

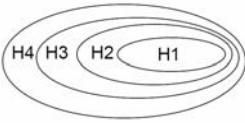
Machine Learning

10-701/15-781, Spring 2008

Computational Learning Theory II

Eric Xing

Lecture 12, February 25, 2008



Reading: Chap. 7 T.M book, and outline material

Last time: PAC and Agnostic Learning

- Finite H , assume target function $c \in H$

$$Pr(\exists h \in H, \text{ s.t. } (\text{error}_{\text{train}}(h) = 0) \wedge (\text{error}_{\text{true}}(h) > \epsilon)) \leq |H|e^{-\epsilon m}$$

- Suppose we want this to be at most δ . Then m examples suffice:

$$m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$$

- Finite H , agnostic learning: perhaps c not in H

$$P(\exists h \in H, |\epsilon(h) - \hat{\epsilon}(h)| > \gamma) = 2k \exp(-2\gamma^2 m)$$

- $\Rightarrow m \geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$

- with probability at least $(1-\delta)$ every h in H satisfies

$$\epsilon(\hat{h}) \leq (\min_{h \in H} \epsilon(h)) + 2\sqrt{\frac{1}{m} \log \frac{2k}{\delta}}$$

What if H is not finite?

- Can't use our result for infinite H
- Need some other measure of complexity for H
 - Vapnik-Chervonenkis (VC) dimension!

What if H is not finite?

- Some Informal Derivation
- Suppose we have an H that is parameterized by d real numbers. Since we are using a computer to represent real numbers, and IEEE double-precision floating point (double's in C) uses 64 bits to represent a floating point number, this means that our learning algorithm, assuming we're using double-precision floating point, is parameterized by 64 bits

$$|H| = 2^{64d} \quad m \leq \frac{1}{\gamma^2} \log \frac{4}{\delta}$$
$$m \leq \frac{1}{\gamma^2} \log \frac{2^{64d}}{\delta} = \frac{64d}{\gamma^2} \left(1 - \log \frac{1}{\delta}\right).$$

- Parameterization

$$\text{LR: } \theta^T$$

$$\text{NB: } \vec{\mu}_1 \sigma_1, \vec{\mu}_2 \sigma_2$$

(\cdot)

How do we characterize “power”?

- Different machines have different amounts of “power”.
- Tradeoff between:
 - More power: Can model more complex classifiers but might overfit.
 - Less power: Not going to overfit, but restricted in what it can model
- How do we characterize the amount of power?

Shattering a Set of Instances

- *Definition:* Given a set $\mathcal{S} = \{x^{(1)}, \dots, x^{(d)}\}$ (no relation to the training set) of points $x^{(i)} \in \mathcal{X}$, we say that \mathcal{H} shatters \mathcal{S} if \mathcal{H} can realize any labeling on \mathcal{S} .

i.e., if for any set of labels $\{y^{(1)}, \dots, y^{(d)}\}$, there exists some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all $i = 1, \dots, d$.

- There are 2^L different ways to separate the sample in two sub-samples (a dichotomy)

Three Instances Shattered

Instance space X

The Vapnik-Chervonenkis Dimension

- *Definition:* The **Vapnik-Chervonenkis dimension**, $VC(H)$, of hypothesis space H defined over instance space X is the size of the **largest finite subset** of X shattered by H . If arbitrarily large finite sets of X can be shattered by H , then $VC(H) \equiv \infty$.

Instance space X

VC dimension: examples

Consider $X = \mathbb{R}$, want to learn $c: X \rightarrow \{0,1\}$

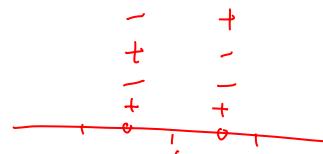
What is VC dimension of

- Open intervals:

$VC_{H1} = 1$ $H1$: if $x > a$, then $y = 1$ else $y = 0$

$VC_{H1} = 2$ $H1$

- Closed intervals:



$VC_{H2} = 2$ $H2$: if $a < x < b$, then $y = 1$ else $y = 0$

$VC_{H2} = 3$

VC dimension: examples

Consider $X = \mathbb{R}^2$, want to learn $c: X \rightarrow \{0,1\}$

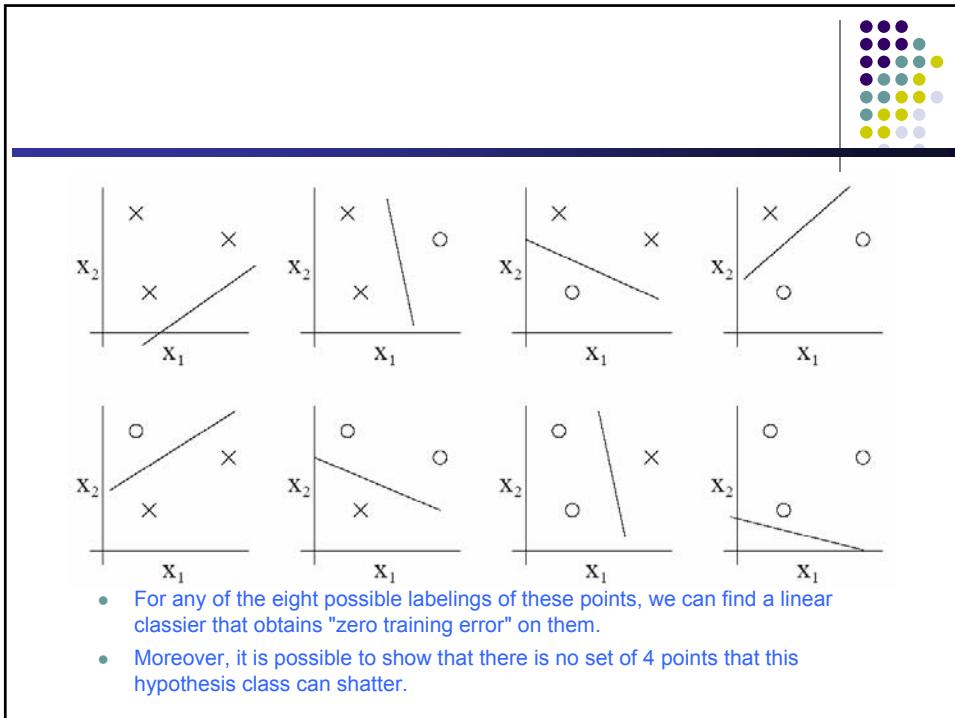
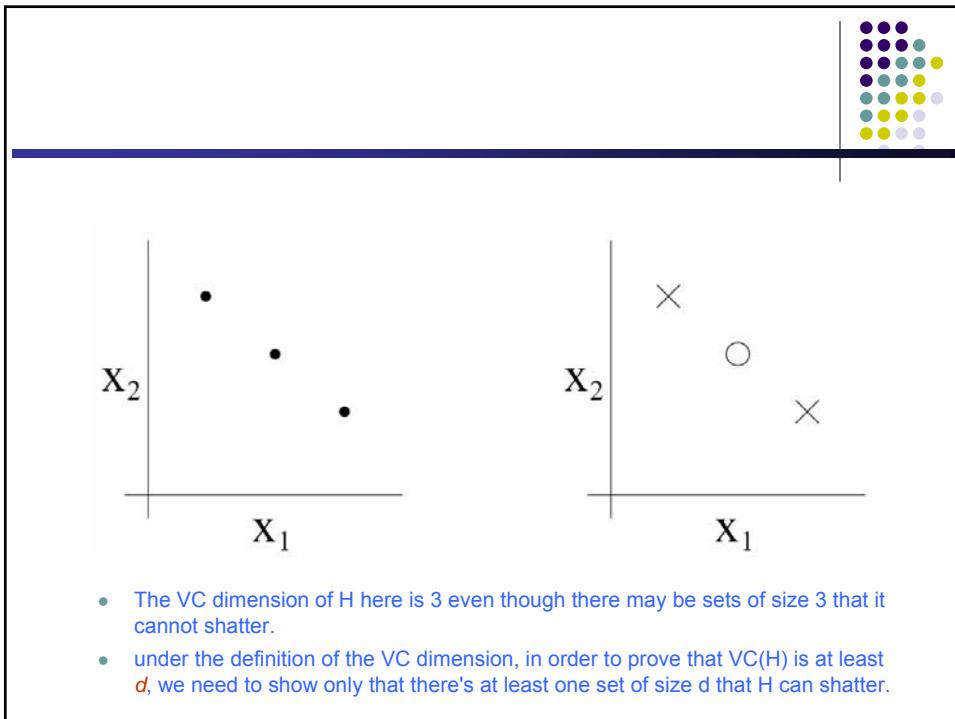
- What is VC dimension of lines in a plane?

$H = \{ (wx+b) > 0 \rightarrow y = 1 \}$

$VC(H) = 3$

(a)

(b)



- **Theorem** Consider some set of m points in \mathbb{R}^n . Choose any one of the points as origin. Then the m points can be shattered by oriented hyperplanes if and only if the position vectors of the remaining points are linearly independent.

- **Corollary:** The VC dimension of the set of oriented hyperplanes in \mathbb{R}^n is $n+1$.

Proof: we can always choose $n+1$ points, and then choose one of the points as origin, such that the position vectors of the remaining n points are linearly independent, but can never choose $n+2$ such points (since no $n+1$ vectors in \mathbb{R}^n can be linearly independent).

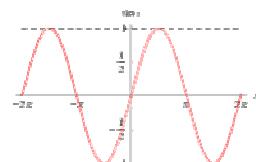
The VC Dimension and the Number of Parameters

- The VC dimension thus gives concreteness to the notion of the capacity of a given set of h .
- Is it true that learning machines with many parameters would have high VC dimension, while learning machines with few parameters would have low VC dimension?

An infinite-VC function with just one parameter!

$$f(x, \alpha) \equiv \theta(\sin(\alpha x)), \quad x, \alpha \in \mathbb{R}$$

where θ is an indicator function



An infinite-VC function with just one parameter

- You choose some number l , and present me with the task of finding l points that can be shattered. I choose them to be

$$x_i = 10^{-i} \quad i = 1, \dots, l.$$

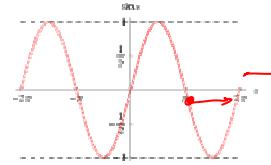
- You specify any labels you like:

$$y_1, y_2, \dots, y_l, \quad y_i \in \{-1, 1\}$$

- Then $f(\alpha)$ gives this labeling if I choose α to be

$$\alpha = \pi \left(1 + \sum_{i=1}^l \frac{(1 - y_i) 10^i}{2} \right)$$

- Thus the VC dimension of this machine is infinite.



$\vec{x} : \quad X^i$

Sample Complexity from VC Dimension

- How many randomly drawn examples suffice to ε -exhaust $VS_{H,S}$ with probability at least $(1 - \delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1 - \delta)$ approximately (ε) correct on testing data from the same distribution

$$m \geq \frac{1}{\varepsilon} (4 \log_2 (2/\delta) + 8VC(H) \log_2 (13/\varepsilon))$$

Compare to our earlier results based on $|H|$:

$$m \geq \frac{1}{2\varepsilon^2} (\ln |H| + \ln(1/\delta))$$

Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

Let's consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?

Statistical Learning Problem

- A model computes a function: $h(X, w)$

- Problem : minimize in w Risk Expectation

$$R(w) = \int Q(z, w) dP(z)$$

- w : a parameter that specifies the chosen model
- $z = (X, y)$ are possible values for attributes (variables)
- Q measures (quantifies) model error cost
- $P(z)$ is the underlying probability law (unknown) for data z

Statistical Learning Problem (2)

- We get L data from learning sample (z_1, \dots, z_L) , and we suppose them iid sampled from law $P(z)$.
- To minimize $R(w)$, we start by minimizing **Empirical Risk** over this sample :

$$E(W) = \frac{1}{L} \sum_{i=1}^L Q(Z_i, W)$$

- We shall use such an approach for :
 - classification (eg. Q can be a cost function based on cost for misclassified points)
 - regression (eg. Q can be a cost of least squares type)

Statistical Learning Problem (3)

- Central problem for Statistical Learning Theory:

What is the relation
between **Risk Expectation** $R(W)$
and **Empirical Risk** $E(W)$?

- How to define and measure a generalization capacity
("robustness") for a model ?

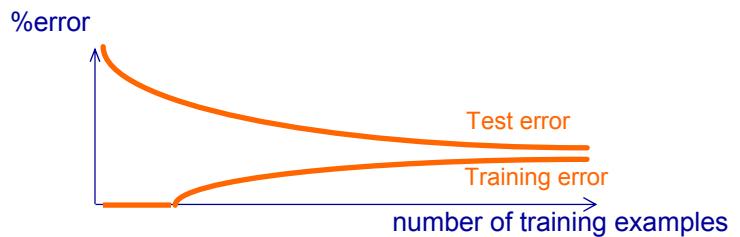
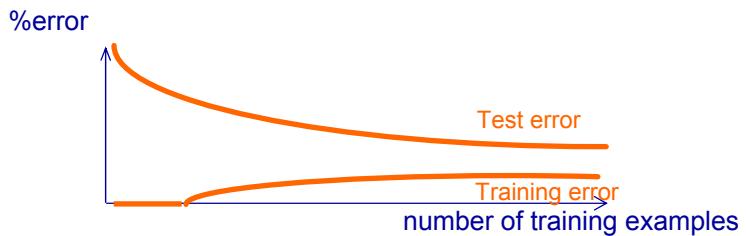
Four Pillars for SLT

- Consistency (guarantees generalization)
 - Under what conditions will a model be consistent ?
- Model convergence speed (a measure for generalization)
 - How does generalization capacity improve when sample size L grows?
- Generalization capacity control
 - How to control in an efficient way model generalization starting with the only given information we have: our sample data?
- A strategy for good learning algorithms
 - Is there a strategy that guarantees, measures and controls our learning model generalization capacity ?

Consistency

A learning process (model) is said to be **consistent** if model error, measured on new data sampled from the same underlying probability laws of our original sample, **converges**, when original sample size increases, towards model error, measured on original sample.

Consistent training?



Vapnik main theorem

- **Q** : Under which conditions will a learning model be consistent?
- **A** : A model will be **consistent** if and only if the function h that defines the model comes from a family of functions H with finite VC dimension d
- A finite VC dimension d not only guarantees a generalization capacity (consistency), but to pick h in a family H with finite VC dimension d is the only way to build a model that generalizes.

Model convergence speed (generalization capacity)

- **Q** : What is the **nature** of model error difference between learning data (sample) and test data, for a sample of finite size m ?
- **A** : This difference is **no greater than a limit** that **only** depends on the **ratio** between VC dimension d of model functions family H , and sample size m , ie d/m

This statement is a new theorem that belongs to Kolmogorov-Smirnov way for results, ie theorems that **do not depend** on data's underlying probability law.

Agnostic Learning: VC Bounds

- **Theorem:** Let H be given, and let $d = \text{VC}(H)$. Then with probability at least $1-\delta$, we have that for all $h \in H$,

$$|\hat{\epsilon}(h) - \epsilon(h)| \leq O\left(\sqrt{\frac{d}{m} \log \frac{m}{d} - \frac{1}{m} \log \delta}\right)$$

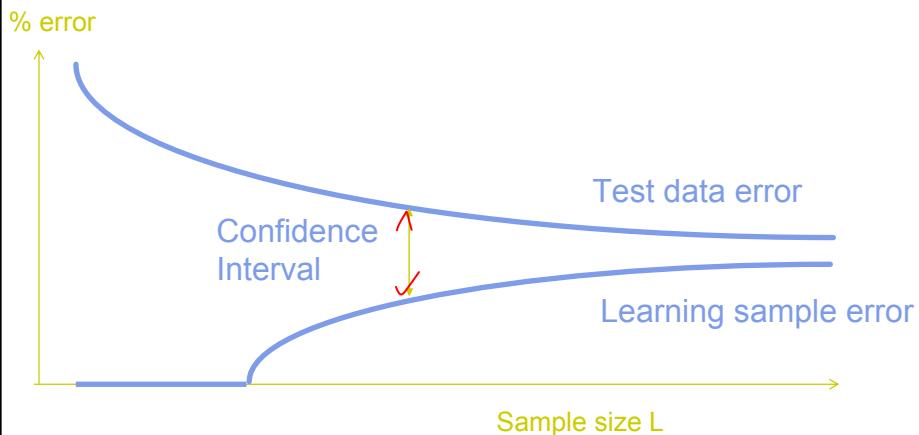
or
$$\epsilon(h) \leq \hat{\epsilon}(h) + O\left(\sqrt{\frac{d}{m} \log \frac{m}{d} - \frac{1}{m} \log \delta}\right)$$

bias *Varim*

recall that in finite H case, we have:

$$|\hat{\epsilon}(h) - \epsilon(h)| \leq \sqrt{\frac{1}{m} \log 2k - \frac{1}{m} \log \delta}$$

Model convergence speed



How to control model generalization capacity

Risk Expectation = Empirical Risk + Confidence Interval

- To minimize Empirical Risk alone will not always give a good generalization capacity: one will want to minimize the sum of Empirical Risk and Confidence Interval
- What is important is **not** the numerical value of the Vapnik limit, most often too large to be of any practical use, it is the fact that this limit is a **non decreasing function** of model family function “richness”

Empirical Risk Minimization

- With probability $1-\delta$, the following inequality is true:

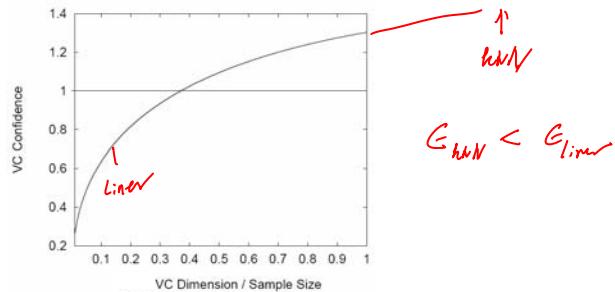
$$\int (y - f(x, w^0))^2 dP(x, y) < \frac{1}{m} \sum_{i=1}^m (y_i - f(x_i, w^0))^2 + \sqrt{\frac{d(\ln(2m/d) + 1) - \ln \delta}{m}}$$

- where w^0 is the parameter w value that minimizes Empirical Risk:

$$E(W) = \frac{1}{m} \sum_{i=1}^m (y_i - f(x_i, w))^2$$

Minimizing The Bound by Minimizing d

- Given some selection of learning machines whose empirical risk is zero, one wants to choose that learning machine whose associated set of functions has minimal VC dimension.

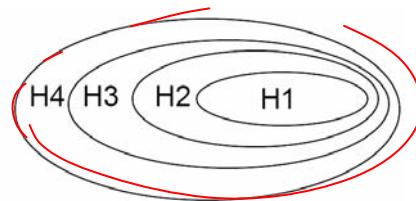


- By doing this we can attain an upper bound on the actual risk. This does not prevent a particular machine with the same value for empirical risk, and whose function set has higher VC dimension, from having better performance.
- What is the VC of a kNN? $VC_{kNN} = \infty$

Structural Risk Minimization

- Which hypothesis space should we choose?

- Bias / variance tradeoff



- SRM: choose H to minimize bound on true error!

$$\epsilon(h) \leq \hat{\epsilon}(h) + O\left(\sqrt{\frac{d}{m} \log \frac{m}{d} - \frac{1}{m} \log \delta}\right)$$

unfortunately a somewhat loose bound...

SRM strategy (1)

- With probability $1-\delta$,

$$\epsilon(h) \leq \hat{\epsilon}(h) + O\left(\sqrt{\frac{d}{m} \log \frac{m}{d} - \frac{1}{m} \log \delta}\right)$$

- When m/d is small (d too large), second term of equation becomes large
- SRM basic idea for strategy is to minimize simultaneously both terms standing on the right of above majoring equation for $\epsilon(h)$
- To do this, one has to make d a controlled parameter

SRM strategy (2)

- Let us consider a sequence $H_1 < H_2 < \dots < H_n$ of model family functions, with respective growing VC dimensions

$$d_1 < d_2 < \dots < d_n$$

- For each family H_i of our sequence, the inequality

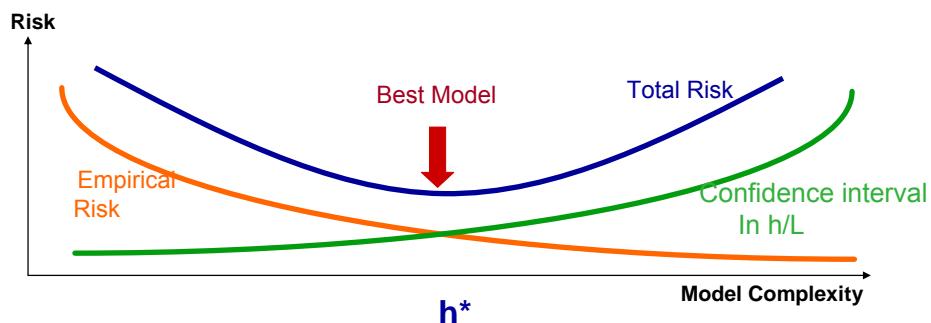
$$\epsilon(h) \leq \hat{\epsilon}(h) + O\left(\sqrt{\frac{d}{m} \log \frac{m}{d}} - \frac{1}{m} \log \delta\right)$$

is valid

- That is, for each subset, we must be able either to compute d , or to get a bound on d itself.
- SRM then consists of finding that subset of functions which minimizes the bound on the actual risk.

SRM strategy (3)

SRM : find i such that expected risk $\epsilon(h)$ becomes minimum, for a specific $d^* = d_i$, relating to a specific family H_i of our sequence; build model using h from H_i



Putting SRM into action: linear models case (1)

- There are many SRM-based strategies to build models:
- In the case of linear models

$$y = \langle w | x \rangle + b,$$

one wants to make $\|w\|$ a controlled parameter: let us call H_C the linear model function family satisfying the constraint:

$$\|w\| < C$$

Vapnik Major theorem:

When C decreases, $d(H_C)$ decreases

$$\|x\| < R$$

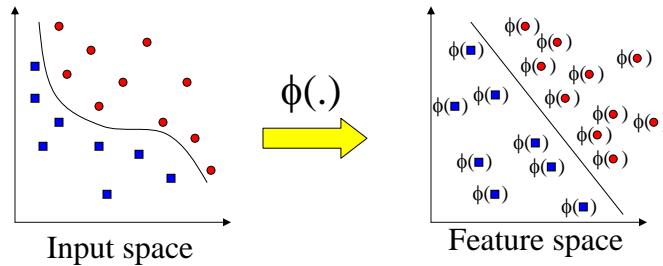
Putting SRM into action: linear models case (2)

- To control $\|w\|$, one can envision two routes to model:
 - *Regularization/Ridge Regression, ie min. over w and b*
- *Support Vector Machines (SVM), ie solve directly an optimization problem (hereunder: classif. SVM, separable data)*

Minimize $\|w\|^2$,
with $(y_i = +/-1)$
and $y_i(\langle w | x_i \rangle + b) \geq 1$ for all $i=1, \dots, L$

The VC Dimension of SVMs

- An SVM finds a linear separator in a Hilbert space, where the original data x can be mapped to via a transformation $\phi(x)$.



- Recall that the kernel trick used by SVM alleviates the need to find explicit expression of $\phi(\cdot)$ to compute the transformation

The Kernel Trick

- Recall the SVM optimization problem

$$\begin{aligned} \max_{\alpha} \quad & \mathcal{J}(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{s.t.} \quad & 0 \leq \alpha_i \leq C, \quad i = 1, \dots, k \\ & \sum_{i=1}^m \alpha_i y_i = 0. \end{aligned}$$

$\mathbf{x} \rightarrow \phi(\mathbf{x}) = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_n \end{pmatrix}$
 $K(\mathbf{x}_i, \mathbf{x}_j) \rightarrow \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$
 $= \sum_i \phi_i \alpha_i \phi_i^T \phi(\mathbf{x})$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Define the kernel function K by $\underline{K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)}$

Mercer's Condition

- For which kernels does there exist a pair $\{K, \phi(\cdot)\}$ with the valid geometric properties (e.g., nonnegative dot-product) for a transformation satisfied, and for which does there not?

- Mercer's Condition for Kernels**

- There exists a mapping $\phi(\cdot)$ and an expansion

$$K(x, y) = \sum_i \phi_i(x)\phi_i(y)$$

iff for any $g(x)$ such that

$$\int g(x)^2 dx \text{ is finite}$$

then

$$\int K(x, y)g(x)g(y)dxdy \geq 0$$

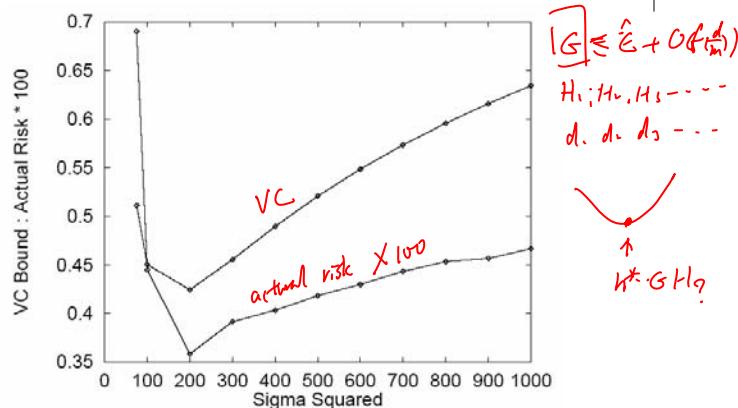
The VC Dimension of SVMs

RBF
 $K(x, x_i) = \frac{1}{\sigma} \exp\left(\frac{-\|x - x_i\|^2}{\sigma^2}\right)$

- We will call any kernel that satisfies Mercer's condition a positive kernel, and the corresponding space H the embedding space.
- We will also call any embedding space with minimal dimension for a given kernel a “minimal embedding space”.
- Theorem:** Let K be a positive kernel which corresponds to a minimal embedding space H . Then the VC dimension of the corresponding support vector machine (where the error penalty C is allowed to take all values) is $\dim(H) + 1$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad (1 + x_i^\top x_j)$$

VC and the Actual Risk



- It is striking that the two curves have minima in the same place: thus in this case, the VC bound, although loose, seems to be nevertheless predictive.

What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples provided at random
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps $c \notin H$)
- VC dimension as measure of complexity of H
- Quantitative bounds characterizing bias/variance in choice of H
 - but the bounds are quite loose...
- Mistake bounds in learning
- Conference on Learning Theory: <http://www.learningtheory.org>