Machine Learning

10-701/15-781, Spring 2008

Model/Feature Selection

Eric Xing

Lecture 14, March 3, 2008

Reading: Chap. 1&2, CB & Chap 5,6, TM

Bias-variance decomposition

• For one data set *D* and one test point *x*

$$E_{(x,t),D}[(y(x)-t)^{2}]$$

$$= \int (E_{D}[y(x;D)] - h(x))^{2} p(x) dx$$

$$+ \int E_{D}[(y(x;D) - E_{D}[y(x;D)])^{2}] p(x) dx$$

$$+ \int (h(x)-t)^{2} p(x,t) dx dt$$

- \Rightarrow expected loss = (bias)² + variance + noise
- Recall the VC bound:

$$\epsilon(h) \le \hat{\epsilon}(h) + O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} - \frac{1}{m}\log\delta}\right)$$

SRM & ERM in practice

- There are many SRM-based strategies to build models:
- In the case of linear models

$$y = \langle w | x \rangle + b,$$

one wants to make ||w|| a controlled parameter: let us call $H_{\rm C}$ the linear model function family satisfying the constraint:

Vapnik Major theorem:

When C decreases, d(H_C) decreases

||x|| < R

9 =

Regularization

- Maximum-likelihood estimates are not always the best (James and Stein showed a counter example in the early 60's)
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

$$\hat{\theta}_{\text{shrinkage}} = \arg\max_{\theta} \left[l(\theta; D) + \lambda \|\theta\| \right]$$

where $\lambda > 0$ and $||\theta||$ might be the L_1 or L_2 norm.

- The choice of norm has an effect
 - using the L_2 norm pulls directly towards the origin,
 - ullet while using the L_1 norm pulls towards the coordinate axes, i.e it tries to set some of the coordinates to 0.
 - This second approach can be useful in a feature-selection setting.

Bayesian and Frequentist

- Frequentist interpretation of probability
 - Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write P(Katrina could have been prevented|D), since the event will never repeat.
 - Parameters of models are *fixed, unknown constants*. Hence one cannot write $P(\theta|D)$ since θ does not have a probability distribution. Instead one can only write $P(D|\theta)$.
 - One computes point estimates of parameters using various *estimators*, $\theta^* = f(D)$, which are designed to have various desirable qualities when *averaged over future data D* (assumed to be drawn from the "true" distribution).
- Bayesian interpretation of probability
 - Probability describes degrees of belief, not limiting frequencies.
 - Parameters of models are *hidden variables*, so one can compute $P(\theta|D)$ of $P(f(\theta)|D)$ for some function f.
 - One estimates parameters by computing $P(\theta|D)$ using Bayes rule:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Bayesian interpretation of regulation

- Regularized Linear Regression
 - Recall that using squared error as the cost function results in the LMS estimate
 - And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

• Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix

$$\theta \sim N(\mathbf{0}, \tau^2 I)$$

• What is the posterior distribution of θ ?

$$p(\theta|D) \propto p(D,\theta)$$

$$= p(D|\theta) p(\theta) = \left(2\pi\sigma^{2}\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{n} - \theta^{T} x_{i}\right)^{2}\right\} \times C \exp\left\{-\left(\theta^{T} \theta / 2\tau^{2}\right)^{2}\right\}$$

Bayesian interpretation of regulation, con'd

• The posterior distribution of θ

$$p(\theta|D) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_n - \theta^T x_i\right)^2\right\} \times \exp\left\{-\frac{\theta^T \theta}{2\sigma^2}\right\}$$

This leads to a now objective

$$l_{MAP}(\theta; D) = -\frac{1}{2\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2 - \frac{1}{\tau^2} \frac{1}{2} \sum_{k=1}^{K} \theta_k^2$$
$$= l(\theta; D) + \lambda \|\theta\|$$

- This is L_2 regularized LR! --- a MAP estimation of θ
- What about L₁ regularized LR! (homework)
- How to choose λ.
 - cross-validation!

Feature Selection

- Imagine that you have a supervised learning problem where the number of features n is very large (perhaps n >>#samples), but you suspect that there is only a small number of features that are "relevant" to the learning task.
- VC-theory can tell you that this scenario is likely to lead to high generalization error – the learned model will potentially overfit unless the training set is fairly large.
- So lets get rid of useless parameters!

How to score features

- How do you know which features can be pruned?
 - Given labeled data, we can compute some simple score S(i) that measures how informative each feature x_i is about the class labels y.
 - Ranking criteria:
 - Mutual Information: score each feature by its mutual information with respect to the class labels

 $MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i) p(y)}$

Bayes error:

(b) gene 1902

- Redundancy (Markov-blank score) ...
- We need estimate the relevant p()'s from data, e.g., using MLE

Feature Ranking

• Bayes error of each gene

 information gain for each genes with respect to the given partition

 KL of each removal gene w.r.t. to its MB

Feature selection schemes

- Given *n* features, there are 2ⁿ possible feature subsets (why?)
- Thus feature selection can be posed as a model selection problem over 2ⁿ possible models.
- For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2^n models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
 - Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
 - add (from empty set) or remove (from the full set) features one by one based on S(i)
 - Cheap, but is subject to local optimality and may be unrobust under different classifiers
 - Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
 - Simultaneous learning and feature selection.
 - E.x. L₁ regularized LR, Bayesian feature selection (will not cover in this class), etc.

Wrapper

- Forward:
 - 1. Initialize $\mathcal{F} = \emptyset$
 - 2. Repeat
 - For i = 1, ..., n
 if i ∉ F, let F₁ = F ∪ {i}, and use some version of cross validation to evaluate features F₁. (l.e., train your learning algorithm using only the features in F₁, and estimate its generalization error.)
 - Set $\mathcal F$ to be the best feature subset found on the last step step.
 - 3. Select and output the best feature subset that was evaluated during the entire search procedure.
- Backward search
 - 1. Initialize \mathcal{F} = full set
 - 2. ..

Case study [Xing et al, 2001]

- The case:
 - 7130 genes from a microarray dataset
 - 72 samples
 - 47 type I Leukemias (called ALL)
 and 25 type II Leukemias (called AML)
- Three classifier:
 - kNN
 - Gaussian classifier
 - Logistic regression

Regularization vs. Feature **Selection**

• Explicit feature selection often outperform regularization

Model Selection

- Suppose we are trying select among several different models for a learning problem.
- Examples:
 - 1. polynomial regression

$$h(x;\theta) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_k x^k)$$

- Model selection: we wish to **automatically** and **objectively** decide if k should be, say, 0,
- 2. locally weighted regression,
- Model selection: we want to automatically choose the bandwidth parameter $\ensuremath{ au}$.
- 3. Mixture models and hidden Markov model,
- Model selection: we want to decide the number of hidden states
- The Problem:
 - $\bullet \quad \text{Given model family } \boldsymbol{\mathcal{F}} = \left\{ \boldsymbol{M}_1, \boldsymbol{M}_2, \dots, \boldsymbol{M}_I \right\}, \text{ find } \boldsymbol{M}_i \in \boldsymbol{\mathcal{F}} \quad \text{ s.t. }$ $M_i = \arg\max_{M \in \mathcal{F}} J(D, M)$

Model Selection via Information Criteria

- How can we compare the closeness of a learned hypothesis and the true model?
- The relative entropy (also known as the <u>Kullback-Leibler</u> <u>divergence</u>) is a measure of how different two probability distributions (over the same event space) are.
 - For 2 pdfs, p(x) and q(x), their **KL-devergence** is:

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

 The KL divergence between p and q can also be seen as the average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q.

An information criterion

- Let f(x) denote the truth, the underlying distribution of the data
- Let $g(x, \theta)$ denote the model family we are evaluating
 - f(x) does not necessarily reside in the model family
 - $\theta_{ML}(y)$ denote the MLE of model parameter from data y
- Among early attempts to move beyond Fisher's Maliximum Likelihood framework, Akaike proposed the following information criterion:

$$E_{y} \Big[D \Big(f \, \big\| \, g(x \, | \, \theta_{ML}(y) \Big) \Big]$$

which is, of course, intractable (because f(x) is unknown)

AIC and TIC

• AIC (A information criterion, not Akaike information criterion)

$$A = \log g(x \mid \hat{\theta}(y)) - k$$

where k is the number of parameters in the model

• TIC (Takeuchi information criterion)

$$A = \log g(x \mid \hat{\theta}(y)) - \operatorname{tr}(I(\theta_0)\Sigma)$$

where

$$\theta_{0} = \arg\min D(f \parallel g(\cdot \mid \theta)) \qquad I(\theta_{0}) = -E_{x} \left[\frac{\partial^{2} \log g(x \mid \theta)}{\partial \theta \partial \theta^{T}} \right] \bigg|_{\theta = \theta_{0}} \qquad \Sigma = E_{y} \left(\hat{\theta}(y) - \theta_{0} \right) \left(\hat{\theta}(y) - \theta_{0} \right)^{T} d\theta d\theta$$

- We can approximate these terms in various ways (e.g., using the bootstrap)
- $\operatorname{tr}(I(\theta_0)\Sigma) \approx k$

Bayesian Model Selection

• Recall the Bayesian Theory: (e.g., for date *D* and model *M*)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the posterior equals to the likelihood times the prior, up to a constant.
- Assume that P(M) is uniform and notice that P(D) is constant, we have the following criteria:

$$P(D \mid M) = \int_{\theta} P(D \mid \theta, M) P(\theta \mid M) d\theta$$

 A few steps of approximations (you will see this in advanced ML class in later semesters) give you this:

$$P(D \mid M) \approx \log P(D \mid \hat{\theta}_{ML}) - \frac{k}{2} \log N$$

where N is the number of data points in D.

Summary

- Bias-variance decomposition
- The battle against overfitting:
 - Cross validation
 - Regularization
 - Model selection --- Occam's razor
 - Model averaging
 - The Bayesian-frequentist debate
 - Bayesian learning (weight models by their posterior probabilities)

Review								
Method	Input.	Output	Loss	hypothesis	Op+ procedure	Discriminative		
Density Est.	XER ⁿ XED ⁿ .	ρ(x)	L16),	Ganssim. Mnlti; Pazzm.	-> close from.	_		
knew Key	χલ્જ ૧૬જ	n=fx) =f(0 ¹ x)	(f(x) - y) ^L Llo)	linewa for	-> Gradient : Normal Eq Gradient : 7 U Studient:			
INN	XER DEC	n) ← f(x)		Parron	() stepst			
	v	P(xly) Y(v) -> ((vlx)	201	linew: (Z(=Z_) 22dul	hlts, MAP. Grad. Whee-from	G,		

Review Learny Thous: Says up Clowfut PAC Againstic Againstic									
Method	Input.	Output	Loss	hypothesis	Up+ procedure	Discriminative			
Logist (Ry	.,	() · 4(x) → °,	5 9 .		'hundiat, und				
YNV.	χ ω κ [™] η	W. for army peception.	\$ "	anything	head prop (recursive) ton-pass hidden sorial	D			
sv M	Υ Ե .Ε.	M = Ext. X1	th Marja	d(x) in Hilliand (C(·) ·) in Mercer	UP- Dunl-Primal	D.			
boosting					Convex Opt.				