHH
expectation of latent variables '
e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:
plx,z|0) = Zl(e)h(x,z) exp{z H,ﬁ(x,z)}
o Special cases: if p(X]Z) are GLIMSs, then f(x,z)= 77,T (2)&(x)
e The expected complete log likelihood under g = p(z| x,0")
is
(40"ix.2)) ., =X q(z]|x.0")log p(x,2|6") - A®)
- Z 0/ <ﬁ(X' Z)>q(z\x,()') —A(9)
TS O (D)), & ()~ AB)
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M-step: maximization of expected
L w.rt. 6

e Note that the free energy breaks into two terms:
p(x,z|0)

g(z|x)
=>g(z|x)log p(x,z|0)-> g(z|x)logg(z | x)

F(g.0)=> ¢(z|x)log

=(4.(0; x, z)>q +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to & for fixed ¢
we only need to consider the first term:

F+1 . o
0™ =arg mgx(lc @; x, z)>qH =argmax > g(z|x)log p(x,z|6)

e Under optimal ¢", this is equivalent to soIvingZa standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z] x,6).

Summary: EM Algorithm e

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
. E-step: g =argmax F(¢g,6")
e M-step: o' = arg mEiX F(q’” , HT)

e In the M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.

Eric Xing 30
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EM Variants oo
e Sparse EM: |

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.

Eric Xing 31
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A Report Card for EM
e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood
e Some bad things about EM:
e can get stuck in local minima
e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step
e is a maximum likelihood/MAP method
Eric Xing 32
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