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Boosting from Weak LearnersBoosting from Weak Learners

Eric XingEric Xing

Lecture 10, February 18, 2008

Reading: Chap. 14.3 C.B book

Rationale: Combination of 
methods

There is no algorithm that is always the most accurate

We can select simple “weak” classification or regression 
methods and combine them into a single “strong” method

Different learners use different

Algorithms
Hyperparameters
Representations (Modalities)
Training sets
Subproblems

The problem: how to combine them
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Some early algorithms
Boosting by filtering (Schapire 1990)

Run weak learner on differently filtered example sets
Combine weak hypotheses
Requires knowledge on the performance of weak learner

Boosting by majority (Freund 1995)
Run weak learner on weighted example set
Combine weak hypotheses linearly
Requires knowledge on the performance of weak learner

Bagging (Breiman 1996)
Run weak learner on bootstrap replicates of the training set
Average weak hypotheses
Reduces variance

Combination of classifiers
Suppose we have a family of component classifiers 
(generating ±1 labels) such as decision stumps:

where θ = {k,w,b}

Each decision stump pays 
attention to only a single 
component of the 
input vector

( )bwxxh k += sign);( θ
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Combination of classifiers con’d
We’d like to combine the simple classifiers additively so that 
the final classifier is the sign of

where the “votes” {αi} emphasize component classifiers that 
make more reliable predictions than others

Important issues:
what is the criterion that we are optimizing? (measure of loss)
we would like to estimate each new component classifier in the same manner 
(modularity)
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Measurement of error
Loss function:

Generalization error:

Objective: find h with minimum generalization error

Main boosting idea: minimize the empirical error:
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Exponential Loss
Empirical loss:

Another possible measure of empirical loss is
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Exponential Loss
One possible measure of empirical loss is

The combined classifier based on m − 1 iterations defines a weighted loss 
criterion for the next simple classifier to add
each training sample is weighted by its "classifiability" (or difficulty) seen by the 
classifier we have built so far 
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Recall that:
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Linearization of loss function
We can simplify a bit the estimation criterion for the new 
component classifiers (assuming α is small)

Now our empirical loss criterion reduces to

We could choose a new component classifier to optimize this 
weighted agreement

{ } );();(exp mimimimi hayhay θθ xx −≈− 1

{ }

∑∑

∑

∑

=

−

=

−

=

−

=

−=

−≈

−

n

i
mii

m
im

n

i

m
i

mimi

n

i

m
i

n

i
imi

hyWaW

hayW

hy

1

1

1

1

1

1

1

1

);(

));((

)(ˆexp

θ

θ

x

x

x

{ })(ˆexp imi
m
i hyW x1

1
−

− −=

A possible algorithm
At stage m we find θ* that maximize (or at least give a 
sufficiently high) weighted agreement:

each sample is weighted by its "difficulty" under the previously combined m − 1 
classifiers,
more "difficult" samples received heavier attention as they dominates the total 
loss

Then we go back and find the “votes” αm* associated with the 
new classifier by minimizing the original weighted 
(exponential) loss
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Boosting
We have basically derived a Boosting algorithm that 
sequentially adds new component classifiers, each trained on 
reweighted training examples

each component classifier is presented with a slightly different problem

AdaBoost preliminaries:
we work with normalized weights Wi on the training examples, initially 
uniform ( Wi = 1/n)
the weight reflect the "degree of difficulty" of each datum on the latest 
classifier 

The AdaBoost algorithm
At the kth iteration we find (any) classifier h(x; θk*) for which 
the weighted classification error:

is better than change.
This is meant to be "easy" --- weak classifier

Determine how many “votes” to assign to the new component 
classifier:

stronger classifier gets more votes

Update the weights on the training examples:
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The AdaBoost algorithm cont’d
The final classifier after m boosting iterations is given by the
sign of

the votes here are normalized for convenience
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AdaBoost: summary
Input:

N examples SN = {(x1,y1),…, (xN,yN)}
a weak base learner h = h(x,θ)

Initialize: equal example weights wi = 1/N for all i = 1..N
Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis 
ht = h(x,θt)

2. compute hypothesis error εt

3. compute hypothesis weight αt

4. update example weights for next iteration wt+1

Output: final hypothesis as a linear combination of ht
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AdaBoost: dataflow diagram

w1 w2 wTA(w,S) A(w,S) A(w,S)

Boosting: examples
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Boosting: example cont’d

Boosting: example cont’d
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Base Learners
Weak learners used in practice:

Decision stumps (axis parallel splits)
Decision trees (e.g. C4.5 by Quinlan 1996)
Multi-layer neural networks
Radial basis function networks

Can base learners operate on weighted examples?
In many cases they can be modified to accept weights along with the 
examples
In general, we can sample the examples (with replacement) according to 
the distribution defined by the weights

Boosting performance

The error rate of component 
classifier (the decision stumps) 
does not improve much (if at 
all) over time

But both training and testing 
error improve over time!

Even after the training error of 
the combined classifier goes 
to zero, boosting iterations can 
still improve the generalization 
error!!
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Why it is working?
You will need some learning theory (to be covered in the next 
two lectures) to understand this fully, but for now let's just go 
over some high level ideas
Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,  
Boosting should overfit!

Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments
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Training Margins
When a vote is taken, the more predictors agreeing, the more 
confident you are in your prediction.

Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

Successive boosting iterations improve the majority vote or 
margin for the training examples
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More Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire
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A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.  Boosting 
the margin: A new explanation for the effectiveness of voting methods.  

The Annals of Statistics, 26(5):1651-1686, 1998. 

For any γ, the generalization error is less than:

It does not depend on T!!!
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Summary
Boosting takes a weak learner and converts it to a strong
one

Works by asymptotically minimizing the empirical error

Effectively maximizes the margin of the combined hypothesis


