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\J Reading: Chap. 7 T.M book, and outline material

Last time: PAC and Agnostic
Learning -

e Finite H, assume target function c € H
Pr(3h € H, s.t. (errorirein(h) = 0) A (erroryy.(h) > ¢€) ) < |Hle™™
e Suppose we want this to be at most 6. Then m examples suffice:

m > L(In|H| + In(1/6))

e Finite H, agnostic learning: perhaps c not in H
PEhe H, |e(h) —éh)| >7) = 2kexp(—2y*m)
« > m > # log %

e with probability at least (1-0) every h in H satisfies

e(h) < (minper e(h)) +2y/% log 2
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What if H is not finite? o2
e Can’t use our result for infinite H
e Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!
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What if H is not finite? s

e Some Informal Derivation

e Suppose we have an H that is parameterized b@al numbers. Since we are
using a computer to represent real numbers, and IEEE double-precision floating
point (double's in C) uses 64 bits to represent a floating point number, this means
that our learning algori , assuming we're using double-precision floating point,

is parameterized by64d Rits ‘(U_{ l 324*4 M < # 67%
7l 27 ey /
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e Parameterization

we. B

[\/TS }-il 6| , ﬁ\/q\a
()

T




. [ X X ]
How do we characterize sels
“power”? .
\
e Different machines have different amounts of “power”.
e Tradeoff between:
e More power: Can model more complex classifiers but might overfit.
e Less power: Not going to overfit, but restricted in what it can model
e How do we characterize the amount of power?
~ [ X X ]
- 0000
0000
. ::O
Shattering a Set of Instances &

e Definition: Given a set S={x®), ... , x@} (no relation to the
training set) of points xWe X, we say that #shatters .§ if #
can realize any labeling on .

l.e., if for any set of labels {y®), ... , y@}, there exists some
he # so that h(x) =y® foralli=1, ..., d.
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e There are 2" different ways to separate the sample in two sub-
samples (a dichotomy) Y
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The Vapnik-Chervonenkis §§:
Dimension -

e Definition: The Vapnik-Chervonenkis dimension, VC(H), of
hypothesis space H defined over instance space X is the size
of the largest finite subset of X shattered by H . If arbitrarily
large finite sets of X can be shattered by H , then VC(H) = «.

Instance space X
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VC dimension: examples 5
\
Consider X = R, want to learn c: X>{0,1}
What is VC dimension of — -+
+ -
e Open intervals: + +
V™ H1: if x>a, then y=1 else y=0 i
1-&?/ =1
Ve H/
e Closed intervals: e o o
. . D S B
Ve*" H2: if a<x<b, then y=1 else y=0 N ;
(% |
\/CH'\:' 4—5'
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VC dimension: examples o
Consider X = R2, want to learn c: X=>{0,1}
e What is VC dimension of lines in a plane?
H={ ( (wx+b)>0 > y=1)}
VC(H)=3
)
®
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e For any of the eight possible labelings of these points, we can find a linear

classier that obtains "zero training error" on them.

e Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter.

X

X1

e The VC dimension of H here is 3 even though there may be sets of size 3 that it
cannot shatter.

e under the definition of the VC dimension, in order to prove that VC(H) is at least
d, we need to show only that there's at least one set of size d that H can shatter.
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e Theorem Consider some set of m points in R". Choose any

one of the points as origin. Then the m points can be
shattered by oriented hyperplanes if and only if the position
vectors of the remaining points are linearly independent.

o
e Corollary: The VC dimension of the set of oriented
hyperplanes in R"is n+1.

Proof: we can always choose n + 1 points, and then choose one of the
points as origin, such that the position vectors of the remaining n points are
linearly independent, but can never choose n + 2 such points (since non +
1 vectors in R" can be linearly independent).

The VC Dimension and the
Number of Parameters

e The VC dimension thus gives concreteness to the notion of
the capacity of a given set of h.

e Is it true that learning machines with many parameters would
have high VC dimension, while learning machines with few
parameters would have low VC dimension?

An infinite-VC function with just one parameter!

flz, ) = 8(sin(ax)), z,a€eR My

where @is an indicator function ! p P
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An infinite-VC function with just sess
[ X J
one parameter oo
\
e You choose some number |, and present me with the task of finding |
points that can be shattered. | choose them to be
r;=10"° i=1,....,... /N7 VAN
e You specify any labels you like: T —>i-
Y1, Y2, Y1, yle{_lal} ........... ] P I W
e Then f() gives this labeling if | choose « to be N oy
! ] 1 X'
- (1 — yZ)IOI
a=n(l+ 7_21 — s )
e Thus the VC dimension of this machine is infinite.
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Sample Complexity from VC seoe
. . ::O
Dimension .

e How many randomly drawn examples suffice to e-exhaust
VS, s with probability at least (1 - 5)7?

ie., to guarantee that any hypothesis that perfectly fits the training data is
probably (1-8) approximately (g) correct on testing data from the same
distribution

m>1(4log,(2/5)+8VC(H)log,(13/¢))

Compare to our earlier results based on [H|:

m > -1 (In|H|+In(1/ 5))
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Mistake Bounds 5
So far: how many examples needed to learn?
What about: how many mistakes before convergence?
Let's consider similar setting to PAC learning:
e Instances drawn at random from X according to distribution D
e Learner must classify each instance before receiving correct
classification from teacher
e Can we bound the number of mistakes learner makes before
converging?
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Statistical Learning Problem :

e A model computes a function: h ( X , W)

e Problem : minimize in w

R(W) = [Q(z,w)dP(2)

e W : a parameter that specifies the chosen model

z = (X, y) are possible values for attributes (variables)

Q measures (quantifies) model error cost

P(z) is the underlying probability law (unknown) for data z




Statistical Learning Problem (2)

e We get L data from learning sample (z,, .., z,), and we suppose them
iid sampled from law P(z).

e To minimize R(w), we start by minimizing Empirical Risk over this
sample :

E(\N)=%ZQ(zi,W)

e We shall use such an approach for :
e classification (eg. Q can be a cost function based on cost for misclassified points)
e regression (eg. Q can be a cost of least squares type)

Statistical Learning Problem (3)

e Central problem for Statistical Learning Theory:

What is the relation
between Risk Expectation R(W)
and Empirical Risk E(W)?

e How to define and measure a generalization capacity
(“robustness”) for a model ?
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Four Pillars for SLT

e Consistency (guarantees generalization)
e Under what conditions will a model be consistent ?

e Model convergence speed (a measure for generalization)

e How does generalization capacity improve when sample size L grows?

e Generalization capacity control

e How to control in an efficient way model generalization starting with the only given
information we have: our sample data?

e A strategy for good learning algorithms

e Is there a strategy that guarantees, measures and controls our learning model
generalization capacity ?

Consistency

A learning process (model) is said to be consistent if
model error, measured on new data sampled from
the same underlying probability laws of our original
sample, converges, when original sample size
increases, towards model error, measured on
original sample.
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Consistent training? :
Yerror
\ Test error
/ Training error
number of training examples
Y%error
\ Test error
— Training error
number of training examples
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Vapnik main theorem :
° : Under which conditions will a learning model be
consistent?
e A : A model will be if and only if the function h that

defines the model comes from a family of functions H with

¢ A finite VC dimension d not only guarantees a generalization
capacity (consistency), but to pick h in a family H with finite
VC dimension d is the only way to build a model that
generalizes.

12
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Model convergence speed sels
(generalization capacity) '
\
° : What is the of model error difference between
learning data (sample) and test data, for a sample of finite
size m?
e /A : This difference is than that depends
on the between VC dimension d of model functions

family H, and sample size m, ie

This statement is a new theorem that belongs to Kolmogorov-
Smirnov way for results, ie theorems that on
data’s underlying probability law.

Agnostic Learning: VC Bounds

e Theorem: Let H be given, and let d = VC(H). Then with
probability at least 1-6, we have that for allh € H,

(R) — e(h)| < 0<\/% log 2 — L 10g )

or  e(h) < éh) +0(\/% log ™ — L log§)

—_—

bia Yar; sl
recall that in finite H case, we have:

[€(h) — e()] < /% log 2% — L 10gs
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Model convergence speed

Test data error

Confidence /}
Interval v

/ Learning sample error

How to control model
generalization capacity o2

Risk Expectation = Empirical Risk + Confidence Interval

e To minimize Empirical Risk alone will not always give a good
generalization capacity: one will want to minimize the sum of
Empirical Risk and Confidence Interval

e What is important is not the numerical value of the Vapnik
limit, most often too large to be of any practical use, it is the
fact that this limit is a non decreasing function of model family
function “richness”
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Empirical Risk Minimization

e With probability 1-6, the following inequality is true:

[(y=foxwe)dP(x,y) <

1o ov  [d(In2m/d)+1)=Ins
52— o) [ An@m/d)+1)-In3 5 )

e where w0 is the parameter w value that minimizes Empirical Risk:

m

EW) =23 (y, - (%, w)

m i

Minimizing The Bound by e
Minimizing d soet

e Given some selection of learning machines whose empirical risk is
zero, one wants to choose that learning machine whose associated
set of functions has minimal VC dimension.
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e By doing this we can attain an upper bound on the actual risk. This does not prevent a
particular machine with the same value for empirical risk, and whose function set has
higher VC dimension, from having better performance.

e Whatis the VC of a kNN? Viin =

15



Structural Risk Minimization

e Which hypothesis space should we choose?

e SRM: choose H to minimize bound on true error!

e Bias / variance tradeoff

e(h) < &(R) + O(\/% log 2 — L 1og5)

unfortunately a somewhat loose bound...

SRM strategy (1)

e With probability 1-6,

e(h) < &(R) + O(\/% log 2 — L 1og5)

e When m/d is small (d too large), second term of equation becomes
large

e SRM basic idea for strategy is to minimize simultaneously both
terms standing on the right of above majoring equation for &(h)

e To do this, one has to make d a controlled parameter

16
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SRM strategy (2) 3T
I
e Let us consider a sequence H; < H, < .. <H, of model family
functions, with respective growing VC dimensions
d, <d, <. <d,
e For each family H; of our sequence, the inequality
a d 1
e(h) < é(h)+ O(\/E log ™ — — 10g(5>
is valid
e Thatis, for each subset, we must be able either to compute d, or to get a bound
on d itself.
¢ SRM then consists of finding that subset of functions which
minimizes the bound on the actual risk.
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SRM strategy (3) o3e

SRM : find i such that expected risk gh) becomes
minimum, for a specific d*=d,, relating to a specific

family H; of our sequence; build model using h from H;

Risk

Best Model

!

onfidence interval
In h/L

Model Complexity

h*




Putting SRM into action:
linear models case (1)

e There are many SRM-based strategies to build models:

e In the case of

y = <w|x>+b,

one wants to make ||w|| a controlled parameter: let us call H. the
linear model function family satisfying the constraint:

llwl| < C

Vapnik Major theorem:
When C decreases, d(H.) decreases
lIx|l <R

Putting SRM into action:
linear models case (2) s

e To control ||w||, one can envision two routes to model:

e Regularization/Ridge Regression, ie min. over w and b
RG(w,b) = S{(y,-<w|x> - b)? [i=1,..,L} + 4 ||w][|?

e Support Vector Machines (SVM), ie solve directly an optimization
problem (hereunder: classif. SVM, separable data)

Minimize ||w/||?,
with (y;= +/-1)
and y,(<w|x> + b) >=1 for all i=1,..,.L
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The VC Dimension of SVMs

\
e An SVM finds a linear separator in a Hilbert space, where the

original date x can be mapped to via a transformation ¢#x).

o@ )¢(.)
@) ¢p) o)

(m
o e\ be)
RO

Input space Feature space

e Recall that the kernel trick used by SVM alleviates the need to
find explicit expression of ¢(.) to compute the transformation
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The Kernel Trick 7]
_L ]
e Recall the SVM optimization problem X~ ¢ f‘b‘
nopQ et ) o
max,, j(a)ZZai——Zaia.yiy.«xix_b
in 2/ N o )‘/’?L[)
X) * X
st. 0<¢;<C, i=1..k -4
m =2 57,0
zaiyizo' 7 ?A! /
i=1

e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Define the kernel function K by K(x;,x;) = #(X; )T¢(xj)

19



Mercer’s Condition

e For which kernels does there exist a pair { A ¢(.)} with the
valid geometric properties (e.g., nonnegative dot-product) for
a transformation satisfied, and for which does there not?

e Mercer's Condition for Kernels

e There exists a mapping ¢.) and an expansion
K(z,y) = Zqﬁl(x)@(y)
iff for any g(x) such that !

/g(m)Qd:c isfinite

then

[ K@ vat@gdedy 2 0

rd’ﬂw 0 H
The VC Dimension of SVMs - | 35

o We will call any kernel that satisfies Mercer’s condition a

positive kernel, and the corresponding space H the © A

embedding space. © /v( /z
Y

e We will also call any embedding space with minimal
dimension for a given kernel a “minimal embedding space”.

e Theorem: Let K be a positive kernel which corresponds to a
minimal embedding space H. Then the VC dimension of the
corresponding support vector machine (where the error
penalty C is allowed to take all values) is dim(H) + 1

X, T
x.:) (%)
N1 Y-

X
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VC and the Actual Risk
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e |tis striking that the two curves have minima in the same
place: thus in this case, the VC bound, although loose, seems
to be nevertheless predictive.

What You Should Know

e Sample complexity varies with the learning setting
e Learner actively queries trainer
e Examples provided at random

e Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error
e For ANY consistent learner (case where c in H)
e For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

e VC dimension as measure of complexity of H

e Quantitative bounds characterizing bias/variance in choice of H
e but the bounds are quite loose...

e Mistake bounds in learning
e Conference on Learning Theory: http://www.learningtheory.org
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