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Rationale: Combination of sels
methods oo

e There is no algorithm that is always the most accurate

e We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

e Different learners use different

Algorithms
Hyperparameters
Representations (Modalities)
Training sets

Subproblems

e The problem: how to combine them
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Some early algorithms :
e Boosting by filtering (Schapire 1990)
e Run weak learner on differently filtered example sets
e Combine weak hypotheses
e Requires knowledge on the performance of weak learner
e Boosting by majority (Freund 1995)
e Run weak learner on weighted example set
e Combine weak hypotheses linearly
e Requires knowledge on the performance of weak learner
e Bagging (Breiman 1996)
e Run weak learner on bootstrap replicates of the training set
e Average weak hypotheses
e Reduces variance
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Combination of classifiers :

e Suppose we have a family of component classifiers
(generating +1 labels) such as decision stumps:

h(x;6) =sign(wx, +b)

where 0= {kw,b}

e Each decision stump pays
attention to only a single

component of the £+ g’
input vector i




Combination of classifiers con’d

!
e We'd like to combine the simple classifiers additively so that

the final classifier is the sign of h )
9
m .

};(x) = h(X;0,)+...+a, h(X;0,)

where the “votes” {¢;} emphasize component classifiers that
make more reliable predictions than others

e Important issues:
e what is the criterion that we are optimizing? (measure of loss)

e we would like to estimate each new component classifier in the same manner
(modularity)

Measurement of error

e Loss function:
A, h(X)) (e.9.1(y # h(x)))
e Generalization error:
L(h) = E[2(0, h())]

e Objective: find h with minimum generalization error

e Main boosting idea: minimize the empirical error:
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Exponential Loss &
e Empirical loss:
- 1 &
L(h) = 72/1()/1"}1()([))
N3
e Another possible measure of empirical loss is
R n . 1
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Exponential Loss &
e One possible measure of empirical loss is
~ n ~ Recall that:
L(h) = _Zl:eXp{_ il (X:‘)} h,(X) = agh(X;6) +...+a, h(X;0,

= Z exp{— yi};m—l (Xi) - yiamh(xi : 9{71 )}
i=1

=S expl yii, 1 (x,) fexp{- ya,h(x,:6,)}
i=1

m

= iW[""l exp{-y,a,h(x;0,)} W = eXp{— yi}’l\m—l (X,-)}
P

e The combined classifier based on m - 1 iterations defines a weighted loss
criterion for the next simple classifier to add

e each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far




Linearization of loss function

e We can simplify a bit the estimation criterion for the new
component classifiers (assuming « is small)

exp{_ yiamh(xi ' 6 )} ~ 1 - yiamh(xi; 6 )

m m

e Now our empirical loss criterion reduces to

Z::exp{— y,.fzm (x,,)}

~ i Wt 1—-y.a,h(x,;0,)) ~
i=1 VV,‘”FI = exp{_ yihm—l (Xz)}
W't —a, > W yh(x,:0,)

m
i=1 i=1

e We could choose a new component classifier to optimize this
weighted agreement

A possible algorithm

e At stage m we find & that maximize (or at least give a
sufficiently high) weighted agreement:

n

S Wy n(x,;6))

i=1
e each sample is weighted by its "difficulty" under the previously combined m — 1
classifiers,
e more "difficult" samples received heavier attention as they dominates the total
loss
e Then we go back and find the “votes” ¢, * associated with the
new classifier by minimizing the original weighted
(exponential) loss

L(h) = 2 W exp{- y.a,h(x,;6,)}
i=1

=3 W —a, Y W yh(X,:6,)
i=1 i=1




Boosting

\
e We have basically derived a Boosting algorithm that

sequentially adds new component classifiers, each trained on
reweighted training examples

e each component classifier is presented with a slightly different problem

e AdaBoost preliminaries:

e we work with normalized weights 7, on the training examples, initially
uniform ( W, = 1/n)

e the weight reflect the "degree of difficulty" of each datum on the latest
classifier

The AdaBoost algorithm 5 el i (x)]

\
e At the kth iteration we find (any) classifier i(x; §,*) for which

the weighted classification error: -~

& = 0.5- ;(i W,.k’ly,-h(x,-; 9/?)}
i=1

is better than change.
e This is meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component
classifier:
a, =05log((1-¢,)/¢,)

e stronger classifier gets more votes

e Update the weights on the training examples:

W= explya,h(x,:6,)}




The AdaBoost algorithm cont’d

\
e The final classifier after m boosting iterations is given by the

sign of

o h(X0)+...+«a
a+..+a,

m

A(x) = h(x;6,)

e the votes here are normalized for convenience

AdaBoost: summary

e Input:
e Nexamples Sy ={(Xy.y1),---, (XnoYn)}
e aweak base learner h = h(x,6)

e Initialize: equal example weights w; = 1/N for all i = 1..N

e lteratefort=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h, = h(x,8)

2. compute hypothesis error &

3. compute hypothesis weight ¢

4. update example weights for next iteration w,,;

e Output: final hypothesis as a linear combination of h,




AdaBoost: dataflow diagram o
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Boosting: example cont’d
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Boosting: example cont’d




Base Learners

e Weak learners used in practice: |
e Decision stumps (axis parallel splits) )\\-/q[ [ yé}
e Decision trees (e.g. C4.5 by Quinlan 1996)
e Multi-layer neural networks
e Radial basis function networks

e Can base learners operate on weighted examples?

e In many cases they can be modified to accept weights along with the
examples

e In general, we can sample the examples (with replacement) according to
the distribution defined by the weights
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Boosting performance
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& e ot e The error rate of component
classifier (the decision stumps)
does not improve much (if at
all) over time

e But both training and testing
error improve over time!

e Even after the training error of
the combined classifier goes
to zero, boosting iterations can
still improve the generalization
error!!
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Why it is working?

e You will need some learning theory (to be covered in the next
two lectures) to understand this fully, but for now let's just go
over some high level ideas

e Generalization Error:

With high probability, Generalization error is less than:

Pr(H(z) #y]+ O (\/%)

As T goes up, our bound becomes worse,
Boosting should overfit!
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The Boosting Approach to Machine Learning, by Robert E. Schapire
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Training Margins

W
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e When a vote is taken, the more predictors agreeing, the more
confident you are in your prediction. - * Bl

V)
©
e Margin for example: 0 X
X
. ah(X;0)+...+a, h(X;6))
margin, (Xi’yi) =V
o t+..ta, vl K
The margin lies in [-1, 1] and is negative for all misclassified examples.
e Successive boosting iterations improve the maijority vote or
margin for the training examples
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More Experiments
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cumulative distribution
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The Boosting Approach to Machine Learning, by Robert E. Schapire
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A Margin Bound 5
e For any y, the generalization error is less than:
. d
Pr(margin, (xy) < 7 )+ O .
my
Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting
the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651-1686, 1998.
e |t does not depend on 1!
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Summary .

Boosting takes a weak learner and converts it to a strong
e Ohe

Works by asymptotically minimizing the empirical error

Effectively maximizes the margin of the combined hypothesis
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