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Machine LearningMachine Learning

1010--701/15701/15--781, Spring 2008781, Spring 2008

Model/Feature SelectionModel/Feature Selection

Eric XingEric Xing

Lecture 14, March 3, 2008

Reading: Chap. 1&2, CB & Chap 5,6, TM

Bias-variance decomposition
For one data set D and one test point x

⇒ expected loss = (bias)2 + variance + noise

Recall the VC bound:
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Empirical 
Risk

Risk

Model Complexity

Total Risk

Confidence interval
In h/L

Best Model

h*

Minimizing 
Empirical Risk & Structural Risk 

SRM & ERM in practice
There are many SRM-based strategies to build models:

In the case of linear models
y = <w|x> + b,

one wants to make ||w|| a controlled parameter: let us call HC the 
linear model function family satisfying the constraint:

||w|| < C

Vapnik Major theorem:
When C decreases, d(HC) decreases
||x|| < R
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Regularization
Maximum-likelihood estimates are not always the best (James 
and Stein showed a counter example in the early 60's)
Alternative: we "regularize" the likelihood objective (also 
known as penalized likelihood, shrinkage, smoothing, etc.), by 
adding to it a penalty term:

where λ>0 and ||θ|| might be the L1 or L2 norm.

The choice of norm has an effect
using the L2 norm pulls  directly towards the origin, 
while using the L1 norm pulls towards the coordinate axes, i.e it tries to set some 
of the coordinates to 0. 
This second approach can be useful in a feature-selection setting.
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Bayesian and Frequentist
Frequentist interpretation of probability

Probabilities are objective properties of the real world, and refer to limiting relative 
frequencies (e.g., number of times I have observed heads). Hence one cannot 
write P(Katrina could have been prevented|D), since the event will never repeat.
Parameters of models are fixed, unknown constants. Hence one cannot write 
P(θ|D) since θ does not have a probability distribution. Instead one can only write 
P(D|θ).
One computes point estimates of parameters using various estimators, θ*= f(D), 
which are designed to have various desirable qualities when averaged over future 
data D (assumed to be drawn from the “true” distribution).

Bayesian interpretation of probability
Probability describes degrees of belief, not limiting frequencies.
Parameters of models are hidden variables, so one can compute P(θ|D) or 
P(f(θ)|D) for some function f.
One estimates parameters by computing P(θ|D) using Bayes rule:
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Bayesian interpretation of 
regulation

Regularized Linear Regression 
Recall that using squared error as the cost function results in the LMS estimate
And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

Now assume that vector θ follows a normal prior with 0-mean and a diagonal 
covariance matrix

What is the posterior distribution of θ?
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Bayesian interpretation of 
regulation, con'd

The posterior distribution of θ

This leads to a now objective

This is L2 regularized LR! --- a MAP estimation of θ
What about L1 regularized LR! (homework)

How to choose λ. 
cross-validation!
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Feature Selection
Imagine that you have a supervised learning problem where 
the number of features n is very large (perhaps n 
>>#samples), but you suspect that there is only a small 
number of features that are "relevant" to the learning task. 

VC-theory can tell you that this scenario is likely to lead to 
high generalization error – the learned model will potentially 
overfit unless the training set is fairly large.

So lets get rid of useless parameters!

How to score features
How do you know which features can be pruned?

Given labeled data, we can compute some simple score S(i) that 
measures how informative each feature xi is about the class labels y.

Ranking criteria:
Mutual Information: score each feature by its mutual information with respect 
to the class labels

Bayes error:

Redundancy (Markov-blank score) …

We need estimate the relevant p()'s from data, e.g., using MLE
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Feature Ranking 

Bayes error of each gene

information gain for each 
genes with respect to the 
given partition

KL of each removal gene 
w.r.t. to its MB

Feature selection schemes
Given n features, there are 2n possible feature subsets (why?)

Thus feature selection can be posed as a model selection 
problem over 2n possible models.

For large values of n, it's usually too expensive to explicitly 
enumerate over and compare all 2n models. Some heuristic 
search procedure is used to find a good feature subset.

Three general approaches:
Filter: i.e., direct feature ranking, but taking no consideration of the subsequent 
learning algorithm

add (from empty set) or remove (from the full set) features one by one based on S(i)
Cheap, but is subject to local optimality and may be unrobust under different classifiers 

Wrapper: determine the (inclusion or removal of) features based on performance 
under the learning algorithms to be used.  See next slide
Simultaneous learning and feature selection.

E.x. L1 regularized LR, Bayesian feature selection (will not cover in this class), etc.
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Wrapper
Forward:

1. Initialize F = Ø
2. Repeat

For i = 1, … , n 
if          , let                    , and use some version of cross validation to evaluate 
features F i. (I.e., train your learning algorithm using only the features in F i, 
and estimate its generalization error.)
Set F to be the best feature subset found on the last step step.

3. Select and output the best feature subset that was evaluated during the 
entire search procedure.

Backward search
1. Initialize F = full set 
2. …

F∉i }{ii ∪= FF

Case study   [Xing et al, 2001]

The case: 
7130 genes from a microarray dataset
72 samples
47 type I Leukemias (called ALL) 
and 25 type II Leukemias (called AML)

Three classifier:
kNN
Gaussian classifier
Logistic regression
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Regularization vs. Feature 
Selection

Explicit feature selection often outperform regularization
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Model Selection
Suppose we are trying select among several different models 
for a learning problem.
Examples:

1. polynomial regression

Model selection: we wish to automatically and objectively decide if k should be, say, 0, 
1, . . . , or 10.

2. locally weighted regression,
Model selection: we want to automatically choose the bandwidth parameter τ. 

3. Mixture models and hidden Markov model,
Model selection: we want to decide the number of hidden states

The Problem:
Given model family                                    ,  find   s.t. 
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Model Selection via Information 
Criteria

How can we compare the closeness of a learned hypothesis 
and the true model?
The relative entropy (also known as the Kullback-Leibler
divergence) is a measure of how different two probability 
distributions (over the same event space) are.

For 2 pdfs, p(x) and q(x), their KL-devergence is:

The KL divergence between p and q can also be seen as the 
average number of bits that are wasted by encoding events 
from a distribution p with a code based on a not-quite-right 
distribution q .
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An information criterion
Let f(x) denote the truth, the underlying distribution of the data
Let g(x,θ) denote the model family we are evaluating

f(x) does not necessarily reside in the model family
θML(y) denote the MLE of model parameter from data y

Among early attempts to move beyond Fisher's Maliximum
Likelihood framework, Akaike proposed the following 
information criterion:

which is, of course, intractable (because f(x) is unknown)
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AIC and TIC
AIC (A information criterion, not Akaike information criterion)

where k is the number of parameters in the model

TIC (Takeuchi information criterion)

where

We can approximate these terms in various ways (e.g., using the bootstrap) 

kyxgA −= ))(ˆ|(log θ

))((tr))(ˆ|(log Σ−= 0θθ IyxgA

))| (  (minarg θθ ⋅= gfD0 ( )( )Ty yyE 00 θθθθ −−=Σ )(ˆ)(ˆ

0

2

0
θθ

θθ
θθ

=

⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂
−=  )| (log)( Tx

xgEI

kI ≈Σ))((tr 0θ

Bayesian Model Selection
Recall the Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

the posterior equals to the likelihood times the prior, up to a constant. 

Assume that P(M) is uniform and notice that P(D) is constant, 
we have the following criteria:

A few steps of approximations (you will see this in advanced ML 
class in later semesters) give you this:

where N is the number of data points in D.
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Summary

Bias-variance decomposition

The battle against overfitting: 

Cross validation
Regularization
Model selection --- Occam's razor
Model averaging 

The Bayesian-frequentist debate
Bayesian learning (weight models by their posterior probabilities)

Review
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Review


